ebook img

Mapping and analyzing energy use and efficiency in a modified hydroponic shipping container PDF

145 Pages·2017·4.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mapping and analyzing energy use and efficiency in a modified hydroponic shipping container

Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations 8-2016 Mapping and analyzing energy use and efficiency in a modified hydroponic shipping container Rachel E. Sparks Purdue University Follow this and additional works at:https://docs.lib.purdue.edu/open_access_theses Part of theBioresource and Agricultural Engineering Commons,Environmental Engineering Commons, and theHorticulture Commons Recommended Citation Sparks, Rachel E., "Mapping and analyzing energy use and efficiency in a modified hydroponic shipping container" (2016).Open Access Theses. 1011. https://docs.lib.purdue.edu/open_access_theses/1011 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30Updated(cid:20)(cid:21)(cid:18)(cid:21)(cid:25)(cid:18)(cid:21)(cid:19)(cid:20)(cid:24) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By RachelE.Sparks Entitled MAPPINGANDANALYZINGENERGYUSEANDEFFICIENCYINAMODIFIEDHYDROPONICSHIPPING CONTAINER MasterofScienceinEngineering For the degree of Is approved by the final examining committee: KeithA.Cherkauer Co-chair RobertM.Stwalley Co-chair CaryA.Mitchell To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s“Policy of Integrity in Research” and the use of copyright material. KeithA.Cherkauer,RobertM.Stwalley Approved by Major Professor(s): BernardA.Engel 7/20/2016 Approved by: Head of the Departmental Graduate Program Date MAPPING AND ANALYZING ENERGY USE AND EFFICIENCY IN A MODIFIED HYDROPONIC SHIPPING CONTAINER A Thesis Submitted to the Faculty of Purdue University by Rachel E. Sparks In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering August 2016 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to everyone involved in making this research possible. First, I would like to thank my major professor and advisor, Dr. Robert M. Stwalley III, for his guidance throughout my graduate studies. Additionally, thank you to Dr. Keith A. Cherkauer and Dr. Cary A. Mitchell for serving on my thesis committee and providing helpful, constructive feedback over the course of this research. I am also indebted to EEI, Inc., Village of Hope, and the Purdue University Agricultural & Biological Engineering Department for financial support, without which this research would not have been achievable. Additionally, thank you to Scott Brand, Rob Eddy, Daniel Madson, and Aaron Doke for their assistance with equipment assembly and machinery operation and expertise. Also, thank you to John Houtman, Claire Haselhorst, and Darren Seidel for their active participation in this research and camaraderie while working in the laboratory together. Many thanks to all my friends and family who supported me throughout my graduate studies. I would especially like to thank Kale Hopper for reminding me to stay determined and confident during difficult times. Lastly, I would like to show my great appreciation for my parents, Diane and Joe Sparks, for always encouraging me to pursue my dreams. iii TABLE OF CONTENTS Page LIST OF TABLES .............................................................................................................. v LIST OF FIGURES .......................................................................................................... vii LIST OF ABBREVIATIONS ............................................................................................ xi ABSTRACT ...................................................................................................................... xii CHAPTER 1. INTRODUCTION .................................................................................... 1 1.1 Background ............................................................................................................... 1 1.2 Urban Agriculture ..................................................................................................... 4 1.3 Hydroponics and Emerging Technologies ................................................................ 8 1.4 Project Motivation and Objectives .......................................................................... 13 CHAPTER 2. DESIGN AND TESTING OF THE MODIFIED HYDROPONIC SHIPPING CONTAINER ................................................................................................ 17 2.1 Design Constraints and Goals ................................................................................. 17 2.2 Test Unit Assembly ................................................................................................. 21 2.3 Experimental Design and Procedure ....................................................................... 26 CHAPTER 3. MHSC ENERGY MODELING METHODS ......................................... 29 3.1 Theoretical Energy Modeling Components ............................................................ 29 3.2 System Energy Balance ........................................................................................... 31 iv Page 3.3 Application of the Radiant Time Series Method ..................................................... 37 3.4 Determination of the Baseline Total Energy Load for MHSC Operation ............... 43 CHAPTER 4. RESULTS ............................................................................................... 46 4.1 Test Unit Lettuce Production Results ...................................................................... 46 4.2 RTS Method Cooling Load Results for MHSC Thermal Control .......................... 54 4.3 Baseline Total Energy Consumption Results for Full MHSC Operation ............... 63 CHAPTER 5. ANALYSIS AND DISCUSSION OF RESULTS .................................. 66 5.1 Comparison of Empirical and Theoretical Energy Use for Test Unit Components 66 5.2 Analysis of Scenarios for Improved MHSC Thermal Efficiency ........................... 71 5.3 Analysis of NFT Test Unit Plant Production Performance ..................................... 75 5.4 MHSC Crop Production Efficiency Scenarios ........................................................ 84 CHAPTER 6. CONCLUSIONS AND FUTURE CONSIDERATIONS ....................... 88 6.1 Conclusions ............................................................................................................. 88 6.2 Final Thoughts and Recommendations ................................................................... 89 LIST OF REFERENCES .................................................................................................. 94 APPENDICES Appendix A: Additional Test Unit Images and Nutrition Information ........................... 100 Appendix B: Baseline Energy Modeling Structural Heat Transfer Information ............ 104 Appendix C: Conductive Time Series & Radiant Time Series Tables and VBA Code . 106 Appendix D: Additional 24-hour Cooling Load Results from Baseline Energy Model . 112 Appendix E: Test Unit Component Measurements and Data ......................................... 117 Appendix F: Statistical Regression Results…………………………………………….122 v LIST OF TABLES Table .............................................................................................................................. Page Table 2.1: MHSC Design Elements .................................................................................. 18 Table 2.2: Varying Conditions in Test Unit...................................................................... 27 Table 3.1: Optimal Environmental Conditions for Hydroponic Lettuce Growth ............. 29 Table 3.2: Lighting, Pumping, and Ventilation Design Specifications ............................ 30 Table 3.3: Characteristics of Conduction Time Factors ................................................... 39 Table 3.4: RTS Method Radiant and Convective Splits ................................................... 41 Table 3.5: MHSC Baseline Ventilation Rates .................................................................. 44 Table 4.1: Grow Cycle Germination Rates ....................................................................... 50 Table 4.2: Grow Cycle Lettuce Yields ............................................................................. 51 Table 4.3: Total Test Unit Electricity Consumption ......................................................... 54 Table 4.4: Component Contributions to Baseline Heat Gains and Losses ....................... 59 Table 4.5: Total Monthly Baseline Power Requirements for Temperature Control ......... 61 Table 4.6: Baseline Monthly Electricity Usage by Category ........................................... 64 Table 5.1: Average Daily Experimental Electricity Use .................................................. 69 Table 5.2: Percent Error: Average Daily Experimental and Theoretical Energy Use ...... 69 Table 5.3: Baseline and Scenario 2 Ventilation Rates ...................................................... 72 Table 5.4: Percent Decrease in Monthly Energy Consumption from Baseline ................ 74 Table 5.5: Average Sample Fresh Weight for Cycles 1, 2, and 3 ..................................... 77 vi Table .............................................................................................................................. Page Table 5.6: Experimental Crop Production Efficiency ....................................................... 84 Table 5.7: Application of Experimental Lettuce Production to Full Scale Potential ........ 85 Table 5.8: Theoretical Full-Scale MHSC Crop Production Efficiency ............................ 86 Appendix Table Table B.1: Thermal Resistance of MHSC Structural Materials ..................................... 104 Table B.2: ASHRAE Recommended Convective Heat Transfer Coefficients ............... 104 Table B.3: Baseline Energy Model Combined Thermal Resistances ............................. 105 Table B.4: Alternative Scenario 1 Combined Thermal Resistances ............................... 105 Table B.5: MHSC Dimensions ....................................................................................... 105 Table E.1: Test Unit Temperature and Humidity Observations March 2016 ................. 117 Table E.2: Test Unit Temperature and Humidity Observations April 2016 ................... 118 Table E.3: Test Unit Temperature and Humidity Observations May 2016 .................... 119 Table E.4: Test Unit Water Use ...................................................................................... 120 Table E.5: Test Unit Reservoir Conditions ..................................................................... 120 Table E.6: Illuminance Measurements at Each Tray Position ........................................ 121 Table F.1: Cycle 1 Regression: Sample Fresh Weight vs. Tray Position………………122 Table F.2: Cycle 2 Regression: Sample Fresh Weight vs. Tray Position………………123 Table F.3: Cycle 3 Regression: Sample Fresh Weight vs. Tray Position………………124 Table F.4: Cycle 1 Regression: Sample Fresh Weight vs. Measured Illuminance……..125 Table F.5: Cycle 2 Regression: Sample Fresh Weight vs. Measured Illuminance..........126 Table F.6: Cycle 3 Regression: Sample Fresh Weight vs. Measured Illuminance…......127 vii LIST OF FIGURES Figure ............................................................................................................................. Page Figure 1.1: NFT Hydroponic Plant Production in a Greenhouse ........................................ 9 Figure 1.2: Indoor Vertical Farm, Tohoku, Japan ............................................................ 12 Figure 1.3: Freight Farms Shipping Container Exterior and Interior ............................... 14 Figure 2.1: NFT Grow Plots Profile View ........................................................................ 20 Figure 2.2: MHSC Overhead View .................................................................................. 20 Figure 2.3: Standpipe Drainage Assembly ....................................................................... 22 Figure 2.4: Overhead View AutoCAD Sketch ................................................................. 23 Figure 2.5: Overhead View Assembly .............................................................................. 23 Figure 2.6: Nose View AutoCAD Sketch ......................................................................... 24 Figure 2.7: Nose View Assembly ..................................................................................... 24 Figure 2.8: Side View AutoCAD Sketch .......................................................................... 25 Figure 2.9: Side View Assembly ...................................................................................... 25 Figure 3.1: Principle Sources of Heat Gain in Nonresidential Structures ........................ 32 Figure 3.2: Principle Sources of Heat Loss in Nonresidential Structures......................... 32 Figure 3.3: Overview of the RTS Method ........................................................................ 38 Figure 3.4: Conduction Time Series Example Calculation .............................................. 40 Figure 4.1: Cycle 1 Nursery Stage (March 28, 2016) ....................................................... 47

Description:
Sparks, Rachel E., "Mapping and analyzing energy use and efficiency in a modified hydroponic shipping container" (2016). Open Acta Horticulturae, 486, 301-305. Çengel, Y. A. (2002). Heating and Cooling of Buildings. In Heat Transfer: A Practical. Approach (2nd ed.). TX: Mcgraw-Hill.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.