ebook img

Many-Body Theory of Solids: An Introduction PDF

332 Pages·1984·4.996 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Many-Body Theory of Solids: An Introduction

MANY-BODY THEORY OF SOLIDS An Introduction MANY-BODY THEORY OF SOLIDS An Introduction JOHN C. INKSON Cavendish Laboratory University of Cambridge Cambridge, England PLENUM PRESS· NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Inkson, John c., dafe- Many-body theory of solids. Includes bibliographies and index. 1. Solid state physics. 2. Many-body problem. 3. Green's functions. 1. Title. QCI76.I44 1983 530.4'1 83-17771 ISBN 978-1-4757-0228-6 ISBN 978-1-4757-0226-2 (eBook) DOl 10.1007/978-1-4757-0226-2 ©1984 Plenum Press, New York Softcover reprint of the hardcover 1s t edition 1984 A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher PREFACE T here exists a gap in the present literature on quantum mechanics and its application to solids. It has been difficult to find an intro ductory textbook which could take a student from the elementary quan tum mechanical ideas of the single-particle Schrodinger equations, through the formalism and new physical concepts of many-body theory, to the level where the student would be equipped to read the scientific literature and specialized books on specific topics. The present book, which I believe fills this gap, grew out of two courses which I have given for a number of years at the University of Cambridge: "Advanced Quan tum Mechanics," covering the quantization of fields, representations, and creation and annihilation operators, and "Many Body Theory," on the application of quantum field theory to solids. The first course is a final-year undergraduate physics course while the second is a joint first year postgraduate physics course and fourth-year undergraduate math ematics course. In an American context this would closely correspond to a graduate course at the masters level. In writing this book I have tried to stress the physical aspects of the mathematics preferring where possible to introduce a technique by using a simple illustrative example rather than develop a purely formal treat ment. In order to do this I have assumed a certain familiarity with solid state physics on the level of a normal undergraduate course, but the book should also be useful to those without such a background. The book is divided into three basic parts. The first four chapters introduce the basic tools and concepts of advanced quantum mechanics in a simple context. In this way the reader will have already been intro duced to the Green's functions, diagrams, etc., before the complicated formalism is developed. The second part introduces the Green's function self-energy techniques. These form the backbone of the application of quantum mechanics to interacting systems. The method used is the so called "equation of motion" method which I believe is more physically understandable than the use of Wick's theorem (which leads directly to v PREFACE Feynman diagrams) but the use of the diagrammatic interpretation of the resulting iterative solution is stressed. The final section consists of the application of the techniques to a number of examples. These have been chosen to bring out particular physical aspects rather than for their inherent importance. A number of examples and a bibliography have been provided at the end of each chapter for readers wishing to look further into the areas treated. I'd like to express my appreciation to my wife Pam for all her patient hours of typing, and to the staff of Plenum Press, especially Ken Derham and Steve Pisano, for their help in the preparation of this book. Finally, I'd like to dedicate this book to my family, Pam, Andrea, Beverley, and Jonathan, for making it all worthwhile. JOHNINKSON vi CONTENTS CHAPTER 1. THE INTERACTING SYSTEM 1.1. The Basic Problem ............................... 1 1.2. The Jellium Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Hartree Theory-The Sommerfeld Model. . . . . . . . . . . 5 1.4. Hartree-Fock.................................... 10 1.5. Exchange and Correlation Holes. . . . . . . . . . . . . . . . . . . 15 1.6. Correlation Effects and the Thomas-Fermi Model. . . . 17 Bibliography .................................... 24 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CHAPTER 2. GREEN'S FUNCTIONS OF THE SINGLE- PARTICLE SCHRODINGER EQUATION 2.1. Green's Functions of the Schrodinger Equation. . . . . . 27 2.2. Green's Functions and Perturbation Theory. . . . . . . . . 30 2.3. Time-Dependent Green's Functions. . . . . . . . . . . . . . . . 33 2.4. Green's Function Diagrams. . . . . . . . . . . . . . . . . . . . . . . . 36 2.5. Green's Functions or Wave Functions? . . . . . . . . . . . . . 38 Bibliography .................................... 40 ProF 'Us........................................ 41 CHAPTER 3. QUANTIZATION OF WAVES (SECOND QUANTIZATION) 3.1. Waves and Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2. The Linear Chain of Atoms ....................... 44 3.3. The General Quantization of a Wave System . . . . . . . . 51 3.4. Quantization of the Electromagnetic Field .......... 55 3.5. Elementary Excitations and "Particles". . . . . . . . . . . . . . 59 3.6. Perturbations and the Elementary Excitations ....... 61 3.7. Summary....................................... 63 Bibliography .................................... 64 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 vii CONTENTS CHAPTER 4. REPRESENTATIONS OF QUANTUM MECHANICS 4.1. Schrodinger Representation. . . . . . . . . . . . . . . . . . . . . . . 68 4.2. Heisenberg Representation. . . . . . . . . . . . . . . . . . . . . . . . 68 4.3. Interaction Representation . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4. Occupation Number Representation. . . . . . . . . . . . . . . . 73 4.5. Interaction between Waves and Particles. . . . . . . . . . . . 81 4.6. Field Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Bibliography .................................... 88 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 CHAPTER 5. INTERACTING SYSTEMS AND QUASIPARTICLES 5.1. Single-Particle States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2. Absorbing Media ................................ 94 5.3. Exact and Approximate Eigenstates . . . . . . . . . . . . . . . . . 96 5.4. Landau Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Bibliography .................................... 110 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 CHAPTER 6. MANY-BODY GREEN'S FUNCTIONS 6.1. Definition of the Many-Body Green's Function. . . . . . 113 6.2. Relationship to Single-Particle Green's Function. . . . . 115 6.3. Energy Structure and the Green's Function ......... 116 6.4. The Lehman Representation and Quasiparticles ..... 120 6.5. Expectation Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.6. Equation of Motion for the Green's Function. . . . . . . . 126 6.7. Hartree and Hartree-Fock Approximations. . . . . . . . . . 128 6.8. The Self-Energy. . . . . . . .. ........................ 131 Bibliography .................................... 133 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 CHAPTER 7. THE SELF-ENERGY AND PERTURBATION SERIES 7.1. Functional Derivatives and the Calculation of G and ~.. . . .. . ..... . .... . ... . .... . ... . ...... ..... . 135 7.2. Iterative Solution for the Green's Function and Self- Energy... . . .. . ...... ..... .... . ..... ............. 140 7.3. Screening and the Perturbation Series. . . . . . . . . . . . . . 144 7.4. The Screened Interaction and Selective Summations 150 viii CONTENTS 7.5. The Uniform System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Bibliography .................................... 155 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 CHAPTER 8. DIAGRAMMATIC INTERPRETATION OF THE GREEN'S FUNCTION SERIES' 8.1. Diagrammatic Interpretation of the Perturbation Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.2. Diagrammatic Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.3. Infinite Series and Irreducible Diagrams. . . . . . . . . . . . 166 804. The Hartree Potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.5. The Uniform System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.6. Rules for Evaluating Diagrams. . . . . . . . . . . . . . . . . . . . . 174 8.7. Selective Summations ............................ 177 8.8. Practical Aspects of Diagrammatics. . . . . . . . . . . . . . . . . 180 Bibliography .................................... 181 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 CHAPTER 9. THE NORMAL SYSTEM 9.1. The Jellium Solid Response Function. . . . . . . . . . . . . . . 184 9.2. The Self-Energy (Physical Considerations) . . . . . . . . . . 190 9.3. Evaluation of the Self-Energy and Quasiparticle Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 904. Landau Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.5. Insulating Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 9.6. Surfaces......................................... 211 Bibliography .................................... 215 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 CHAPTER 10. THERMAL EFFECTS ON THE GREEN'S FUNCTION 10.1. The Density Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.2. Statistical Mechanics ............................ 221 10.3. The "Thermal" Heisenberg Representation ........ 225 lOA. Evaluation of the Perturbation Expansion. . . . . . . . . . 227 10.5. Periodicity of 9 and the Extension to Energy Dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 10.6. Real-Time Thermal Green's Functions. . . . . . . . . . . . . 233 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 ix CONTENTS CHAPTER 11. BOSON PARTICLES 11.1. Collective Excitations in Solids. . . . . . . . . . . . . . . . . . . 239 11.2. Electron-Phonon System ........................ 243 11.3. Plasmons and the Total Interaction. . . . . . . . . . . . . . . . 250 11.4. Boson Systems with a Condensate. . . . . . . . . . . . . . . . . 253 Bibliography .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 CHAPTER 12. SPECIAL METHODS 12.1. The Density Functional Method (Nearly Uniform Electron Gases) ................................. 265 12.2. Highly Localized Systems (Anderson-Hubbard Models) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 12.3. Canonical Transformations. . . . . . . . . . . . . . . . . . . . . . . 276 12.4. Mean-Field Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Bibliography ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 CHAPTER 13. SUPERCONDUCTIVITY 13.1. Cooper Pairs. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 290 13.2. Canonical Transformations. . . . . . . . . . . . . . . . . . . . . . . 295 13.3. Propagator Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Bibliography ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 APPENDIX: LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . 311 INDEX ............................................. 325 x CHAPTER ONE THE INTERACTING SYSTEM 1.1. THE BASIC PROBLEM The calculation of the motion of one particle is, under classical or quantum mechanics, a well-defined problem with a well-defined solu tion. True, in the latter case we must then be careful as to how we inter pret our solution and remember that we work with probabilities, but in principle the solution can be achieved to the Schrodinger equation for that particle. In the usual form we have Hif; = Eif; [1.1] with h2 + H = - - \72 V(r) [1.2] 2m and, with its boundary conditions, it forms a well-defined computational problem. If we consider two or three particles, we may consider the prob lem soluble whether they have a mutual interaction or not. Once we get into the realm of large numbers of particles, however, sheer computa tional difficulty prevents a solution. The only exception is the case of a noninteracting set of particles, for then the total Hamiltonian is of the form [1.3] and splits into a set of independent single-particle Hamiltonians [l.4] 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.