Many-Body Boson Systems Theoretical and Mathematical Physics The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs in Physics (TMP) publishes high-level monographs in theoretical and mathematical physics.ThechangeoftitletoTheoreticalandMathematicalPhysics(TMP)signalsthat theseriesisasuitablepublicationplatformforboththemathematicalandthetheoretical physicist. The wider scope of the series is reflected by the composition of the editorial board,comprisingbothphysicistsandmathematicians. Thebooks,writteninadidacticstyleandcontainingacertainamountofelementary background material, bridge the gap between advanced textbooks and research mono- graphs. They can thus serve as basis for advanced studies, not only for lectures and seminarsatgraduatelevel,butalsoforscientistsenteringafieldofresearch. EditorialBoard W.Beiglboeck,InstituteofAppliedMathematics,UniversityofHeidelberg,Heidelberg, Germany P.Chrusciel,GravitationalPhysics,UniversityofVienna,Vienna,Austria J.-P. Eckmann, Université de Genève, Département de Physique Théorique, Geneva, Switzerland H.Grosse,InstituteofTheoreticalPhysics,UniversityofVienna,Vienna,Austria A.Kupiainen,DepartmentofMathematics,UniversityofHelsinki,Helsinki,Finland M.Loss,SchoolofMathematics,GeorgiaInstituteofTechnology,Atlanta,USA H. Löwen, Institute of Theoretical Physics, Heinrich-Heine-University of Duesseldorf, Duesseldorf,Germany N.Nekrasov,IHÉS,Bures-sur-Yvette,France M. Salmhofer, Institute of Theoretical Physics, University of Heidelberg, Heidelberg, Germany S.Smirnov,MathematicsSection,UniversityofGeneva,Geneva,Switzerland L.Takhtajan,DepartmentofMathematics,StonyBrookUniversity,StonyBrook,USA J.Yngvason,InstituteofTheoreticalPhysics,UniversityofVienna,Vienna,Austria Forothertitlespublishedinthisseries,goto www.springer.com/series/720 André F. Verbeure Many-Body Boson Systems Half a Century Later AndréF.Verbeure K.U.Leuven InstituteforTheoreticalPhysics Celestijnenlaan200D 3001Leuven Belgium [email protected] ISSN1864-5879 e-ISSN1864-5887 ISBN978-0-85729-108-0 e-ISBN978-0-85729-109-7 DOI10.1007/978-0-85729-109-7 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary Mathematics Subject Classification (2010): 22E70, 37A60, 46L57, 46N55, 47D06, 47N50, 81Q80, 81S05,81T05,82B10,82B26,82D50 ©Springer-VerlagLondonLimited2011 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,aspermit- tedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced,stored ortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublishers,orin thecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbytheCopyright LicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesenttothepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) ToIvonneandtoourfamily Preface The writing of this book has of course been stimulated by the exciting develop- mentsinthefieldofBose-EinsteinCondensation(BEC)foratomicgasesthathave manifested since the 1995 experiments. These experiments are showing brand new featuresneverbeforeobserved.Theirtheoreticalanalysisandunderstandingishow- everstillbasedonthestandardtheoryofBose-Einsteincondensationdevelopedfor space-homogeneousboson systems. Just as importantlyare the recent exact results andnewviewsontheproblemofmany-bodyphysicsdevelopedduringthelastfifty years.Ofcourse,manyoftheseresultshavetheirownparticularimpactontheprob- lemofBECforbosonsystems.Moreovermanyofthemseemtobeonlyknownbya smallnumberofmathematicalphysicistsbutarelessknownbythelargercommunity ofphysicists. Faced with this situation, this book is conceived to be an introduction to these new concepts and results written with considerable attention toward the physical ideas behind the more technical material. Apart from the study of general and uni- versalpropertiesoffullyinteractingbosonsystems,numeroushomogeneousboson modelsareexplicitlytreated.Theapplicationsofthepresentedmaterialtosystems oftrappedbosonsisonlybrieflydiscussedandtreatedasaposedprobleminChap.4. Furtherstudyislefttothecareoftheinterestedreader. Much of the material mentioned in the text was obtained during many years of collaborations with many colleagues and former students. Warm thanks to all of them.Wefeelobligedtopointoutonecolleagueinparticular,MarkFannes.Thank you, Mark, for our long standing collaborations and continuing exchanges about views, ideas, and techniques along all these years during which we constructed to- gethermuchofthebackboneofthepresenttext. 2009Leuven Andre´ F.Verbeure VII Contents 1 Introduction................................................. 1 2 Bosesystems ................................................ 7 2.1 Generalities ............................................... 7 2.2 CCRandbosonfields ....................................... 10 2.3 StatesandQuasi-FreeStates ................................. 12 3 EquilibriumStates ........................................... 27 3.1 VariationalPrinciple ........................................ 27 3.2 Energy-EntropyBalanceCriterion ............................ 31 3.3 VariationalPrincipleforSolvableModels ...................... 37 4 BoseEinsteinCondensation(BEC).............................. 43 4.1 IntroductoryRemarks....................................... 43 4.2 FreeBosonGasandBEC.................................... 44 4.2.1 StandardBEC....................................... 45 4.2.2 ThermodynamicLimitandBoundaryConditions.......... 49 4.3 BECinInteractingBosonGases .............................. 52 4.3.1 Mermin-WagnerArgument............................ 53 4.3.2 SpontaneousSymmetryBreaking(SSB)andBEC......... 55 4.3.3 CondensateEquations ................................ 74 4.4 MeanFieldBoseGas ....................................... 81 4.5 Super-radianceandMatterWaveAmplification ................. 85 4.6 TheoryofBogoliubov....................................... 89 4.7 CondensationinTwo-bodyFullyInteractingModels ............. 96 4.8 BECinTraps .............................................. 99 4.8.1 FreeBosonGasinanHarmonicPotential................ 100 4.8.2 InteractingBosonsinTraps............................ 104 IX X Contents 5 BosonSystemDynamics.......................................109 5.1 ReversibleDynamics ....................................... 110 5.2 IrreversibleDynamics....................................... 118 6 QuantumFluctuationsandBosonization.........................123 6.1 Preliminaries .............................................. 123 6.2 NormalQuantumFluctuations................................ 130 6.3 AbnormalQuantumFluctuations.............................. 140 6.4 Applications............................................... 145 6.4.1 LuttingerModel ..................................... 145 6.4.2 Micro/macro-dynamicsandConservationofEquilibrium... 154 6.4.3 Micro/macro-dynamicsandLinearResponseTheory ...... 156 6.4.4 Micro/macroandSSB ................................ 157 7 Appendix ...................................................165 7.1 DynamicalSystemsandGNSConstruction..................... 165 7.2 DynamicalSemigroups...................................... 172 7.3 CanonicalTransformations .................................. 175 References ......................................................179 Index...........................................................187 1 Introduction The study of boson models and the problem of their solutions is as old as the free BosegasmodelforwhichthecelebratedphenomenonofBose-Einsteincondensation (BEC 1924) has been detected. This phenomenon puts in evidence a macroscopic, purely quantum phenomenon. Solving boson models means that we are interested in finding the ground and/or temperature states of the models, or that we are in- terestedinderivingatleastsomeoftheirpropertiesfromfirstquantum-mechanical principles.Foralongtimeactivitiesinthisareabelongedtothefieldofmany-body physics, a field of high activity in theoretical physics. Green’s functions, series ex- pansions,Feynmangraphsandtheirsummations,andmuchofnumericsarethestan- dardtechnologies.Theultimateaimis,asalways,tounderstandthephysicalworld fromthepointofviewofitsbasiclawsandconstituentsand,therefore,toderiveas manyexactresultsaspossiblehavingalargeoruniversalrangeofvalidityforthese systems. From the point of view of exact results in this field of physics, the work of Araki-Woods [12] greatly boosted the understanding and clear formulation of the propertiesofthefreeBosegasanditsaccompanyingphenomenonofBose-Einstein condensation.CarefulstudiesofthethermodynamiclimitforthefreeBosegasalso inspired efforts toward finding exact results [101]. In both cases these works relate theproblemoftheequilibriumstatesoftheBosegastoaproblemofrepresentations of the canonical commutation relations (CCR). This problem is by itself as old as theearlydaysofquantummechanics.Indeedthebasicproblemassociatedwiththe foundationsofquantummechanicscenteredontheuniquenessoftheresultsofthe matrixtheoryofquantummechanics(seeBorn-Jordan-Heisenberg1925-1926).All this led to the idea that developing quantum mechanics entails the search for new representations of the canonical commutation relations. Later the famous Gelfand- Naimark-Segal(GNS)construction[26],relatingeveryrepresentationoftheCCRto an expectationvalue, or a state of the CCR and vice-versa, openedthe gate for the stateapproachtothegroundand/orequilibriumstatesofallphysicalmodelsand,in particular,alsoforbosonsystems. ThephysicsofBECwasquicklyrealizedtoberelatedtothephenomenonofsu- perfluidity.Oneunderstoodinshortorderthatsuperfluiditycouldonlybeexplained A.F.Verbeure,Many-BodyBosonSystems,TheoreticalandMathematicalPhysics, 1 DOI10.1007/978-0-85729-109-7 1,©Springer-VerlagLondonLimited2011 2 1 Introduction on the basis of an interacting Bose gas [20, 21]. In short, the spectrum of the free Bosegasdidnotfitwiththepropertyofsuperfluidity.Thefirststeptoovercomethis difficulty was the introduction of an interaction, the mean field or imperfect Bose gas,whichconservesneverthelessthesolvabilityofthemodel.However,thismodel, whose spectrum is identical to that of the free Bose gas, did not produce the right solution which produces a spectrum giving an explanation for the phenomenon of superfluidity. In this context the so-called Bogoliubov model, sometimes called the weakly interacting Bose gas [169, 22, 169], was conceived. This model takes into account moreinteractiontermsbutwithoutlosingitsinterestingpropertyofexactsolvability. The basic ingredients of this model in terms of states on the CCR algebra of the bosonobservableshavebeenanalyzedrigorouslyin[8,9,7].Latertheboson-pairing modelwasintroducedasanexercisetowardsafurtherrefinementoftheBogoliubov model. Theoretical work on this model resulted in some intriguing questions, such as whether two types of condensation occur simultaneously or not. The question addressestheco-existenceofaboson-paircondensationandthestandardone-particle ground state condensation. The other question deals with whether a spectral gap appearsinthespectrumoftheelementaryexcitations[58,108,90,82,142]. After a number of quiet years came the great and important year, 1995, now consideredtheyearBECwasexperimentallydiscoveredfortheidealBosegas.We referofcoursetowhatiscalledBosecondensationfortrappedalkalimetals,research donebyE.CornellandC.WiemanatJILA,Boulder,R.HuletatRiceUniv.Houston Texas and W. Kelterle at MIT, Cambridge Mass, and by many people active in the enormousscientificactivitypresentlytakingplaceinthisfield. Moreover, many boson models have been heavily studied in the literature, not onlyinstatisticalmechanicsbutalsoinfieldtheory.Inallaspects,modelstudiesof boson systems have always represented a large part of the activity in this research field. Therefore considerable attention is devoted in this book to the discussion of solvablemodels. A characteristic feature of all solutions of solvable boson models is that they shareacommonpropertyfortheequilibriumstatesaswellasforthegroundstates; namely,theyarecompletelydeterminedbytheirone-andtwo-pointcorrelationfunc- tions. Higher-order correlation functions are expressed in terms of these one- and two-point functions. Because of their similarities with the Fock state, the ground stateofthefreebosongas,suchstatesarecalledgeneralizedfreeorquasi-freestates. Thisclassofstateswasintensivelystudiedinthe1960sand1970s.Thesequasi-free statesarenowinadispersedordercommonlyusedastheidealtheoreticallaboratory in which we can perform tests of all kinds. Although an extensive literature about thesestatesnowexists,theintenselypuremathematicalanalysisofquasi-freestates wasapparentlymuchtootechnicalandgeneraltobepracticalforthestudyofboson systemsbytheoreticalphysicists. Thesenotesareintendedtoremedytothissituation.Aneffortismadetopresent a less technical and more accessible presentation of the subset of quasi-free states withinthesetofallstates.Aproperdefinitionofthenotionofsolvablemodelispro- vided.Therelationwithquasi-freestatesisalsoclarified.Alsotheirbasicproperties