ebook img

Management of Radioactive Waste after a Nuclear Power Plant Accident PDF

229 Pages·2016·9.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Management of Radioactive Waste after a Nuclear Power Plant Accident

Radioactive Waste Management 2016 M anagement of Radioactive Waste after a Nuclear Power Plant Accident NEA Radioactive Waste Management Management of Radioactive Waste after a Nuclear Power Plant Accident © OECD 2016 NEA No. 7305 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 35 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. This work is published on the responsibility of the Secretary-General of the OECD. NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958. Current NEA membership consists of 31 countries: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, Norway, Poland, Portugal, Russia, the Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission and the International Atomic Energy Agency also take part in the work of the Agency. The mission of the NEA is: – to assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes; – to provide authoritative assessments and to forge common understandings on key issues, as input to government decisions on nuclear energy policy and to broader OECD policy analyses in areas such as energy and sustainable development. Specific areas of competence of the NEA include the safety and regulation of nuclear activities, radioactive waste management, radiological protection, nuclear science, economic and technical analyses of the nuclear fuel cycle, nuclear law and liability, and public information. The NEA Data Bank provides nuclear data and computer program services for participating countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Corrigenda to OECD publications may be found online at: www.oecd.org/publishing/corrigenda. © OECD 2016 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of the OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to [email protected]. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at [email protected] or the Centre français d'exploitation du droit de copie (CFC) [email protected]. FOREWORD Foreword In 2014, the NEA Radioactive Waste Management Committee (RWCM) established the Expert Group on Fukushima Waste Management and Decommissioning R&D (EGFWMD). The primary aim of the EGFWMD was to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. Members of the group include experts who have experience in waste management, in managing radiological contamination situations or in decommissioning and waste management R&D after the Three Mile Island and Chernobyl accidents, as well as in existing contamination situations like Windscale or even potential situations like the Kola Peninsula. The experts provide technical opinions and ideas for waste management and R&D at the Fukushima site. The EGFWMD has held five meetings and two site visits to the Fukushima Daiichi nuclear power plant and to the Chernobyl nuclear power plant, and has drafted this report based on its work since 2014. The report provides information on post-accident waste management and decommissioning challenges. It also provides lessons learnt from past nuclear accidents or site remediation and summarises important points in post-accident waste management. 3 MANAGEMENT OF RADIOACTIVE WASTE AFTER A NUCLEAR POWER PLANT ACCIDENT, NEA No. 7305, © OECD 2016 TABLE OF CONTENTS Table of contents Executive summary ........................................................................................................................9 Introduction ....................................................................................................................................21 1. General description of case studies .......................................................................................23 1.1. Chernobyl nuclear power plant accident .......................................................................23 1.2. Three Mile Island nuclear power plant accident ..........................................................28 1.3. Kola case study ..................................................................................................................35 1.4. Windscale ...........................................................................................................................46 1.5. Fukushima Daiichi nuclear power plant accident ........................................................48 1.6. References ...........................................................................................................................51 2. Regulator/implementer interaction .......................................................................................53 2.1. General description ...........................................................................................................53 2.2. Case studies ........................................................................................................................54 2.3. Recommendations .............................................................................................................74 2.4. References ...........................................................................................................................75 3. Stakeholder involvement ........................................................................................................77 3.1. General description ...........................................................................................................77 3.2. Case studies for stakeholder involvement .....................................................................79 3.3. Recommendations .............................................................................................................89 3.4. Reference ............................................................................................................................90 4. Physical and chemical nature of the waste .........................................................................91 4.1. Introduction ........................................................................................................................91 4.2. State of the art ....................................................................................................................91 4.3. Case studies ........................................................................................................................93 4.4. Lessons learnt for post-accident physical and chemical characterisation .............108 4.5. Recommendations for post-accident physical and chemical characterisation .....109 4.6. References .........................................................................................................................110 5. Radiological characterisation ................................................................................................111 5.1. Introduction ......................................................................................................................111 5.2. State of the art ..................................................................................................................111 5.3. Case studies ......................................................................................................................117 5.4. Recommendations for post-accident radiological characterisation ........................143 5.5. References .........................................................................................................................145 6. Waste classification and categorisation .............................................................................147 6.1. General description .........................................................................................................147 6.2. Case studies ......................................................................................................................150 6.3. Lessons learnt ..................................................................................................................156 6.4. Recommendations on waste classification and categorisation development for decommissioning and waste management ...........................................................160 6.5. References .........................................................................................................................162 5 MANAGEMENT OF RADIOACTIVE WASTE AFTER A NUCLEAR POWER PLANT ACCIDENT, NEA No. 7305, © OECD 2016 TABLE OF CONTENTS 7. Waste conditioning, decontamination and reduction .....................................................165 7.1. General description .........................................................................................................165 7.2. Case studies ......................................................................................................................182 7.3. Recommendations ...........................................................................................................197 7.4. References .........................................................................................................................198 8. Destination (storage/disposal) ..............................................................................................199 8.1. General description .........................................................................................................199 8.2. Case studies ......................................................................................................................201 8.3. Principal lessons learnt ...................................................................................................215 8.4. Recommendations ...........................................................................................................215 8.5. References .........................................................................................................................216 Conclusions ..................................................................................................................................217 Centralised authority and stakeholder involvement .........................................................217 Implementation strategy ........................................................................................................217 Optimisation .............................................................................................................................218 Storage and disposal ...............................................................................................................218 Safety analysis ..........................................................................................................................219 International co-operation .....................................................................................................219 Annex 1. List of members of the Expert Group on Fukushima Waste Management and Decommissioning R&D (EGFWMD) .................................................................221 Annex 2. List of abbreviations and acronyms .......................................................................223 List of figures E1. Site visits to Fukushima Daiichi and Chernobyl nuclear power plants .........................9 1.1. Area categorisation at Andreeva Bay ................................................................................37 1.2. Sr-90 and Cs-137 content in soil on-site at the STS in Andreeva Bay ..........................38 1.3. Andreeva Bay facilities and an illustration of how isodose curves can be presented in DOSEMAP ........................................................................................................39 1.4. Three-dimensional plot of activity distribution over borehole depth ..........................40 1.5. Visualisation of radiological conditions for supporting efficient zoning within a building containing hazardous radiation sources ........................................................41 1.6. Screenshot of the Andreeva Planner demonstrating dynamic (real-time) the radiological risk assessment (dose rate with and without shielding wall) ..................41 1.7. Screenshot demonstrating application of DOSEMAP visualisation tools for supporting classroom training ...........................................................................................42 1.8. Change in radiation situation across the site over the period of 2002 to 2010 ...........43 1.9. The main stages of remediation of STS at Andreeva Bay ..............................................46 2.1. Timeline of licensing for the TMI-2 clean-up ...................................................................60 3.1. Communication with stakeholders and measurement of radiation in Belarus .........88 3.2. Communication with stakeholders and measurement of radiation in Suetsugi, Fukushima .............................................................................................................................88 4.1. SDRW “Pidlisny”: Before and after reparation works ......................................................96 4.2. SDRW “Buryakivka” .............................................................................................................97 4.3. Areas of radioactive waste temporary storage location .................................................97 4.4. Sites for temporary localisation of radioactive waste.....................................................98 4.5. RW inside the shelter object ...............................................................................................99 6 MANAGEMENT OF RADIOACTIVE WASTE AFTER A NUCLEAR POWER PLANT ACCIDENT, NEA No. 7305, © OECD 2016 TABLE OF CONTENTS 4.6. Varieties of fuel-containing materials: Black LFCM, pumice and brown LFCM ........100 4.7. Fuel-containing materials .................................................................................................100 4.8. Areas where FCM have accumulated ..............................................................................101 4.9. Debris collection at Fukushima: Waste categories and temporary storage areas ....105 4.10. Images of debris removal work and some soil-covered storage facilities .................106 4.11. Details of the temporary soil-covered storage facility ..................................................106 4.12. Waste storage area at Fukushima Daiichi NPP ..............................................................108 5.1. Emptying of skip into the receipt bay inside the SSR cell ............................................125 5.2. Flow of “Examination of Waste Stream” .........................................................................130 5.3. Analytical flowsheet for rubble ........................................................................................131 5.4. Concentration of detected radionuclides (a) H-3, (b) C-14, (c) Co-60, (d) Sr-90, (e) Pu-238 and (f) Cm-244 as a function of those of Cs-137 ..........................................132 5.5. Concentration distribution of some nuclides for leaf-branches sampled from living trees in 2013 ....................................................................................................134 5.6. Decrease of Cs-137 and Sr-90 concentrations in contaminated water.......................134 5.7. Calculation model for concentration change for contaminated water ......................135 5.8. Analytical procedure for determination of Mo-93 .........................................................135 5.9. The transport ratio for some nuclides into contaminated water................................137 5.10. Increase of Sr transport ratio and difference at the occurrence of the accident ......137 5.11. Transport of some nuclides to the rubble sampled inside the reactor buildings of units 1 through 3 ..........................................................................................137 5.12. Correlation of H-3 and C-14 transport ratio to rubble ...................................................139 5.13. Transport ratio of some nuclides to the soil at three fixed points on-site ................139 5.14. Dependency of Sr transport ratio to soil on the distance from the NPP ....................140 5.15. A model of contamination with transport from the damaged fuel via air ................140 5.16. Integrated model of inventory estimation for 1F waste ...............................................141 5.17. Estimated inventory of Cs-137 for caesium adsorption vessels containing zeolite and the number of columns generated per week .............................................142 6.1. Methods for the burial of radioactive waste for final disposal ....................................156 7.1. PWR class B/C generation 2006-2010 ...............................................................................168 7.2. Boiling water reactor class B/C waste generation 2006-2010 .......................................169 7.3. Class BC nuclides of interest ............................................................................................170 7.4. General process for the formulation of a cementitious material designed for waste embedding .........................................................................................................177 7.5. Ultimate waste arising from spent fuel treatment ........................................................179 7.6. CEA sites for temporary storage of high-level radioactive or long-lived waste ........181 7.7. Solid waste processing facility .........................................................................................185 7.8. Facility for radioactive waste sorting before incineration ............................................187 7.9. Incineration facility ............................................................................................................187 7.10. LRW: The warmed tank with mixer for contaminated oil ...........................................188 7.11. Camera for unloading of ash from the furnace of burning and camera of reburning .............................................................................................................................188 7.12. One of the two groups of high-efficiency particulate air filters ..................................188 7.13. Compaction facility ............................................................................................................189 7.14. Grouting facility ..................................................................................................................190 7.15. Buffer storage ......................................................................................................................191 7 MANAGEMENT OF RADIOACTIVE WASTE AFTER A NUCLEAR POWER PLANT ACCIDENT, NEA No. 7305, © OECD 2016 TABLE OF CONTENTS 7.16. Liquid Radioactive Waste Treatment Plant ....................................................................191 7.17. LRW separator.....................................................................................................................192 7.18. Mixer ....................................................................................................................................192 7.19. LRW curing area .................................................................................................................193 7.20. Transport container ...........................................................................................................193 8.1. Disposability assessment process....................................................................................200 8.2. The Engineered Near-surface Disposal Facility .............................................................206 8.3. Flow of the disposal study ................................................................................................211 8.4. Image of solid radioactive waste storage at TEPCO’s Fukushima Daiichi nuclear power plant .........................................................................................................................212 List of tables E1. Waste volume stored at Fukushima Daiichi nuclear power plant as of the end of July 2015 .....................................................................................................................10 1.1. Changed radiation situation following remedial actions ...............................................42 1.2. List of nuclides removed by the multi-nuclide removal system ...................................50 4.1. Material components of waste ...........................................................................................92 4.2. Temporary storage categories at the Fukushima Daiichi nuclear power plant ........105 4.3. Summary of the waste storage areas and their capacities ..........................................107 5.1. Samples of rubble (concrete, otherwise noted) ..............................................................133 5.2. Transport ratio of H-3, C-14, Co-60 and Sr-90 to the rubble .........................................138 6.1. Comparison of the IAEA and NRC waste classification schemes ................................148 6.2. Radioactive waste management prescribed in the Reactor Regulation Act ..............155 8.1. Upper bounds of nuclide concentration (Bq/tonne of waste) for each disposal concept .................................................................................................................................209 8.2. Status of radioactive waste disposal in Japan ................................................................209 8 MANAGEMENT OF RADIOACTIVE WASTE AFTER A NUCLEAR POWER PLANT ACCIDENT, NEA No. 7305, © OECD 2016

Description:
radioactive waste management, radiological protection, nuclear science, In 2014, the NEA Radioactive Waste Management Committee (RWCM)
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.