ebook img

Management of Complex Multi-reservoir Water Distribution Systems using Advanced Control Theoretic Tools and Techniques PDF

84 Pages·2013·2.956 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Management of Complex Multi-reservoir Water Distribution Systems using Advanced Control Theoretic Tools and Techniques

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY  COMPUTATIONAL INTELLIGENCE Wojciech Z. Chmielowski Management of Complex Multi- reservoir Water Distribution Systems Using Advanced Control Theoretic Tools and Techniques SpringerBriefs in Applied Sciences and Technology Computational Intelligence Series Editor Janusz Kacprzyk For furthervolumes: http://www.springer.com/series/10618 Wojciech Z. Chmielowski Management of Complex Multi-reservoir Water Distribution Systems Using Advanced Control Theoretic Tools and Techniques 123 Wojciech Z. Chmielowski Instituteof WaterEngineering andWater Management Krakow Universityof Technology Kraków Poland ISSN 2191-530X ISSN 2191-5318 (electronic) ISBN 978-3-319-00238-5 ISBN 978-3-319-00239-2 (eBook) DOI 10.1007/978-3-319-00239-2 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013939065 (cid:2)TheAuthor(s)2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents Part I Steady Boundary Conditions in the Trajectories of States for Optimal Management of Complex Multi-Reservoir Water Distribution System 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Steady Optimisation Time, ST . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Steady Optimisation Time, ST . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Quality Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 State Equation of Reservoirs . . . . . . . . . . . . . . . . . . . . 12 2.1.3 Solution for the Optimising Task . . . . . . . . . . . . . . . . . 13 2.1.4 Computer Simulations. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Transient Optimisation Horizon. . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Transient Optimisation Horizon. . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Free Optimisation Time, FT . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Quality Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 The System State Equation . . . . . . . . . . . . . . . . . . . . . 28 3.2.3 Solution for the Optimisation Task . . . . . . . . . . . . . . . . 30 3.2.4 For the Vector of Free Optimisation Start Times . . . . . . 31 3.2.5 Computer Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 v vi Contents Part II Related Boundary Conditions in the Trajectories of States for Optimal Management of Complex Multi-Reservoir Water Distribution System 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5 Free Optimisation Time, FT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 Free Optimisation Time, FT . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Quality Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1.2 State Equation for Reservoirs. . . . . . . . . . . . . . . . . . . . 52 5.1.3 Optimisation Task Solution . . . . . . . . . . . . . . . . . . . . . 54 6 Steady Optimisation Time, ST . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1 Steady Optimisation Time, ST . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Quality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 The System State Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4 Optimisation Task Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . 72 7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Part I Steady Boundary Conditions in the Trajectories of States for Optimal Management of Complex Multi-Reservoir Water Distribution System Chapter 1 Introduction Thewaterdeficitoccurringonaneverlargerscalenecessitatesefficientuseofexist- ingwatersuppliesusinganetworkofartificialandnaturalwaterreservoirstosupply countries’ economic macro-regions with water. Many of these reservoirs are con- nectedbyrivers,canalsorpipelineswithwaterpumpingstations,alongwithusers consumingaparticularwaterresourcesinagivenhydrologicalareamakeeconomic watersystemscomplex.Asinglewaterreservoir,astheprimaryobjectofacomplex economic water system plays one of the most important roles in this area. Hence theneedforaplannedandsafeexecutionoftasks,basedontherelevantdecisions concerningtheregulationoftheoutflowofwaterfromthereservoirandtheproper useofitsusablecapacity.Controllingacomplexsystemofreservoirscanbedivided accordingtothetypeofdecisionsandtimehorizontowhichtheyrelate.Thedivision identifiesthreemainlayers: (cid:129) planninglong-termretentionsystemofreservoirs, (cid:129) planningshort-termretentionsystemofreservoirs, (cid:129) operationalcontrol(ongoing). In each layer, different rules apply for determining the retention system of the reservoirs.Forplanninglong-termretention,thedominantroleisplayedbymethods based on the analysis of hydrological data and outflows over the longest possible periodoftime.Analyzinghistoricalhydrologicaldatainthecatchmentofreservoirs andwaterdistributiondata,withaspecificapproximationanargumentcanbemade forlong-termretentionofthekeyelementsidentifiedbythefollowingparameters: (cid:129) statesofthefillingsystemforreservoirsinspecificdivisionsoftime, (cid:129) aguaranteetomeettheneedsofusersdownstreamofthereservoirintheintervals, (cid:129) maintainingovertimetheappropriateretentionoffloodpreventioninthesystem. Theshort-termretentionplanisdependentondecisionsresultingfromtheimple- mentationofdifferenttypesoftrainingsimulation,basedoncomputeralgorithms. Thepurposeofthealgorithmsistoallowobservationoftheeffectsofcertaindecision rules on the process of controlling the reservoir system (reservoir outflow vector), andthusmaketherightdecisionsinagivensituation.Itisnecessarytodistinguish W.Z.Chmielowski,ManagementofComplexMulti-reservoirWaterDistributionSystems 3 UsingAdvancedControlTheoreticToolsandTechniques,SpringerBriefsinComputational Intelligence,DOI:10.1007/978-3-319-00239-2_1,©TheAuthor(s)2013 4 1 Introduction clearly between short-term retention planning in normal operating conditions and regardingfloodsanddroughts. Notwithstanding the foregoing division, especially at the short-term retention planning layer, computer algorithms often contain computational modules using advancedoptimizationtechniques.Atthisstageofformulation,solutionandanalysis of the results is certainly one of the essential building blocks for limiting the set of possible decisions concerning the hypothetical outflow from the reservoir. The decisionmakingprocessregardingtheoutflowfromthereservoirsystem,including solutions for specifically defined and conditioned optimization problems, can be usedtotakeintoaccounttheobtainedsolutionsasoneofthebuildingblocksfora dispatcher’sfinaldecisionwhensettingshort-termretentionstrategyplanning. Theoperationalcontrollayerisanareaofoperationswhich,inaccordancewiththe guidelinesandinstructionsofthepreviouslydescribedanalysesandtheassessment ofthecurrenthydrometeorologicalstateofthecatchmentsysteminthereservoirs, thefinalselectiondecisioncanbemadeonthecontrollingtheoutflowvector.Inthis case, the distinction between normal operation mode and operation in emergency situations (floods and drought) is of paramount importance. Control of the current outflowsfromreservoirsduringflooding(floodwavecontrol)isverydifferentasthe specificworkingconditions,i.e.thevdramaticallyshortperiodoftimefortakingand implementing decisions, dominate in determining the rules of procedure. Current control of a reservoir (system of reservoirs) during normal operation is to select a decisionfromthesetofhypotheticaldecisionrulesinthislayerandforthiskindof operation.Oftenintheoperationalcontrollayer,theselectionofadecisionisbased onfindingacompromisesolutiononthebasisofoptimizationofthegroupofmulti- criteriatasks.Followingthedecision,thistimeregardlessofthemodeofoperation ofthereservoirsystem,appropriatedevices(controllers,actuators,positioners,etc.) willperformtheclosingoropeningofthereservoirdrainageequipment,thusturn- ingthedispatcher’s(person,groupofpeople)decisionsintospecificactivity(vector outflowsfromreservoirs),fromwhichirreversibleconsequencesfollow,bothatthe time of implementation, as well as in subsequent time periods. The consequences ofbaddecisionsareoftencatastrophic.Inadequatepreparationespeciallyofasin- glereservoir(earliermethodically justifiedloweringofthereservoirinthefaceof anapproachingfloodsurge)isthereforelikelytocauseuncontrolledfloodsituation downstreamofthereservoir,theeffectsofwhichmaybedifficulttopredict.Anunjus- tifiedreductionofthewaterinthereservoirbasedonunreliableestimatesofinflow, incombinationwiththedispatcher’sinsufficientexperiencemistakenlyassessingthe hydrometeorologicalsituation,inthecaseoflowinflowtothereservoirintheimme- diatefuturethefirststepistoproduceanemergencysituationassociatedwithalack ofadequatewatersuppliesusuallystoredinreservoirsystem.Thisshowshowgreat theresponsibilityrestswiththeemployeewithanimpactoncontrollingtheoutflow of water from the reservoir system. Therefore, it is very risky to leave dispatcher alonewiththeproblemoftakingadecisionbasedsolelyonexperience,intuition,or routine,hopingthatitwillbeadequate,andtheresultspositive.Ontheotherhand,the conceptof“autopilot”,i.e.completelyreplacingthedispatcherwitheventhemost specialisedcomputationalalgorithms,iscompletelyunacceptable..Thatiswhyover 1 Introduction 5 theyears some automated decision-making in each of theselayers of control have continuallybeenproposedandintroduced,whichinvolvestheadaptationofdifferent supportalgorithms,leavingthepossibilityofinputbythedispatcherinspecificsitu- ationsfromhispointofview.Takingtherightdecisionattherighttimeisbecoming oneofthemostimportanttasks.Posingthequestionofdecision-makingsupportfor theoutflowofasystemofreservoirsisstronglyconditionedbyitslocationinoneof thethreeaforementionedlayers.Thistaskisfarmorecomplicatedwithincreasing thedimensionalityoftheproblem.Wearethentalkingaboutoutflowvectorsfrom reservoirs, structurally and task related within a complex system of water supply and management. The structure of the system takes into account all the possible connectionsbetweenthereservoirsandwatercustomers.Whatisusuallyanalysed arevariationsofuseofthewatersourcesinthereservoirsduringtheoperationand takingintoaccounttheeffectsofprospectivemanagementofthereservoirscaused bythecurrentcontrolsystem,accordingtoadecisionbythedispatcherrecognised asthemostappropriateinagivensituation.Thedispatcher’sdecisionsdetermining control system of outflows from the reservoirs contain elements of such issues as multi-criteria,randomness,dynamics,non-linearityandthescaleofcomplexitycom- plementingthefactorsdirectlylinkedtothedispatcher(includingattitudestorisk). Theissuerelatedtodecision-makinginwatermanagementsystemsischaracterised byitsinterdisciplinarynature,andthequalitycontrolofthesysteminthisregardcan onlybeachievedbyacomparativeanalysisofthesystem’shistoricalhydrological data in the long term. Therefore, the need to eliminate bad dispatcher decisions is beyondquestionby: (cid:129) continuous,multidirectionaldevelopmentofmethodologiesanddecisionsupport algorithmsforplanningforalllayersofreservoirretention,leadingtotheappli- cationofthelatestachievementsinscienceandtechnologyinthisarea, (cid:129) Theselectionofdispatcherswiththerelevantexperienceandrelevantmentaland physicalcharacteristicswhichintimesofcrisismaybeanecessaryprecondition andguaranteeofaproperconduct. Thisstudydiscussesissuesofoptimalwatermanagementinadistributionsystem. Themainelementsofthecomplexwater-managementsystemunderconsideration are retention reservoirs, among which water transfers are possible, and a network ofconnectionsbetweenthesereservoirsandwatertreatmentplants(WTPs).System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possibletransfersamongthereservoirs,takingintoaccounttransport-relateddelays forinflows,outflowsandwatertransfersinthesystem.Totalsystemoperationcosts defined by an assumed quality coefficient should be minimal. An analytical solu- tion of the optimisation task so formulated has been obtained as a result of using Pontriagin’smaximumprinciplewithreferencetothequalitycoefficientassumed. Stablestartandendconditionsinreservoirstatetrajectorieshavebeenassumed.The researchershavetakenintoaccountcasesofsteady(Chap.2)andtransient(Chap.3) optimisationduration.Thesolutionsobtainedhaveenabledthecreationofcomputer models simulating system operation. In future, an analysis of the results obtained

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.