ebook img

Management of Arrhythmias in Heart Failure PDF

20 Pages·2017·0.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Management of Arrhythmias in Heart Failure

Journal of Cardiovascular Development and Disease Review Management of Arrhythmias in Heart Failure DanieleMasarone*,GiuseppeLimongelli,MartaRubino,FabioValente,RossellaVastarella, ErnestoAmmendola,RitaGravino,MarinaVerrengia,GemmaSalernoandGiuseppePacileo CardiologiaSUN—HeartFailureUnit,DepartmentofCardiothoracicSciences,SecondUniversityofNaples, viaL.Bianchi,Naples80100,Italy;[email protected](G.L.);[email protected](M.R.); [email protected](F.V.);[email protected](R.V.);[email protected](E.A.); [email protected](R.G.);[email protected](M.V.);[email protected](G.S.);[email protected](G.P.) * Correspondence:[email protected];Tel./Fax:+39-081-7062815 AcademicEditor:JoelD.Schilling Received:31August2016;Accepted:22February2017;Published:28February2017 Abstract:Heartfailurepatientsarepredisposedtodeveloparrhythmias.Supraventriculararrhythmias can exacerbate the heart failure symptoms by decreasing the effective cardiac output and their controlrequirepharmacological, electrical, orcatheter-basedintervention. Inthesettingofatrial flutter or atrial fibrillation, anticoagulation becomes paramount to prevent systemic or cerebral embolism. Patientswithheartfailurearealsopronetodevelopventriculararrhythmiasthatcan presentachallengetothemanagingclinician. Themanagementstrategydependsonthetypeof arrhythmia,theunderlyingstructuralheartdisease,theseverityofheartfailure,andtherangefrom optimizationofheartfailuretherapytocatheterablation. Patientswithheartfailure,irrespective ofejectionfractionareathighriskfordevelopingsuddencardiacdeath,howeverriskstratification isaclinicalchallengeandrequiresamultiparametricevaluationforidentificationofpatientswho shouldundergoimplantationofacardioverterdefibrillator. Finally,patientswithheartfailurecan alsodevelopsymptomaticbradycardia,causedbysinusnodedysfunctionoratrio-ventricularblock. Thetreatmentofbradycardiainthesepatientswithpacingisusuallystraightforwardbutneedssome specificissue. Keywords: heartfailure;tachyarrhythmias;bradyarrhythmias;suddencardiacdeath 1. Introduction Arrhythmiasconfersasubstantialriskofmortalityandmorbidityinpatientswithheartfailure (HF), and this represents a major health care burden worldwide. There are at least 15 million patientswithHFinEurope[1]and6millionpatientsinUSA[2],withanoverallprevalenceranging between 2% and 3% that increases sharply after 75 years of age, reaching 10%–20% among those intheeighthdecadeoflife. HFhospitalizationsareincreasing, andmanyofthesemayberelated tosupraventricular arrhythmias (SVAs)[3]such asatrial fibrillation(AF). Atrial fibrillationper se contributestoanincreasedriskofmortalityandmorbidityofstrokeandthromboembolism,andsilent AFiscommonamongpatientswithHF[4],notinfrequentlyleadingtoafirstpresentationofAFwith an ischemic stroke [5]. Sudden cardiac death (SCD) is also a major cause of mortality among HF patientsandiscommonlyrelatedtocardiacarrhythmias[6],particularlyventriculararrhythmias(VAs). Finally,bradyarrhytmiasarecommoninHFandmayincludesinusnodedysfunction,tachy-brady syndrome, and conduction disease [7]. This review focuses on the management of arrhythmias, bothtachyarrhythmiasandbradyarrhytmias,inpatientswithHF. J.Cardiovasc.Dev.Dis.2017,4,3;doi:10.3390/jcdd4010003 www.mdpi.com/journal/jcdd J.Cardiovasc.Dev.Dis.2017,4,3 2of20 2. PathophysiologyofTachyarrhytmiasinHF Highly complex, interactive, and dynamic changes in mechanical, structural, neurohumoral, metabolic,andelectrophysiologicalpropertiescollectivelypredisposethefailinghearttotachyarrhytmias (Table1),whichincreaseincomplexitywiththeseverityofleftventriculardysfunction[8]. Table1.Factorsinvolvedinpathogenesisoftachyarrhythmiasinpatientwithheartfailure. Myocardialscar StructuralandHemodynamicAbnormalities Leftventricularhypertrophy Leftventricularstretch Neurohormonalactivation MetabolicAbnormalities Electrolyteabnormalities Prolongationofactionpotential ElectrophysiologicChanges Changesofcalciumhomeostasis Changesofpotassiumcurrent Pharmacologicagents Others Myocardialischemia 2.1. StructuralandHemodynamicAbnormalities 2.1.1. Myocardial Possibly the best understood relationship between arrhythmias and structural changes is representedbypost-myocardialinfarctioncardiomyopathyandreentry. In these patients there are focal areas of post-infarct scar with creating a heterogeneous environmentthatpromotethedevelopmentofventriculararrhythmiasduetoanisotropy[9,10]and reentry[11]. 2.1.2. ChamberHypertrophyandStretch InpatientswithHF,numerouscompensatorymechanismsareactivetoimprovecardiacoutput, butthesemechanismscancontributetoarrhythmogenicmilieu. Leftventricularhypertrophyisknown duetoproarrhythmicelectrophysiologicalchanges(reducedcell-cellcoupling,reductionofmembrane potentials,sub-endocardialischemia)[12].Otherfactorsfavoringarrhythmiasincludeincreasespreload andafterload,whichreducetherepolarizationphaseofactionpotential[13].Increasesinpreloadand afterload,aswellashighleftventricularfillingpressurecanalsocontributetothearrhythmogenic substratedeterminingtheonsetofsubendocardialischemia[14]. 2.2. MetabolicAbnormalities 2.2.1. NeurohormonalActivation The activation of the neurohormonal systems is responsible for a variety of proarrhythmic changes. The increased plasma levels of adrenaline and noradrenaline plays an important role in the pathophysiology of HF and are believed to be partly responsible for the beneficial effects of beta-blockersandangiotensinconvertingenzyme(ACE)onthedeathsudden[15,16]. Meredithand colleagues[17]haveshownasignificantincreaseofnorepinephrinerelapseinpatientswithHFthat maycontributetoarrhythmias. Moreover,Caoandcolleaguesdescribeanassociationbetweenthe densityofnervesympatheticfibers(whichareincreasedinpatientswithHF)andtheriskofVas[18]. 2.2.2. ElectrolyteAbnormalities HyperkalemiaiscommoninpatientswithHFandisoftenlinkedtotheuseofACEinhibitors, angiotensinreceptorblockersandaldosteroneantagonists. Hyperkalemialeadingtoslowtheascent J.Cardiovasc.Dev.Dis.2017,4,3 3of20 phaseofactionpotentialthatcancauseatrioventricularblock[19]. Althoughhypokalemiaisvery commoninHFpatientsandmaybesecondarytoincreasedactivityoftherenin-angiotensinsystemor theuseofloopdiuretics[20]. TheresultisamoreautomaticityinPurkinjefibersandarapidincrease repolarization,withconsequentonsetofVT/VF[21]. Hypomagnesemiaitisalsocommoninpatients withHF,however,theassociationbetweenhypomagnesemiaandVAsisnotasstrongasforpotassium abnormalities[22]. 2.3. PharmacologicAgents Thedrugsthatinterferewithneuro-hormonalsystemcanoftencontributetothepro-arrhythmic milieu. As mentioned diuretic therapy, ACE inhibitors and aldosterone antagonists often cause electrolyte imbalances that contribute significantly to arrhythmogenesis and can increase the proarrhythmiceffectofotherdrugs[23]. InotropicagentsthatmayberequiredinpatientswithacuteHFandhypoperfusionespeciallyin thepresenceofelectrolyteabnormalitiesmayfurtherincreasetheriskofarrhythmias. 2.4. ElectrophysiologicChangesinHeartFailure 2.4.1. ActionPotentialProlongation Anelectrophysiologicalhallmarkofcellsandtissuesisolatedfromhypertrophiedandfailing hearts is a prolonged action potential duration, reflecting delayed terminal repolarization of the cardiac myocyte [24]. These cellular electrophysiological changes were mechanistically linked to downregulationofrepolarizingpotassiumcurrents,anincreaseinlatesodiumcurrentdensity,aswell asmajorchangesinintracellularcalcium. StudiesinhumansandanimalmodelsofHFshoweddelayedglobalrepolarizationandenhanced temporalrepolarizationdynamicsusingclinicalnoninvasivemetrics,suchastheQT-intervalvariability indexandT-wavealternansonthesurfaceelectrocardiogram[25]. However,despitethesestudies, adirectmechanisticlinkbetweenrepolarizationchangesobservedinisolatedmyocytesoronthebody surfaceandarrhythmiagenesisremainslacking. 2.4.2. CalciumHandling AmongthenumerouselectrophysiologicalchangesthatarepresentintheclinicalsyndromeofHF, noneissocloselyinvolvedinarrhythmogenesisascalciumhomeostasis. ThecalciumchannelL-type voltage-dependentarethemainsourceofcalciuminfluxintomyocardialcellsandareresponsible foritsreleasefromthesarcoplasmicreticulum. Thesechannelshaveadecreasedfunctioninpatients withHF,resultinginaprolongationoftheactionpotential[26,27]. Recentstudieshavedemonstrated a downregulation of SERCA2a calcium reuptake proteins, as well as an increase in the ryanodine receptorduringdiastole,resultingincalcium“leak”[28]. Slowcalciumleakduringdiastoleincreasedcalciumreleaseduringthesarcoplasmicreticulum stimulation,anddecreaseduptakebySERCA2afinallyestablishesanintracellularcalciumoverload thatfavorsthearrhythmogenesis[29]. In addition blocking transient inward current (Iti) with tetracaine, Verker et al. showed a complete suppression of delayed after depolarization confirming the role of these currents in thearrhythmogenicprocess[30].Finally,theincreasedactivityofthebeta-adrenergicreceptormay contributetospontaneousreleaseofcalciumfromthesarcoplasmicreticulum[31]. 2.4.3. RoleoftheSodium–CalciumExchanger The sarcolemmal sodium and calcium exchanger normally regulates the flow of calcium in cardiomyocytefacilitatingtherelaxation[32]. InexperimentalmodelsofHFitwasreportedanincreaseofthesodiumandcalciumexchanger withapossibleroleinthegenesisofarrhythmias[33]. J.Cardiovasc.Dev.Dis.2017,4,3 4of20 2.4.4. Voltage-DependentPotassiumChannels InpatientswithadvancedHFthereisareducedfunctionofboththeexternalpotassiumcurrent (Ito) and inward rectifier potassium current (IK1), these channels play a key role in the genesis of the action potential [34]. Beuckelmann and colleagues [35] were the first to identify a decrease in potassiumcurrentsinHFpatientsalthoughtheirroleinarrhythmogenesisremainedcontroversial. 3. PathophysiologyofBradyarrhytmiasinHF Bradyarrhythmias may be due either to a reduction in heart rate or a block in the impulse conductionafteritsformation. 3.1. SinusNodeDysfunction Symptomatic sinus bradycardia is due to a reduction in impulse formation in the sinus node or lack of impulse conduction from the sinus node to the atrial tissue. In most cases, the nodal dysfunctioniscausedbyprogressivefibrosisofnodalcellsduetoaging;however,anyprocessthat causesdamagetothesinoatrialnode(e.g.,nodalarteryatherosclerosis,infiltrativediseasesorcollagen diseases), may be contribute to nodal dysfunction [36]. The sinoatrial dysfunction can occur with episodes of sinoatrial block in a significant fraction of patients, in addition approximately 50% of patientswithsicksinussyndromedevelopalternatingbradycardiaandtachycardia,alsoknownas tachy-bradysyndrome[37]. Themostcommontachyarrhythmiasareatrialfibrillationorflutterwith rapidventricularresponse. Thesetachyarrhythmiasaremorecommoninolderpatientswithadvanced sinoatrialnodaldiseaseinwhomsinoatrialnodefibrosismayfavorreentrantbeatsortachycardia. 3.2. Atrio-VentricularNodeDysfunction First-degree atrio-ventricular block is not associated with bradycardia except in the setting of sinus bradycardia. First-degree atrio-ventricular block is commonly associated with damage and/or fibrosis of the atrio-ventricular node, but it can also be due to beta-blockers therapy [38]. Like 1st degree atrio-ventricular block, Type I second-degree atrio-ventricular block can occur in normal individuals and is common during sleep in 4%–6% of cases [39]. It may be particularly prevalent among patients with HF and obstructive sleep apnea, in which therapy with positive airwaypressureoftenalleviatesthefinding. TypeIsecond-degreeatrio-ventricularblockcanlead tolossofatrio-ventricularsynchrony,althoughthisistypicallynotproblematicunlessasubstantial firstdegreeatrio-ventricularisalsopresent. TypeIIsecond-degreeatrio-ventricularblockisassociated with disease of the conduction system below the atrio-ventricular node, and as such has a higher likelihoodofprogressiontocompleteatrio-ventricularblock[40].InpatientswithseconddegreetypeII atrioventricularblockiscommonaslowingofimpulseconductiononHis-Purkinjesystem,thisis demonstratedduringelectrophysiologicalstudybyanabnormallylongH-Vinterval[41]. High-grade atrio-ventricularblockandcompleteheartblockrepresentthemostsevereformsofatrio-ventricular nodaldiseaseandareusuallyassociatedwithunderlyingheartdisease[42]. 4. ClinicalImpactofTachyarrhythmiasinHF AlthoughanySVAsmayoccurinpatientswithHF,themostcommonisAF—indeed,AFand congestiveHFcommonlyoccurtogetherandeachmayexacerbatetheother[43]. TheFramingham HeartStudydemonstratedthateachconditionincreasestheriskfordevelopingtheother. Thereis a15%5-yearincidenceofnew-onsetHFamongpatientswithAF;theconverseisalsotrue,witha25% 5-yearincidenceofnewAFinpatientswithHF[44]. TheprevalenceofAFprogresseswithworsening HFwithaprevalenceof10%inHFpatientsintheNewYorkHeartAssociation(NYHA)ClassesIand II,andupto50%inNYHAClassIV.HFandAFsharethepresenceofcommonriskfactors,suchasage, highbloodpressure,diabetesmellitus,obesityandvalvulardysfunction[45]. However,experimental and clinical data document a substrate of the atrial myocardium for the AF in patients with HF J. Cardiovasc. Dev. Dis. 2017, 4, 3 5 of 19 worsening HF with a prevalence of 10% in HF patients in the New York Heart Association (NYHA) Classes I and II, and up to 50% in NYHA Class IV. HF and AF share the presence of common risk factors, such as age, high blood pressure, diabetes mellitus, obesity and valvular dysfunction [45]. However, experimental and clinical data document a substrate of the atrial myocardium for the AF J.Cardiovasc.Dev.Dis.2017,4,3 5of20 in patients with HF regardless of the shared risk factors. HF patients may also experience other type of SVAs (e.g., focal atrial tachycardias and atrial macroreentrant arrhythmias), sometimes rpeagratircdulelasrslyo fcthhealslehnagreindgr istko fadcitfoferrse.nHtiFatpea tfireonmts mHaFy-raellsaoteedx pseirnieuns cetaocthhyecratrydpiae. ofSSVVAAss c(ea.ng .,cfaoucsael atatrcihaylctaarcdhiyac-arerldaitaesda cnadrdaiotrmiaylompaacthroyr, eaesn ctraann At Far arhnydt ahtmriiaal sf)l,ustotemr e(AtimFLe)s, apnadrt ivceunlatrrilcyulcahra rlaletne gcionngtrtool disi ffpearernamtiaotuenfrto mto HtrFe-aretmlateendt soinf utshtea chreyscualrtdiniag. ScVarAdsiocmanycoapuastehyta c[h4y6c].a rLdiikae-rweliastee, dicna rpdaiotimenytosp awthityh, aHsFc-arnedAuFcaendd eajetcrtiaiolnfl ufrtatecrti(oAnF (LH),FarnEdF)v,e SnVtrAicsu claarnr ahtaevceo dntertorlimisepnatraalm efofuecnttst oontr ceaartmdieanct hoefmthoedryensualmtinicgs cwairtdhi oemxaycoeprbaathtiyon[4 o6f]. HLFik seywnidsero,imnep (aFtiiegnutrsew 1)it; honH tFh-ere odtuhceerd heajnedct,i omnofsrtalyct pioanti(eHntFsr EwFit)h,S HVAF-spcraensehrvavede dejeetcrtiimone nfrtaalcteifofnec (tHsFopnEcFa)r dairaec dheepmenoddeynnta omni casdweqiuthateex vaecnertrbiactuiolanr ofifllHinFg.s Fyonrd trhoims ree(aFsiognu,r oen1s)e;to onf tAheF o(itnh ewrhhiacnhd t,hme onsotrlympaal taietrniatsl wcointhtrHacFti-opnre isse rrvepedlaecejedc tbioyn infreafcfteicotniv(eH qFupiEvFer)ianrge odfe tpheen adterniat)o cnanad ceaquusaet ea vraepnitdri counlsaert fiolfl iHngF. sFyomrpthtoismrse a[s4o7n]., onsetofAF(inwhichthenormalatrialcontractionisreplacedby ineffeIcnt iavdedqiutiiovne,r aintrgiaolf ttahcehyatarrirah)yctahnmciaauss meaayr aipnifdluoennsceet coafrdHiFacs yremsypntocmhrso[n4i7z]a.tion therapy response (i.e., Irnedaudcdtiitoionn o,fa ptraiaclintagc rhaytaersr) hayntdh msoiamsemtimayeisn iflnudeunccee icnaarpdpiarocprerisaytnec thhreornaipzya tfiroonmth tehrea pimyprelaspntoanbslee (cia.er.d,iroevdeurctetiro dneofifbpriallcaitnogr r(aICteDs)).a ndsometimesinduceinappropriatetherapyfromtheimplantable cardiFovinearltleyr, dpeafitbierniltlsa towrit(hIC ADF). and AFL bears a increased risk of ischemic stroke and systemic emboFliinsamll yc,opmatpieanretsdw toit shinAuFs arnhdytAhFmL, baenadr sthaisin rcirseka isse dfurritshkeor finisccrheeamseidc sitnr opkaetiaenndtss wysittehm HicFe ,m[4b8]o.l ism compMaroerde ttohsainn u8s0%rh yotfh mpa,taienndtst hwisitrhis kHiFsrfEuFr thhearvein fcrreeqauseednti nanpdat iceonmtspwleixth VHAFs,[ 4a8s] .documented on HolteMr omreotnhitaonri8n0g%, aonfdp aatlmienotsst w50it%h HdeFmrEoFnshtraavtee frrueqnus eonft nanond-scuosmtapinleexdV vAesn,traiscudloacr utmacehnytceadrdoina H(noolnte-srumstoainnietodr VinTg),. and almost 50% demonstrate runs of non-sustained ventricular tachycardia (non-Tsuhset apirneesdenVcTe) .and severity of VAs increase along with the severity of HF, but their value to predTicht eSpCrDes iesn ucnecalnedars [e4v9e]r. ityofVAsincreasealongwiththeseverityofHF,buttheirvaluetopredict SCDisunclear[49]. Figure 1. Hemodynamic effects of supraventricular tachycardia. Figure1.Hemodynamiceffectsofsupraventriculartachycardia. Isolated premature ventricular complexes (PVCs) may be asymptomatic, whereas more Isolatedprematureventricularcomplexes(PVCs)maybeasymptomatic,whereasmorecomplex complex VAs may be accompanied by symptoms as palpitations, lightheadedness, presyncope or VAs may be accompanied by symptoms as palpitations, lightheadedness, presyncope or syncope, syncope, and a worsening of HF [50]. andaworseningofHF[50]. Of concern is the association of NSVT with sustained ventricular tachycardia (sustained VT) OfconcernistheassociationofNSVTwithsustainedventriculartachycardia(sustainedVT)and and ventricular fibrillation (VF), the usual mechanisms for SCD [51]. ventricularfibrillation(VF),theusualmechanismsforSCD[51]. However,theroleofVAstopredictsuddendeathisunclear;forthisreason,SCDriskstratification inHFpatientsrequiresamultiparametricevaluation(seebelow). J.Cardiovasc.Dev.Dis.2017,4,3 6of20 5. ClinicalImpactofBradyarrhythmiasinHF ArrhythmiasintheHFpopulationarenotconfinedtotachyarrhythmias.Whiletheever-increasing percentage of HF patients implanted with devices capable of pacing precludes quantification of bradycardic risk at the current time, earlier registries illustrated that bradyarrhythmias with electromechanicaldissociationwerethemechanismofSCDinasignificantnumberofselectedHF patients[52]. Additionally,reversiblesinusnodedysfunctionandatrio-ventricularblockmayresult fromdrugtoxicity[53](e.g.,digoxin,beta-blockers)orelectrolytedisordersandcaninduceworsening ofHFsymptoms. 6. ManagementofSupraventricularTachyarrhythmiasinHF 6.1. ManagementofAtrialFibrillation AccordingtoguidelinesofEuropeanSocietyofCardiology(ESC)[54],AFisclassifiedclinically asparoxysmal(self-terminatingepisodeslasting<7days),persistent(non-self-terminatingepisodes lasting 7 days to 6 months), long-standing persistent (lasting longer than 1 year), and permanent (AFforwhichattemptsatterminationhavefailedorwhichisanacceptedrhythm). ParoxysmsofAForrunsofrapidventricularresponsemayinstigateHFexacerbationorbecaused byHFexacerbation; forthisreason, treatmentgoalsofHFmustaddressAF.Fortunately, manyof thesamemedicationsusedtotreatHFalsotreatAF:β-blockersanddigoxinwillhelpcontrolheart rate [55], while ACE inhibitors may lead to reverse remodeling and reductions in AF burden [56]. Antiarrhythmicdrugs,ontheotherhand,donothaveaprimaryroleinthetreatmentofHF;hence, therhythmcontrolstrategy,althougheffectiveintreatingAF,hasshownnosurvivalbenefitinHF patients. AFtreatmentstrategiescanbedividedintoratecontrolandrhythmcontrol; inaddition, riskstratificationforstrokeiscentralinthemanagementofHFpatientswithAF[57]. 6.1.1. RateControl Rate control in the acute HF can be achieved with intravenous calcium channel blockers (e.g.,verapamil0.075/0.15mg/kgivin2min,then0.005mg/kg/minorswitchto280–480mg/dayorally) orβ-blockers(e.g.,metoprolol2.5–5mgivin2minevery5min,maximum15mg,then50–200mg/day orally).Thesemedicationsshouldbeusedwithcautioninthehypotensiveorlownormotensivepatient, sincehypotensionmaybeexacerbatedbynegativeinotropicmedications[58].Infusionsofshort-acting medicationssuchasesmolol(500mcg/kgivin1min,then50–300mcg/kg/min)maybeusefulto allow for a quickly reversible therapeutic trial, although such an approach is not evidence-based. Thestrategyforlong-termratecontrolhasmoreevidencebasisthanacutetreatment. β-Blockersserve adualroleintreatingHFandcontrollingrate,whereasdigoxinisbeneficialasanadjunctandreduces HFexacerbations[59]. ThetargetforheartrateintheAFFollow-upInvestigationofRhythmManagement(AFFIRM) trialwasdefinedaslessthan80beatsperminuteatrest,and110beatsperminuteduringa6min walktest;however,theRateControlEfficacy(RACE-2)trialrandomizedpatientstoconventionalstrict control(<80beatsperminuteatrest)ortoa“lenient”approach(<110beatsperminuteatrest)and foundtheretobenosignificantdifferenceinmortality,NYHAclass,andHFhospitalizations[60]. 6.1.2. RhythmControl Maintenance of sinus rhythm with a strategy that may include a combination of rate control therapy, antiarrhythmic medication, cardioversion, and radiofrequency ablation can be especially challengingintheHFpatient. Severalfactorsmakerhythmcontrolmoredifficulttoachieveinthis patientpopulation,includingleftatriumenlargement,comorbidities(e.g.,hypertension,obstructive sleepapnea),andincreasedsympathetictone[61]. Nevertheless,despitelackofadvantagesoverrate controlinmortality,strokereduction,orhospitalization,rhythmcontrolhasavitalroleintreating symptomaticpatients. J.Cardiovasc.Dev.Dis.2017,4,3 7of20 Acuterhythmcontrolisindicatedinhemodynamicallyunstablepatientsandcanbeachieved witheitherpharmacotherapyordirectcurrentcardioversion. Electricalcardioversionwith200joules biphasic energy is over 94% effective, and there is little benefit and potential harm (from repeat cardioversion) in using lower energy levels [62]. In HF patients, care must be taken to assess for hypokalemiaand/ordigoxintoxicitypriortocardioversion,inpatientswithhypokalemiapotassium repletionisindicatedtoreducetheriskofVAs. Pharmacologicalcardioversionwhendonesafelyprovidesalessinvasiveoption,butalower successratewithhigherriskofadversedrugeffects. Ibutilide (0.01 mg/kg iv with a second dose 10 min later if necessary) is approximately 50% effectiveatcardioversion;however,theriskoftorsadesdepointesincreasesto11.4%comparedto 3.6%innon-HFpatients[63]. ClassIcagentsflecainideandpropafenonearecontraindicatedinthe structuralheartdiseasebecauseofpro-arrhythmiaandshouldnotbeusedforchemicalcardioversion. Amiodarone(150mgin10min,then1mg/minfor6h,then0.5mg/minfor18h)remainsanoption formedicalcardioversionwithrestorationofsinusrhythmin80%ofpatients[64]. Theonlyother antiarrhythmicmedicationthathasdemonstratedsafetyinHFinlargerandomizedtrialsisdofetilide (125–500mcgonceevery12h);however,becauseofa3%riskoftorsades,inpatienthospitalizationto monitorforQTprolongationduringinitiationismandatory[65]. 6.1.3. RateControlversusRhythmControl The landmark study comparing rate control to rhythm control is the AFFIRM trial, reported in2002. Inthisstudy, therewasnodifferenceinmortalityorthromboemboliceventsbetweenthe twogroupswith5yearsoffollow-up[66]. Morerecently,theAtrialFibrillationandCongestiveHeart FailureTrial(AF-CHF)comparedrhythmcontrolversusratecontrolin1376patientswithEFlessthan 35%andclinicalsymptomofHF.Therewasnodifferenceindeath,stroke,orworseningheartfailure betweenthetwogroupsat5yearsoffollow-up. FreedomfromAFwasachievedinjust20%intherate controlarmand70%intherhythmcontrolarm[67]. WhilerhythmcontroldoesnotleadtodecreasedmortalityorHF,itremainsapreferredoption insymptomaticpatients. Inconclusion,thechoicebetweenastrategyofrhythmversusratecontrol shouldbeguidedbymanagementofsymptomsandpatientpreference,withnosignificantdifference inmortalityorstrokedemonstratedinclinicaltrials. 6.1.4. Anticoagulation ReductioninriskforstrokeinHFpatientswithAFrequiressystemicanticoagulationinmost patientswithstructuralheartdisease. HFitselfcarriesa2.8%annualriskofstrokeintheCHADS-2 validationstudy,andcommoncomorbiditiessuchashypertensionanddiabetescanincreasetherisk to5.8%peryear[68]. ThemorerecentCHA2DS2-VAScscore,developedinaDanishregistry[69],offersamorerefined riskstratification,byaddinganextrapointforfemalegenderandvasculardisease,andatwo-tier pointsystemforage: 1pointforage65–75yearsand2forageover75years. Thisresultsinreclassificationofthelower-riskpatientsintheCHADS-2system, with39%of thosedeemedlowriskbytheCHADS-2databasereclassifiedasintermediateriskbyCHA2DS2-VASc, and21%reclassifiedashighrisk,withallthesepatientswarrantinganticoagulation. The American College of Cardiology/American Heart Association/Heart Rhythm Society guidelines recommend the CHA2DS2-VASc score as first line in risk stratification for stroke and indicatetostartanticoagulationinpatientswithintermediateorhighriskforstroke[70]. The drugs of choice are novel oral anticoagulant while the use of vitamin K antagonists is indicatedinpatientswithmechanicalvalve,leftventricularthrombus,andcontraindicationtonovel oralanticoagulant[71]. J.Cardiovasc.Dev.Dis.2017,4,3 8of20 6.1.5. CatheterAblation AFablationwithpulmonaryveinisolationremainsaviabletreatmentoptionforsymptomaticAF thatcannotbetreatedadequatelywithantiarrhythmictherapy. HF patients often have multiple comorbidities and left atrial enlargement, making them unfavorableablationcandidates;however,single-centerstudieshavedemonstratedsimilarefficacyin catheterablationforAFinHFpatientsascomparedwithnormalcontrols,withfreedomofAFat1year around70%. Hsuetal. foundthatinthe86%ofpatientswithinadequateratecontrol,a20%increase in EF was achieved with AF ablation [72], which raises the possibility that tachycardia-related cardiomyopathyplaysalargerroleinHFwithAFthangenerallyappreciated. Anintriguingstudy,thePulmonaryVeinAntrumIsolationversusAtrioVentricularNodeAblation withBiventricularPacingforTreatmentofAtrialFibrillationinPatientswithCongestiveHeartFailure (PABA-CHF),demonstratedthatpulmonaryveinisolationresultedinanimproved6minwalking distance, increasedejectionfraction, andimprovedsymptomscomparedtoatrio-ventricularnode ablationandpacing[73]. Whilepulmonaryveinisolationcanbevaluableinreducingthefrequencyof AFinparoxysmalAF,theefficacyismuchlowerinpatientswithlong-termpersistentorpermanent AF.Ifratecontrolcannotbeachievedmedically,thenatrio-ventricularnodeablationwithbiventricular pacingremainsaviableoption[74]. InouropinioninpatientswithHFrEF,duethelowefficacyrateofAFablation,thebetteroption wasatrio-ventricularnodeablationwithbiventricularpacing;viceversa,inpatientswithHFpEFor HFmildreductionejectionfraction(HFmEF),particularlyifleftatrialvolumeindexislowerthan 40mL/mq,AFablationrepresentsthebeststrategy. 6.2. ManagementofAtrialFlutter In1999,Albonietal. tookhemodynamicmeasurementsof23consecutivepatientsinAFLand sinusrhythmanddemonstratedincreasedatrialpressureswithasubsequentfallinsystemicsystolic pressureandriseindiastolicpressures[75]. Consequently,likeAF,AFLmayleadtoHFexacerbation. TreatmentstrategiesforratecontrolandanticoagulationforAFLareoftengroupedunderthesame approachesasforAFandaresimilartothosediscussedintheprevioussection. Themostfundamental differenceinAFLascomparedtoAFisthatitisamoreorganizedrhythmandmoredifficulttorate controladequately[76],andbecauseofthis,rhythmcontrolisoftenthepreferredstrategy. Fortunately, incontrasttoAF,catheter-basedtreatmentfortypicalAFLflutterishighlyeffective[77],andoften curative,andtheguidelinesreflectthisbymakinginitialcatheterablationforrecurrentsymptomatic typicalatrialflutterarecommendedtreatmentstrategy. 6.3. ManagementofOtherTypeofSupraventricularArrhytmias Patients with HF can develop paroxysmal SVAs that are otherwise observed in the healthy population [78]. They may present with atrio-ventricular nodal reentrant tachycardia (AVNRT), atrio-ventriculartachycardia(AVRT)mediatedbybypasstractsoratrialtachycardias(AT). SucharrhythmiasaregenerallytreatedinasimilarfashionasinpatientswithoutHF;however, generally, thethresholdforperformingcurativeradiofrequencyablationinHFpatientsshouldbe lowerforthosearrhythmiasthatareeasilyamenabletosuchtherapy(i.e.,AVNRT,AVRT). 7. ManagementofVentricularTachyarrhythmiasinHF 7.1. PharmacologicManagement In most patients with HF PVCs are asymptomatic, in those patients, correction of electrolyte abnormalities(particularlylowserumpotassiumandmagnesium),withdrawalofagentsthatmight provoke arrhythmias and optimization of HF pharmacological therapy is indicated; vice versa, treatmentofarrhythmiasperseisgenerallynotindicated[79]. J.Cardiovasc.Dev.Dis.2017,4,3 9of20 Non-sustained VT will be commonly detected during 24–48 h Holter monitoring in HF patientswithbothischemicandnon-ischemiccardiomyopathies. Inasmallproportionofpatients, non-sustainedVTcanproducesymptoms,and,insuchcases,treatmentwithantiarrhythmicdrug therapy is appropriate. First-line antiarrhythmic therapy for symptomatic patients consists of optimization of β-blockers; if this approach fails to control symptoms, amiodarone or sotalol are indicated [80]. The goal of acute therapy of sustained VT (defined by a duration of ≥30 s) is to rapidlyrestoreastablerhythmwithaphysiologicallyappropriateventricularrateandtherebyprevent organdamageorfurtherhemodynamicdeterioration. Patientswithseverehypotension,chestpain, orevidenceforhypoperfusionshouldbeconsideredhemodynamicallyunstable,anddirectcurrent cardioversionisusuallythemostexpeditiousmethodforterminatingthearrhythmia[81]. Inmanypatients,however,thetachycardiaisnotimmediatelylife-threateningandthepatientis consciousandnotinseveredistress,insuchpatientspharmacologiccardioversionistheprocedureof choice. PharmacologicconversionofasustainedVTepisodehasnotbeenstudiedinlargecontrolled randomizedtrials;observationalandlimitedcontrolledtrialdata,however,indicatethatintravenous lidocaine(100–150mgivthenslowivinfusionofadoseof2–4mg/min)hasoftenbeenregarded as a first-line antiarrhythmic agent and can be useful in sustained VT associated with ischemia or myocardialinfarction[82]. Intravenousprocainamide(10mg/kgiv)isanappropriatetherapyinthesepatients,asitrapidly slowsandterminatessustainedVT;however,althoughprocainamideissuccessfulforacutearrhythmia termination in around 75% of patients with monomorphic sustained VT, its use can be limited by hypotension,whichoccursinapproximately20%oftheseindividuals[83]. Amiodarone(150–300mgin5miniv,followedbyaninfusionof1050mg/day)isalsouseful, butitsonsetofactionisslowerthanlidocaineorprocainamide,andtheresultsofacutetermination studieshavebeenvariable[84]. Medical therapy is also indicated for secondary prevention of sustained VT/VF. Together with optimization of HF medical therapy amiodarone or sotalol must be used for reduce recurrence [85]. We recommend amiodarone (200 mg/day) as first line therapy and reserve the use of sotalol (240–480 mg/day in three times), together with beta-blockers, only in patients with contraindication/adverse effects to amiodarone or in patients with persistence of SVT despite amiodarone therapy. In case of recurrent sustained VT refractory to others antiarrhythmic drugs, mexiletine(600mg/dayinthreetimes)canbeused(notcommerciallyavailableinsomeEuropean countriessuchasGreeceorItaly). 7.2. CatheterAblation Consensus document of European Heart Rhythm Association and Heart Rhythm Society’s on catheter ablation of VAs [86] lists the current indications for this procedure as symptomatic monomorphic sustained VT that recurs despite therapy with antiarrhythmic drugs or in patients whodonotdesireorareintolerantofantiarrhythmicmedications. Catheterablationisalsoindicated for patients with frequent PVCs, non-sustained VT or VT that results in myocardial dysfunction (duetotachycardia-relatedcardiomyopathy),andforpatientswithVTfrombundlebranchreentry or intrafascicular VTs and with recurrent sustained polymorphic VT or VF that is refractory to antiarrhythmic medications when there is a suspected trigger (single PVC morphology) that can betargetedforablation. 7.2.1. AblationofPrematureVentricularComplexandNon-SustainedVentricularTachycardia PVCsarecommoninpatientswithHFandstructuralheartdisease.PVCsmayalsobeaccompanied byshortrunsofnon-sustainedVT.ItiswelldocumentedthatfrequentPVCsmaybethecauseof areversiblecardiomyopathy. ItisusuallydifficulttodistinguishwhetherthePVCsaretheprimary problem or secondary to the cardiomyopathy. Cases in which PVCs represent more than 10% of heartbeatsona24helectrocardiogram,withmostPVCsofthesameQRSmorphology,aremorelikely J.Cardiovasc.Dev.Dis.2017,4,3 10of20 toinducetachycardiomyopathy[87]. PVCablationinthesepatientsmayresultinsignificantrecovery oftheirleftventricularfunction. 7.2.2. AblationofIschemicCardiomyopathy ThemechanismofVTinpatientswithpriormyocardialinfarctionisusuallyreentryaroundthe myocardialscar,butfocalmechanismscanoccurin5%–10%ofpatients. Earlyreperfusionstrategies haveresultedinsmallerinfarctsandlessaneurysmformationbutinpatientswithchronicischemic cardiomyopathy,theriskofarrhythmiaremainssignificant. Althoughprogrammedstimulationcan induceVTinalmost90%ofpatientswithischemiccardiomyopathyandclinicalsustainedVT,therate and morphology often differ from that of spontaneous occurring VT [88]. These factors have led toincreasingutilizationofsubstrate-basedablation,whichusesvoltageandpacemappingduring sinusrhythmtoidentifytargetsforablation. ThisminimizestheepisodesofunstableVTduringthe procedureandisbettertoleratedbypatientswithreducedleftventricularsystolicfunction. MostVT canbeablatedfromtheendocardialapproach,butsomeVT,morecommonlypriortoinferiorinfarction, mayrequireanepicardialapproach[89]. Outcomesofablationvaryconsiderablydependingonthe studypopulation. Successfulablationisachievedin38%–72%,withaproceduralmortalityof0.5%–8% over12months;afollow-upof50%–88%ofpatientswillremainfreeofVT[90]. 7.2.3. AblationofNonIschemicCardiomyopathy SustainedmonomorphicVTislesscommoninnon-ischemiccardiomyopathy,butthemechanism isusuallyalsoreentry.Areasofscarinnon-ischemiccardiomyopathytendtobesmallerandmoreoften locatedinthemid-myocardiumorepicardiallayers. Itiscommontoinducemultiplemorphologiesof VTinthispatientgroupandendocardialablationaloneislesssuccessful[91]. Mappingandablating epicardialsitsincreasethesuccessinthispatientgroup,buttheoptimaltimingofepicardialablation isyettobedetermined[92]. 8. SuddenCardiacDeath 8.1. SuddenCardiacDeathinPatientswithHFrEF Sudden,presumablyarrhythmicdeathaccountsforasignificantproportionoftotalmortality inHFpatientswithII–IIINYHAclass,whereasprogressivehemodynamicdeteriorationandpump failurearethemajorcausesofdeathinpatientswithIVNYHAclass. Manyriskfactorsforarrhythmia recurrence and SCD have been identified in patients who have structural heart disease; however, developingacomprehensiveriskstratificationstrategyremainsachallenge. Here,webrieflyillustrate theparameterusedinclinicalpracticeforstratificationofSCDriskinHFpatients. 8.1.1. LeftVentricularSystolicDysfunction A reduced ejection fraction remains, according to international guidelines (Table 2), the most consistent predictor of SCD in patients who have structural heart disease, irrespective of etiology. Patients in the follow-up Multicenter Automatic Defibrillator Implantation Trial (MADIT-II) who had an ejection fraction less than 30% had a rate of SCD of approximately 9.4% at 20 months [93]. Inasimilar population of patients, however, an ejection fraction greater than 35% and history of myocardialinfarctionconferredonlya1.8%riskofSCD[94].

Description:
Factors involved in pathogenesis of tachyarrhythmias in patient with heart failure. An electrophysiological hallmark of cells and tissues isolated from . other hand, mostly patients with HF-preserved ejection fraction (HFpEF) are
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.