ebook img

Management Approach for Resource-Productive Operations PDF

273 Pages·2019·4.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Management Approach for Resource-Productive Operations

Industrial Management Markus Hammer Management Approach for Resource-Productive Operations Design of a Time-Based and Analytics-Supported Methodology Grounded in Six Sigma Industrial Management Series editor H. Biedermann, Leoben, Austria C. Ramsauer, Graz, Austria W. Sihn, Wien, Austria Die Schriftenreihe behandelt Themen des gesamten Lebenszyklus von Pro­ dukten aus und in der produzierenden Industrie. Damit umfasst das Industrial Management die Produktinnovation, die Produktionsüberleitung, von der eigent­ lichen Produktion und Auslieferung der industriell produzierten Erzeugnisse bis hin zum Recycling. Die Beherrschung der neuen Themen wie Digitalisierung, Agilität, Interdisziplinarität, demographischer Wandel und Offenheit beein­ flussen den Erfolg im Produktentstehungsprozess. In der Produktentwicklung stehen modernste technische Methoden zur Verfügung gepaart mit Rapid­Proto­ typing­Maschinen, um beispielsweise in FabLabs und anderen öffentlichen oder privaten Makerspaces Prototypen zu bauen. Das Anlaufmanagement beschäftigt sich damit, wie man rasch Produkte mit maximaler Kapazitätsauslastung produ­ zieren kann. Die industrielle Produktion benötigt meist hochverfügbare Maschi­ nen mit hohem Investitionsbedarf. Das strategisch­operative Asset Management spielt dabei eine entscheidende Rolle. Aus ökonomisch­ökologischer Sicht hat die Ressourceneffizienz (insbesondere Material und Energie) hohe Bedeutung. Die in der Industrie beschäftigten Mitarbeiter bedürfen wegen des hohen Inno­ vationsgrades weiterer Befähigung und benötigen ergonomisch gestaltete Arbeits­ plätze. Die Kostenposition wird nicht zuletzt von der Wahl des Industriestandorts und der richtigen Fabriksplanung beeinflusst. Die Digitalisierung betrifft die ge­ samte Wertschöpfungskette und ist die Voraussetzung für neue Geschäftsmodelle und ein agiles Unternehmen. Das Industrial Management entwickelt zu all diesen Themen Theorien, Konzepte, Modelle, Methoden und praxisrelevante Instru­ mente. Reihe herausgegeben von: Prof. Dr. Hubert Biedermann Prof. Dr. Wilfried Sihn Montanuniversität Leoben Technische Universität Wien Österreich Österreich Prof. Dr. Christian Ramsauer Technische Universität Graz Österreich More information about this series at http://www.springer.com/series/16058 Markus Hammer Management Approach for Resource-Productive Operations Design of a Time-Based and Analytics-Supported Methodology Grounded in Six Sigma With a foreword by Univ.-Prof. Dipl.-Ing. Dr. techn. Christian Ramsauer and Prof. Dipl.-Wirt.-Inf. Dr. Christian Terwiesch Markus Hammer Graz, Austria Dissertation Graz University of Technology, Austria, 2017 ISSN 2523­3866 ISSN 2523­3874 (electronic) Industrial Management ISBN 978­3­658­22938­2 ISBN 978­3­658­22939­9 (eBook) https://doi.org/10.1007/978­3­658­22939­9 Library of Congress Control Number: 2018949896 Springer Gabler © Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid­free paper This Springer Gabler imprint is published by the registered company Springer Fachmedien Wiesbaden GmbH part of Springer Nature The registered company address is: Abraham­Lincoln­Str. 46, 65189 Wiesbaden, Germany Foreword Academics often spend too much time developing complex mathematical models while failing to recognize that business leaders struggle with very different deci- sions. One of these under-researched decisions that we see many business leaders facing, relates to their search for management approaches that help them connect their operational decision making with their corporate financial performance. The research work of Mr. Hammer presents a unique implementation meth- odology of a management approach that aims to optimize profits using a financial, time-based target operating parameter, e.g., profit per hour. By connecting the de- cision making with real time data, this work provides decision makers with a sim- ple yard stick they can use to run their operations. The research of Mr. Hammer is clearly conceptual and application focused and we view it as an important contribution on how to implement performance management systems. The work also touches on related topics that, in our view, have received insufficient attention from the performance management literature, including Big Data, Data Analytics, as well as Industry 4.0. The abundance of data that modern plant managers in theory have access to is in sharp contrast to the sophistication of their current planning methodologies. This deficit is especially becoming a challenge in times of increasing volatility and complexity. Throughout the document, Mr. Hammer uses relevant sources of literature and builds upon the current body of international publications in the field. Through his careful referencing and citations, Mr. Hammer demonstrates a high degree of academic integrity. He only claims credit for what he contributes himself, while being generous pointing to the contributions of those who went before him. The work submitted by Mr. Hammer provides a significant contribution to the field of industrial operations management. Univ.-Prof. Dipl.-Ing. Dr.techn. Christian Ramsauer Institute of Innovation and Industrial Management Prof. Dipl.-Wirt.-Inf. Dr. Christian Terwiesch The Wharton School of the University of Pennsylvania Acknowledgements I would like to thank my supervisor Prof. Dr. Christian Ramsauer for being a role model and for his support and trust. I thank Prof. Dr. Christian Terwiesch for being my second assessor and early thought partner on pursuing a PhD. Furthermore, I would like to acknowledge Prof. Dr. Stefan Vorbach, for his advice and for being the head of the examination board. Being part of the team at the Institute for Innovation and Industrial Manage- ment has been a fantastic experience. Thank you Alex, Christian, Christoph, Daniela, Elma, Hans, Hugo, Jasmin, Kerstin, Mario, Martin, Matthias, Nils, Patrick, Philipp, Sascha, Silke, Stefan, Thomas, et al. I would also like to thank my work colleagues, in particular, Joris, Ken, Olivier, and Robert and the three industrial companies who agreed to contribute with the practical cases. I owe deep gratitude to my family, my parents Roswitha and Helmut, my loving wife Raquel, and my two sons Lucas and David, to whom I dedicate this work. Dipl.-Ing. Dr. techn. Markus Hammer Abstract The objective of this doctoral thesis is to investigate a time-based and analytics- supported operations management approach and develop a structured implemen- tation methodology. In the context of digitization, the Industry 4.0 and the Industrial Internet of Things the amount of available technology and data is continuously rising. At the same time increasing volatility, uncertainty and complexity demand making operations decisions in ever shorter intervals trending towards real-time. This research explores five perspectives, the needs of industry, in particular manufacturing in process industries; the impact of digitization, with focus on Big Data and analytics; the management of operations through time-based perfor- mance metrics; how operations improvement methods and advanced process control help achieve resource-productive operations; and learning from practice based on two empirical case studies. Next an implementation methodology for a time-based and analytics- supported operations management approach is conceived, explained and tested. The methodology is structured around five phases known from Six Sigma: Define, Measure, Analyze, Improve, Control and contains 17 specific steps which are explained and subsequently validated in an industrial case study. This thesis discusses the criteria when this approach is meaningful, for example, situations when trade-off decisions between conflicting targets are required, time is the constraint, close to real time decision making is required, cumulative profit maximization is the desired long term goal, and where invested capital and/or resource intensity is high. Pre-conditions for implementations are stated, for example, infrastructure such as sensors, meters, or data storage; data to compute the metric; access to advanced algorithms required to solve for profit per hour as a target function; an implementation process; and the required skills. It can be concluded that a time-based and analytics-supported operations management approach for maximizing profits is meaningful if the pre-conditions are met. The final case study proves that the developed implementation methodology works in practice. Contents List of Figures ................................................................................................... XV List of Tables ................................................................................................... XIX List of Equations .............................................................................................. XXI List of Abbreviations .................................................................................... XXIII 1 Introduction ..................................................................................................... 1 1.1 Initial Situation and Motivation .............................................................. 1 1.2 Objective of the Research ....................................................................... 2 1.3 Research Questions ................................................................................. 4 1.4 Research Design and Structure ............................................................... 4 1.5 Thesis Outline ......................................................................................... 8 2 Industry Perspective: Challenges in Manufacturing in Process Industries .... 11 2.1 Megatrends in Industry ......................................................................... 11 2.2 Manufacturing Industries ...................................................................... 18 2.3 Process Industries ................................................................................. 22 2.4 Summary: Manufacturing in Process Industries ................................... 25 3 Digitization Perspective: Impact of Digital Technologies in Manu- facturing ........................................................................................................ 27 3.1 Digitization ........................................................................................... 27 3.2 Industry 4.0 ........................................................................................... 32 3.3 Industrial Internet of Things ................................................................. 40 3.4 Big Data ................................................................................................ 48 3.5 Advanced Analytics .............................................................................. 56 3.6 Summary: Impact of Digitization on Manufacturing ............................ 67 4 Management Perspective: Performance Opportunities with Decision- Support Systems ............................................................................................ 69 4.1 Decision Making ................................................................................... 69 4.2 Performance Measures .......................................................................... 75 4.2.1 Return on Invested Capital ........................................................ 79 4.2.2 Time-Based Performance Measures .......................................... 82 4.2.3 Current State, Challenges and Opportunities ............................. 86 XII Contents 4.3 Performance Measurement and Management Systems......................... 87 4.4 Decision Support Systems .................................................................... 91 4.5 Summary: Performance Opportunities with Decision-Support Systems ................................................................................................. 94 5 Operations Perspective: Achieving Resource-Productive Operations .......... 97 5.1 Resource-Productive Operations .......................................................... 97 5.2 Lean .................................................................................................... 108 5.3 Six Sigma ............................................................................................ 112 5.4 Theory of Constraints ......................................................................... 117 5.5 Agility ................................................................................................. 119 5.6 Advanced Process Control .................................................................. 122 5.7 Summary: Achieving Resource-Productive Operations ..................... 136 6 Practice Perspective: Learning from Case Research in the Cement and Ammonia Industry ................................................................................ 139 6.1 Cement ................................................................................................ 139 6.1.1 Context .................................................................................... 140 6.1.2 Application .............................................................................. 140 6.1.3 Results ..................................................................................... 143 6.2 Ammonia ............................................................................................ 144 6.2.1 Context .................................................................................... 144 6.2.2 Application .............................................................................. 145 6.2.3 Results ..................................................................................... 145 6.3 Summary: Challenges and Opportunities in Practice.......................... 146 7 Interim Conclusion: Scope of Work ............................................................ 147 7.1 Research Gap ...................................................................................... 147 7.2 Delimitation of Research Focus and Summary of Requirements ....... 148 8 Methodology Conception: Framing a Time-Based and Analytics Supported Operations Management Approach ........................................... 151 8.1 Concept ............................................................................................... 151 8.1.1 Technology .............................................................................. 152 8.1.2 Economics ............................................................................... 154 8.2 Classification ...................................................................................... 155 8.2.1 Application Oriented Theory ................................................... 155 8.2.2 System Theory Classification .................................................. 156 8.2.3 Model Theory Classification ................................................... 159 8.2.4 Summary of Relevance............................................................ 160 8.3 Applicability ....................................................................................... 160

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.