ebook img

MAMPOSSt: Modelling Anisotropy and Mass Profiles of Observed Spherical Systems. I. Gaussian 3D velocities PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MAMPOSSt: Modelling Anisotropy and Mass Profiles of Observed Spherical Systems. I. Gaussian 3D velocities

Mon.Not.R.Astron.Soc.000,000–000(2012) Printed7January2013 (MNLATEXstylefilev2.2) MAMPOSSt: Modelling Anisotropy and Mass Profiles of Observed Spherical Systems. I. Gaussian 3D velocities Gary A. Mamon1,2, Andrea Biviano3 and Gwenae¨l Boue´4,5,6,1 3 1Institutd’AstrophysiquedeParis(UMR7095:CNRS&UPMC),98bisBdArago,F–75014Paris,France,e-mail:[email protected], 1 2Astrophysics&BIPAC,DepartmentofPhysics,UniversityofOxford,OxfordOX13RH,UK 0 3INAF/OsservatorioAstronomicodiTrieste,viaG.B.Tiepolo11,34143Trieste,Italy 2 4AstronomieetSyste`mesDynamiques,IMCCE-CNRSUMR8028,ObservatoiredeParis,UPMC,77Av.Denfert-Rochereau,75014Paris,France n 5CentrodeAstrof´ısicadaUniversidadedoPorto,RuadasEstrelas4150-762Porto,Portugal a 6DepartmentofAstronomyandAstrophysics,UniversityofChicago,5640SouthEllisAvenue,Chicago,IL60637,USA J 4 Accepted2012Dec05.Received2012Dec05;inoriginalform2012Jul20 ] O C ABSTRACT Mass modelling of spherical systems through internal kinematics is hampered by the mass . h / velocity anisotropydegeneracyinherentin the Jeans equation,as well as the lack of tech- p niquesthatarebothfastandadaptabletorealisticsystems.Anewfastmethod,calledMAM- - o POSSt,isdevelopedandthoroughlytested.MAMPOSStperformsamaximumlikelihoodfit r of the distribution of observed tracers in projected phase space (projected radius and line- t s of-sight velocity). As in other methods, MAMPOSSt assumes a shape for the gravitational a potential(orequivalentlythetotalmassprofile).However,insteadofpostulatingashapefor [ the distributionfunctionin termsof energyandangularmomentum,orsupposingGaussian 2 line-of-sight velocity distributions, MAMPOSSt assumes a velocity anisotropy profile and v a shape for the three-dimensional velocity distribution. The formalism is presented for the 5 caseofaGaussian3Dvelocitydistribution.Incontrasttomostmethodsbasedonmoments, 5 MAMPOSStrequiresnobinning,differentiation,norextrapolationoftheobservables.Tests 4 on cluster-mass haloes from ΛCDM dissipationless cosmological simulations indicate that, 1 with500tracers,MAMPOSStisableto jointlyrecoverthevirialradius,tracerscale radius, 2. darkmatterscaleradiusandouterorconstantvelocityanisotropywithsmallbias(<10%on 1 scale radii and <2%on the two otherquantities) and inefficienciesof 10%, 27%, 48%and 2 20%, respectively. MAMPOSSt does not perform better when some parameters are frozen, 1 and even particularly worse when the virial radius is set to its true value, which appears to : betheconsequenceofhalotriaxiality.TheaccuracyofMAMPOSStdependsweaklyonthe v i adoptedinterloperremovalscheme,includinganefficientiterativeBayesianschemethatwe X introducehere, whichcan directly obtainthe virialradius with as goodprecisionas MAM- r POSSt.Additionaltestsaremadeonthenumberoftracers,thestackingofhaloes,thechosen a aperture, and the density and velocity anisotropy models. Our tests show that MAMPOSSt withGaussian3Dvelocitiesisverycompetitivewithothermethodsthatareeithercurrently restricted to constant velocity anisotropy or 3 orders of magnitude slower. These tests sug- gestthatMAMPOSStcanbeaverypowerfulandrapidmethodforthemassandanisotropy modelingofsystemssuchasclustersandgroupsofgalaxies,ellipticalanddwarfspheroidal galaxies. Key words: methods:analytical – galaxies: kinematics and dynamics– galaxies:haloes – galaxies:clusters:general–darkmatter 1 INTRODUCTION betterEinasto(Navarroetal.2004)densityprofilesderivedindis- sipationlesssimulationsofasingledarkmattercomponentonone Thedeterminationofmassprofilesisoneofthefundamentalissues hand,andthe1/r2 densityprofilesfoundfortheDMinhydrody- of astronomy. Subtracting the mass density profile of the visible namicalcosmologicalsimulations(Gnedinetal.2004).Moreover, component, one deduces the dark matter (hereafter, DM) density the knowledge of the total density profile serves as a fundamen- profile,whichcanbeconfrontedtothepredictionsfromcosmolog- tal reference, relative to which one can scale various astronomi- icalN-bodysimulations.Thisisespeciallyrelevantgiventhedif- caltracerssuchasthemassdensityprofilesofthestellar,gasand ferencesbetweenthetotalNFW(Navarro,Frenk,&White1996)or (cid:13)c 2012RAS 2 Mamonet al. dustcomponents,aswellastheluminosityindifferentwavebands. Thetraditionalwaytoanalyzethedistributionofparticlesin Thesestudiescanbeperformedasafunctionofsystemmassand PPSistoassumeaformforthesix-dimensionaldistributionfunc- otherattributessuchasgalaxycolour(e.g.,Wojtak&Mamon2013 tion(DF)intermsofenergy(E)andangularmomentum(J)and andreferencestherein). fit the triple integral of equation (5) below, using this DF for f, Massprofilescanbederivedfrominternalmotions,oralter- tothedistribution of particlesin PPS.Theworry isthat wehave nativelyfromX-rayorlensingobservations.Thispaperfocuseson nogoodaprioriknowledgeoftheshapeoftheDF,f(E,J).One massprofilesfrominternalkinematics.Inthisclassofmass mod- cleverideaistothroworbitsinagravitationalpotential,sinceeach eling,onehastodealwithadegeneracybetweentheunknownra- orbit isa Dirac delta function in energy and angular momentum. dialprofilesoftotalmassandofthevelocityanisotropy(hereafter Onethenseeksalinearcombinationoftheseorbits,withpositive ‘anisotropy’) coefficients, to match the data. This orbit model (Schwarzschild 1979;Richstone&Tremaine1984;Syer&Tremaine1996)isvery σ2(r)+σ2(r) β(r)=1 θ φ (1) powerful (and can handle non-spherical gravitational potentials), − 2σr2(r) buttooslowtoobtainmeaningfulerrorsontheparameters.Asimi- (notethat,insphericalsymmetry,onemusthaveσ =σ ).While lar,andinprinciplefaster,techniqueistoassumethattheDFisthe φ θ radialouterorbitsareexpectedforstructuresinanexpandinguni- linearcombination(againwithpositivecoefficients)ofelementary verse (e.g. Ascasibar & Gottlo¨ber 2008 for dark matter particles DFs(Dejonghe1989; Merritt&Saha1993;Gerhardetal.1998), and Ludlow et al. 2009 for subhaloes), the dissipative nature of butonlyonesuchstudyhasbeenmade(Kronawitteretal.2000), thegasdynamicsisexpectedtoproducetangentialorbitsinthein- anditisnotclearwhethertheelementaryDFs,althoughnumerous, nerregionsofsystemsformedfromgas-richmergersorcollapse. constituteabasisset. Therefore, lifting the Mass - Anisotropy Degeneracy can provide An important step forward has been performed by Wojtak usefulconstraintsontheformationofthestructureunderstudy. etal.(2008),whoanalyzedthehaloesinΛCDMcosmologicalsim- Acommonmethodtoextractthemassprofileistoassumethat ulations,toshowthattheDFcanbeapproximatedtobeseparable theline-of-sight(hereafter,LOS)velocitydistribution,atgivenpro- inenergyandangularmomentum,withasimpleanalyticalapprox- jectedradius,isGaussian(Strigarietal.2008;Battagliaetal.2008; imationfortheangularmomentumterm.Inasequel,Wojtaketal. Wolfetal.2010).Thesemethodsperformadequatelyonthemass (2009)haveshownthatitisfeasibletofitthedistributionofparti- profile, but provide weak constraints on the anisotropy (Walker clesinPPSwithequation(5),usingtheapproximationoftheDF etal.2009).Merritt(1987)pointedoutthatanisotropicmodelshave foundbyWojtaketal.(2008). non-GaussianLOSvelocitydistributions.Therefore,theobserved However, it is not yet clear whether self-gravitating quasi- kurtosisofthedistributionofLOSvelocitiesservesasapowerful sphericalastrophysicalsystemshavetheDFof ΛCDMhaloes:In constrainttotheanisotropy(Gerhard1993;vanderMarel&Franx particular,ifthedynamicalevolutionofthesesystemsisinfluenced 1993; Zabludoff, Franx, & Geller 1993). In fact, if one assumes bythedissipationoftheirgaseouscomponent,theDFmaynotbe that the anisotropy is constant throughout the system, the fourth separableintermsof energyandangularmomentum. Dissipation orderJeansequationcanbeusedtoexpresstheLOSvelocitykur- isnotexpectedtoaffectmuchtheinternalkinematicsoflargesys- tosisasanintegralofthetracerdensity,anisotropyandtotalmass tems such as galaxy clusters1, but is expected to be increasingly profiles (Łokas 2002). Moreover, Richardson & Fairbairn (2012) importantinsmallersystemssuchasgalaxygroups,andespecially wereabletogeneralizetheexpressionfortheLOSvelocitykurto- galaxiesthemselves.Forthisreason,itisusefultoconsideramass- sis for radially varying anisotropy in the framework of separable modelingmethodthatisindependentofthedependenceoftheDF augmenteddensityand4thorderanisotropyequal tothestandard onenergyandangularmomentum. anisotropy(thelatterappearstobeanexcellentapproximationfor Inthiswork, wepresent analternativemethod, inwhichwe ΛCDMhaloes,seeFig.10ofWojtaketal.2008).Onecanthenper- fitthedistributionofparticlesinPPSmakingassumptionsonthe formajointfitoftheobservedLOSvelocitydispersionandkurtosis radial profiles of mass and anisotropy as well as the radial vari- profiles.Thiswasfoundto(partially)liftthemass-anisotropyde- ationsof thedistributionof space-velocities. Wecallthismethod generacywhenappliedtodwarfspheroidalgalaxies(Łokas2002) Modelling of Anisotropy and Mass Profiles of Observed Spheri- andtheComacluster,(Łokas&Mamon2003):thejointconstraint cal Systems, or MAMPOSStfor short.2 TheMAMPOSStmethod ofLOSvelocitydispersionandkurtosisprofilesallowstheestima- isdescribed inSect.2.1, itsGaussian approximation isdescribed tionofboththemassprofile(i.e.,normalizationandconcentration) inSect.2.2.Testsonhaloesderivedfromacosmological N body andtheanisotropyofthecluster,contrarytothecasewhentheLOS simulationarepresentedinSect.3.AdiscussionfollowsinSect.4. kurtosisprofileisignored. An interestingroute istoperform non-parametric inversions ofthedataassumingeitherthemassprofiletoobtaintheanisotropy 2 METHOD profile(anisotropyinversion,pioneeredbyBinney&Mamon1982) ortheanisotropyprofiletoobtainthemassprofile(massinversion, 2.1 Generalmethod independentlydevelopedbyMamon&Boue´ 2010andWolfetal. TheobservedtracerpopulationofasphericalsystemhasaDF 2010).Theseinversionmethodsarepowerfulinthattheyare non- parametric,buttheysufferfromtheirrequiringtheuserto binthe f(r,v)=ν(r)f (vr), (2) v data,smoothit,andextrapolateitbeyondtherangeofdata. | Hence,onewouldliketogoonestepfurtherandconstrainthe full information contained in the observed projected phase space 1 However,thejointX-rayandlensinganalysis ofaclusterbyNewman (projectedradiiandLOSvelocities,hereafter,PPS)ofLOSveloc- etal.(2009)revealsashallowerinnerdensityprofilethanNFW,suggesting ities as a function of projected radii. In other words, rather than thatdissipationisalsoimportantinclusters. usingthe0th,2ndandpossibly4thmomentsoftheLOSvelocity 2 MAMPOSSt should evoke the mass analog of a lamppost, and mam- distribution,wewishtousethefullsetofevenmoments. poster´ıainSpanishmeansmasonry,hencethebuildingblocksofstructures. (cid:13)c 2012RAS,MNRAS000,000–000 ModellingAnisotropyandMass Profiles 3 whereν(r)isthetracernumberdensityprofile. Wojtaketal.2009),weanalyticallyderiveh(v R,r)fromequa- z | MAMPOSStfitsthedistributionofobjectsinPPS(projected tion (3) for known 3D velocity distributions. With the analytical radiusRandLOSvelocityv ),assumingparametrizedformsfor formofh(v R,r),equation(4)providesthesurfacedensitydis- z z | tributionoftracersinPPSthroughasingleintegral.Note,however, (i) thegravitationalpotential(orequivalentlyatotalmassden- thatanothersingleintegral isrequiredbecause theexpression for sityprofile,throughthePoissonequation), h(v R,r)willinvolveσ (r)(seeeqs.[25]and[26],below,forthe (ii) theanisotropyprofile(eq.[1]) z| r Gaussian case), which is obtained by solving the spherical Jeans (iii) thedistributionof3Dvelocities,f (vr). v | equation Consider a point P at distance r from the centre, O, of the spherical system, with projected radius R 6 r and consider the d νσr2 +2β νσr2 = ν(r)GM(r) (8) spherical coordinates wheretheunit vectors er andeθ areinthe (cid:0)dr (cid:1) r − r2 planecontainingOPandtheLOS,whilee isperpendiculartothis whereβistheanisotropyof(eq.[1])forourgivenchoicesoftotal φ plane.Consideralsothecylindricalcoordinatesystem(vz,v⊥,vφ), mass and anisotropy profiles. Wethus need toinsert the solution whereez istheaxisalongtheLOSande⊥ istheaxisperpendic- (vanderMarel1994;Mamon&Łokas2005) ulartotheLOS,butintheplanecontainingOandPandtheLOS. 1 ∞ s dt GM(s) TheJacobian of thetransformation fromthespherical coordinate σ2(r)= exp 2 β(t) ν(s) ds, (9) r ν(r) t s2 systemtothenewoneisunity,henceonecanwrite Zr (cid:20) Zr (cid:21) in the expression for h(v R,r) (eq. [3]) to derive g(R,v ), via d3N z| z fv(vz,v⊥,vφ|{r,R}) ≡ (cid:18)dvzdv⊥dvφ(cid:19)r,R teiqouna(t7io)n.I(n4)e,qwuhateiroenβ((9t)),Misg(isv)en=,w(sh2il/eGν)(rd)Φis/dobstiasinthedewraidtihaelqpuroa-- d3N fileof thetotal mass (thisisthe only instancewhere thegravita- = tionalpotentialentersMAMPOSSt).Foragivenchoiceofparame- dv dv dv (cid:18) r θ φ(cid:19)r,R ters,thesingleintegralofequation(4)mustbeevaluatedforevery ≡ fv(vr,vθ,vφ|{r,R}). data point (R,vz), whereas the other integral (eq. [9]) for σr(r) needonlybeevaluatedonce,onanadequategridofr. The distribution of LOS velocities at P is then obtained by Note that for projected radii extending from R to R integrating velocities over the two perpendicular axes (dropping min max andabsoluteLOSvelocitiesextendingfrom0toamaximumveloc- r,R fromf forclarity): v { } ity,whichforprojectedradiusRistheoreticallyequaltov (R)= esc dN +∞ +∞ 2Φ(R),andinpracticeispossiblyspecifiedbyacutofobvi- h(vz|R,r)≡(cid:16)dvz(cid:17)r,R =Z−∞ dv⊥Z−∞ fv(vz,v⊥,vφ)dvφ.(3) pous−velocityinterlopers,vcut(R),onecanwrite Notethatdynamical systemshavemaximumvelocitiessetbythe Rmax vcut(R) Rmax 2πRdR g(R,v )dv = 2π RΣ(R)dR escape velocity, 2Φ(r) (where Φ(r) is the gravitational po- z z tential), on one han−d, and by the maximum allowed (observable) ZRmin Z−vcutR) ZRmin absoluteLOSvelpocityontheotherhand.Inwhatfollows,wewill = ∆Np, (10) neglectbothlimits,unlessexplicitlymentionedotherwise. whereweusedequation(4)forg(R,v ),assumedthath(v R,r) z z | Thesurfacedensityofobservedobjects(thetracer)inPPSis isnormalised,reversedtheorderoftheintegralsin r andv ,and z thenobtainedbyintegratingalongtheLOS whereN (R)isthepredictednumberofobjectswithinprojected p radius R, while∆N = N (R ) N (R ). Equation (10) g(R,vz) = Σ(R) hh(vz|R,r)iLOS thenimpliesthatthepprobabiplitymdaexnsi−tyopfobmseirnvinganobjectat ∞ rν(r) position(R,v )ofPPSis = 2 h(v R,r)dr (4) z z √r2 R2 | ZR∞ rdr− +∞ +∞ q(R,vz)= 2πR∆gN(R,vz) = 2ZR √r2−R2 Z−∞dv⊥Z−∞f(r,vz,v⊥,vφ)dvφ.(5) = 4πR p∞ rν(r) h(v R,r)dr (11) where ∆Np ZR √r2−R2 z| +∞ ∞ rν(r)dr R2 ∞ R Σ(R)=Z−∞ ν(r)dz=2 ZR √r2−R2 (6) = ∆Nprν3Z0coshuν(cid:16)rν coshu(cid:17)h(vz|R,Rcoshu)du, (12) isthetracersurfacedensityatprojectedradius R.Equation(5)is e e equivalenttoequation(2)ofDejonghe&Merritt(1992). whereequation(11)arisesfromequation(4),whileequation(12) Ifthetracernumberdensityprofile ν(r),appearinginequa- isobtainedbywritingr = Rcoshu.Here,N (R)isthenumber p tion(4),isnotknownandiftheincompletenessofthedataisin- oftracersinacylinderofprojectedradius R,thetermsν andN p dependent of theprojected radius, thenone can estimate ν(r)by aregivenby AbelinversionofΣ(R)ofequation(6): N(r ) r e e ∞ ν(r)= ν ν , (13) 1 dΣ dR 4πr3 r ν(r)= . (7) ν ν −π dR √R2 r2 (cid:16) R(cid:17) Zr − Np(R)=N(rν) Nep r , (14) Butthisisnotnecessary,asweshallseebelow. ν (cid:16) (cid:17) In MAMPOSSt,rather than replace thevelocities by energy whereN(r)isthecumulativetracernumberdensityprofile,while e and angular momentum and numerically solve the triple integral r isthecharacteristicradiusofthetracer.Oneeasilyverifiesthat ν ofequation(5)(asfirstproposedbyDejonghe&Merritt,seealso q(R,v )dRdv =1.ThevaluesofR andR appearing z z min max RR (cid:13)c 2012RAS,MNRAS000,000–000 4 Mamonet al. in∆N (eq.[10])canbehardlimits,oralternativelytherespective (iii) We terminate the LOS integration in equation (11) at p minimumandmaximumprojectedradiioftheobservedtracers if roughly15virialradii,3 r ,insteadofinfinity,astheHubbleflow v nohardlimitsarespecified. pushes the velocities of the material beyond this distance to val- Wefittheparameters(massscaleorconcentrationandpossi- uesover3σ abovethemeanofthesystem(seeMamon,Biviano, v blynormalization,anisotropylevelorradius,aswellasthetracer &Murante2010,hereafterMBM10).TheLOSintegrationvaries scaler –ifnotpreviouslyknown)thatenterthedeterminationof onlyveryslightlywiththenumberofvirialradii,soaslongasthe ν g(R,v ) to the observed surface density, using maximum likeli- virialradiusiscorrecttoafactoroftwo,thischoiceofintegration z hoodestimation(MLE),i.e.byminimizing limitisnotanissue. n Wenowneedtochooseamodelfortheshapeofthe3Dveloc- ln = lnq(Ri,vz,iθ), (15) itydistribution.WhileMAMPOSSt,can,inprinciple,berunwith − L − | Xi=1 anymodel,thesimplestoneisthe(possiblyanisotropic)Gaussian fortheN-parametervectorθ,wherenisthenumberofdatapoints, distribution,whichwedescribeinSect.2.2below. withqgivenbyequation(11). Writing θ = r ,η , where η is the vector of the N 1 { ν } − 2.2 Gaussian3Dvelocitydistributions parametersotherthanr ,onehas ν Thesimplestassumptionforthe3Dvelocitydistributionisthatit q(R,v r ,η)=p (Rr ) p(v R,r ,η), (16) z| ν 0 | ν × z| ν isGaussian: where 1 v2 v2+v2 f (v ,v ,v )= exp r θ φ , (21) p0(R|rν)= Np(Rma2xπ|rRν)Σ−(RN|prν(R)min|rν) (17) wvherrethθeveφlocity(d2iπs)p3e/r2siσornσsθ2σiare(cid:20)f−un2cσtir2on−sofr2.σTθ2his(cid:21)Gaussian and distribution assumes no streaming motions: e.g. no rotation, and g(R,v θ) no mean radial streaming, which is adequate for Rmax < rv in p(vz|R,η)≡hh(vz|R,r)iLOS= Σ(Rrzν|) . (18) high-mass haloes (i.e. groups and clusters) and Rmax < 4rv in | galaxy-mass haloes (Cuesta et al. 2008). Inserting equation (21) Combiningthelastequalityofequation(18)withequation(5),in- intoequation(3)andintegratingoverv leadsto φ tegratingoverLOSvelocities,reversingtheorderofthetwoouter iytniioteenlgdirssalaslrpoe(favtdhzye|Rkren)soduwvltnzin,=gthqe1un.a,dSarcouc,poilrfedtiihnnetgesgtcoraaell,eqauonafdtitouhnseisntr(ga1ce5eq)ruaadntidisotr(ni1b(6u6)-), h(vz|R,r)=Z−+∞∞2π√11−βσr2 exp(−(cid:2)(12−(β1−)vβr2)+σr2vθ2(cid:3))dv⊥. R (22) maximizingthelikelihoodamountstominimizing Callingθtheanglebetweentheline-of-sight(directionz)andthe ln ′ = lnp(v R,r ,η). (19) − L − z| ν radialvectorr,onehas Now, if rν isXnot known, then one may be tempted to solve for vr = vz cosθ+v⊥ sinθ, (23) itbyminimizing ln = lnp (Rr ),andthenproceed withequation (19−) tomLi0nimiz−eforthe0N | 1ν remaining parame- vθ = −vz sinθ+v⊥ cosθ, (24) ters,η.However,since ln =P ln ′ −ln 0(fromeqs.[15] withwhichtheintegraloverv⊥inequation(22)yieldsaGaussian − L − L − L and[16]),themostlikelysolutionforθthatminimizes ln will distributionofLOSvelocitiesatpointP: not in general be that which minimizes at the same tim−e Lln ′ and ln .Moreover, ifoneseekstoobtainthedistribut−ionsLof h(v R,r)= 1 exp vz2 , (25) param−eterLs0ηandrν consistentwiththeMLEsolution(forexam- z| 2πσz2(R,r) (cid:20)−2σz2(R,r)(cid:21) plewithMarkovChainMonte-Carlotechniques),thejointanalysis ofsquareddisppersion ofequations(11)and(15)isrequired.Ontheotherhand, ifr is ν knownfromotherdata,whilethecurrentdatasetisknowntohave σ2(R,r)= 1 β(r) R 2 σ2(r). (26) acompleteness,C(R),thatisafunctionofprojectedradius,then z − r r onecouldindeedminimizeln ′ ofequation(19).Theproperso- (cid:20) (cid:16) (cid:17) (cid:21) L Theintegralof h(vz R,r)alongtheLOSisobtained fromequa- lutionisthentominimize ln weightingthedatapointsbythe | − L tions(4)and(25): inversecompleteness,i.e.minimizing n lnq(R ,v θ) g(R,v ) = 2 ∞ rν 1−βR2/r2 −1/2 −lnL′′ =− C(iRiz),i| . (20) z rπ ZR √r2−R2 (cid:0) σr (cid:1) Xi=1 exp vz2 dr. (27) Forcomputationalefficiency,weperformthefollowingtasks: × −2 (1 βR2/r2) σ2 (cid:20) − r(cid:21) (i) Foreachrunofparameters,wefirstcomputelogσr(rj)from Accordingtoequations(18)and(27),theprobabilityofmeasuring equation(9)onalogarithmicgridofrj,andcomputecubic-spline avelocityvz atgivenprojectedradiusRis coefficients at these radii. Then, when we compute the LOS in- g(R,v ) tegralofequation (4)foreach (R ,v ),weevaluateσ (r)with p(v R) = z i z,i r z| Σ(R) cubicsplineinterpolation(inlog-logspace,usingthecubicspline coefficientsdeterminedatthestart). (ii) Forsimpleanisotropymodels,theexponentialterminequa- 3 Thevirial radii are loosely defined hereas theradius wherethemean tion(9)isgivenbyequations(A2)and(A3). densityofthehalois200timesthecriticaldensityoftheUniverse. (cid:13)c 2012RAS,MNRAS000,000–000 ModellingAnisotropyandMass Profiles 5 = 1 0∞(ν/σz) exp −vz2/ 2σz2 dz . (28) 3 TESTS √2π ∞νdz R 0 (cid:2) (cid:0) (cid:1)(cid:3) 3.1 Simulatedhaloes R We remind the reader that β is a chosen function of r, ν is TotestMAMPOSSt,weusecluster-masshaloesextractedbyBor- a function of r given by equation (7), while σr is a function of gani et al. (2004) from their large cosmological hydrodynamical r given by equation (9). For isotropic systems (β = 0), equa- simulationperformedusingtheparallelTree+SPHGADGET–2code tion(27)leadstoaGaussiandistributionofLOSvelocities.How- ofSpringel et al.(2005). Thesimulationassumesacosmological ever, foranisotropic velocity tensors, the distribution of LOS ve- model with Ω = 0.3, Ω = 0.7, Ω = 0.039, h = 0.7, and 0 Λ b locitieswillgenerallynotbeGaussian(asMerritt1987foundwhen σ =0.8.TheboxsizeisL=192h−1Mpc.Thesimulationused 8 startingfromdistributionfunctionsinsteadofGaussian3Dveloc- 4803 DMparticlesand(initially)asmanygasparticles,foraDM ittoietsh)e.pHoepnuclea,rtahsesuGmaputsisoinanthnaattgur(eRo,fvzh)(visz|GRa,urs)siaisnnoontvezq:ueivvaelnenift tpoar2ti2c.l5ehm−a1sscoofm4o.v6i2ng×k1p0c9uhn−ti1lMz⊙=.T2haensdoffitexneidngaflteenrwgtahrdwsa(si.see.t, h(vz R,r) isaGaussian at point P, itsintegral along theLOS is 7.5h−1 kpc). The simulation code includes explicit energy and | notGaussian,unlessβ=0andσrisconstant. entropyconservation,radiativecooling,auniformtime-dependent IfoneoftheparameterstodeterminewithMAMPOSStisthe UV background (Haardt & Madau 1996), the self-regulated hy- normalization of the mass profile, one should not be tempted in brid multi-phase model for star formation (Springel & Hernquist expressingtheradiiintermsofthevirialradiusrv,thevelocitiesin 2003),andaphenomenologicalmodelforgalacticwindspowered termsofthevirialvelocityvv,thetracerdensitiesintermsofwhat byType-IIsupernovae. wewish(astheyappearinboththenumeratoranddenominatorof DMhaloeswereidentifiedbyBorganietal.(2004)atredshift eq.[28]).Doingso,equation(28)becomes z = 0 with a standard Friends-of-friends (FoF) analysis applied to the DM particle set, with linking length 0.15 times the mean p(v R) v p(v R) inter-particledistance.AftertheFoFidentification,thecentreofthe z v z | ≡ | e e = √12π 0∞(ν/σz) e∞xpνd−zvz2/σz2 dz , (29) hovaleordwenassistyetctroitethrieopnowsiatisotnheonfaitpspmlioedsttbooduentderpmairntiec,lefo.rAeaspchhehraicloal, R 0 (cid:2) (cid:3) ourproxyforthevirialradius,r200,wherethemeandensityis200 e e e e e timesthecriticaldensityoftheUniverse. R where the quantities with tildes are in virial units. Equation (29) e e Tosavecomputingtime,weworkedonarandomsubsample indicates that when one varies the rv (and the virial velocity in ofroughlytwomillionparticlesamongthe4803.Wehaveextracted proportion as vv = 2/∆H0rv), the highest probabilities are 11cluster-masshaloesfromthesesimulations, among which, ten reached for the highepst normalizations: vz becomes very small, are about logarithmically spaced in virial radius, r200, while the whileσz isunaffected tofirst order. Thisunphysical resultisthe 11th haloisthemostmassiveintheentiresimulation.Theirprop- consequenceofusingaparameter(thevirialradius)aspart ofthe e erties are listed in Table 1. We made no effort to omit irregular datavaeriable.Ontheotherhand,usingequation(28),oneseesthat haloes, but among the list of 12 irregular haloes out of 105 ex- thehighestprobabilitiesp(vz R)arereachedatintermediatevalues tractedbyMBM10fromthesamesimulation,2areinoursample | ofthenormalization. (haloes17283 and434).Welistthecharacteristicradii r ,r ,r s H B Takingthesecondmomentofthevelocitydistributionofequa- ofthreemodelsfittedbyMLEtothemassdensityprofilesofthe tion(28)leadstotheequationofanisotropicprojectionyieldingthe particledata(from0.03to1r ),namely: 200 LOSvelocitydispersion,σ (R): z (i) theNFWdensityprofile +∞ Σ(R)σz2(R) = vz2g(R,vz)dvz ρ(r) r−1 (r+r )−2 , (32) s Z−∞ ∝ ∞ = 2 νrdr where rs ≡ r−2 is the radius of slope −2 in the mass density rπ ZR σz(R,r)√r2−R2 profile,relatedtotheconcentrationc≡r200/r−2; +∞ v2 (ii) theHernquistdensityprofile(Hernquist1990) v2exp z dv ×Z−∞ z (cid:20)−2σz2(R,r)(cid:21) z ρ(r) r−1 (r+rH)−3 , (33) ∞ R2 rdr ∝ = 2 νσr2 1−β(r)r2 √r2 R2 . (30) whererH =2r−2, ZR (cid:20) (cid:21) − (iii) theBurkertdensityprofile(Burkert1995) Equation(30)recoverstheequationofanisotropickinematicpro- jection,firstderivedbyBinney&Mamon(1982). ρ(r)∝(r+rB)−1 r2+rB2 −1 , (34) If interlopers are removed with a velocity cut v (R), then theexpressionforh(vz R,r)becomes cut whererB≃0.657r−(cid:0)2. (cid:1) | Denotingthescalesr ,r andr bythegenericr ,themasspro- h(v R,r)= exp −vz2/ 2σz2(R,r) .(31) filesofthesemodels(sreqHuiredfoBreq.[9])canbewρritten z | √2πσ (R,r)erf v (R)/ σ (R,r)√2 z (cid:8) cu(cid:2)t z(cid:3)(cid:9) M(r/r ) Insummary,MAMPOSSTw(cid:8)ithGaussi(cid:2)an3Dvelocit(cid:3)ie(cid:9)scom- M(r)=M(rρ) M(1)ρ , (35) puteslikelihoodsfromequations(15),(11)or(12),(25),(26),and b (9),inthatorder. where b (cid:13)c 2012RAS,MNRAS000,000–000 6 Mamonet al. Table1.Propertiesof11cosmologicalhaloes rank ID r200 rs rH rB A rβ A∞ 1 18667 0.789 0.179 0.401 0.117 1.14 0.276 1.33 2 21926 0.842 0.123 0.342 0.085 1.34 0.050 1.73 3 30579 0.890 0.189 0.443 0.120 1.33 0.053 1.69 4 25174 0.956 0.144 0.377 0.099 1.23 0.162 1.36 5 3106 1.010 0.297 0.661 0.166 1.05 2.384 1.09 6 8366 1.076 0.434 0.819 0.249 1.11 0.689 1.29 7 13647 1.151 0.227 0.536 0.151 1.19 0.265 1.41 8 1131 1.174 0.197 0.499 0.133 1.18 0.352 1.34 9 17283 1.298 0.505 1.009 0.277 1.04 0.727 1.05 10 434 1.374 0.317 0.699 0.210 1.30 0.165 1.70 11 5726 1.660 0.407 0.921 0.249 1.42 0.050 2.20 Stack 1.09±0.08 0.26±0.04 0.60±0.08 0.17±0.02 1.21±0.04 0.26±0.08 1.45±0.10 Notes:Propertiesobtainedfromfitstotheparticledataof11haloes.Cols.1and2:clusteridentification;col.3:virialradiusr200;col.4:scaleradius(=r−2) oftheNFWmassdensityprofile(eq.[32]);col.5:scaleradius(=2r−2)oftheHernquistmassdensityprofile(eq.[33]);col.6:scaleradius(≃0.657r−2) oftheBurkertmassdensityprofile(eq.[34]);col.7:meananisotropy(A = σr/σθ)withinr200;col.8:anisotropyradiuswiththeMLanisotropymodel; col.9:asymptoticanisotropy(A∞ =σr/σθ)atinfiniteradiuswiththeTanisotropymodel.Radiiareinunitsofh−1Mpc.Themeasuredanisotropiesdo notincorporatestreamingmotions. x ln(x+1) , (NFW) − x+1  M(x)= x+x 1 2 , (Hernquist) (36) (cid:16) (cid:17) b ln (x+1)2(x2+1) 2 tan−1x. (Burkert) TheNFW(cid:2) model has long(cid:3)−been known to fit well the den- sity profiles of ΛCDM haloes (Navarro et al. 1996), and while Navarroetal.(2004)foundthatEinastomodelsfitthemevenbet- ter,MBM10 found that theNFWmodel describestheouterLOS velocitydispersion profileof theDM component oftheirstacked cluster-mass halo in Borgani et al.’s hydrodynamical cosmologi- cal simulation even (slightly) better than the Einasto model. The HernquistmodeldiffersfromtheNFWonebecauseithasasteeper logarithmicslopeatlargeradii,γ dlnρ/dlnr= 4ratherthan ≡ − 3.TheBurkertmodel,ontheotherhand,hasthesameasymptotic − γ = 3astheNFWmodel,butacoreatthecentre,γ =0,rather − thanacusp(γ = 1inboththeNFWandHernquistmodels). − InTable1,wealsolistthevaluesoftheparameterscharacter- izingdifferentvelocity-anisotropymodels,namely: (i) theconstantanisotropymodelσ /σ = (1 β)−1/2 = r θ − A (‘Cst’modelhereafter),whereweassumesphericalsymmetryand Figure1. Velocity anisotropy profiles ofthe 11haloes (broken coloured thereforeσθ =σφ; lines).ThesmoothblackcurveistheMLanisotropymodelwithrβ =r−2 (ii) the model (‘ML’ model hereafter) of Mamon & Łokas (or,equivalently,theTanisotropymodelwithβ∞=0.5). (2005); 1 r β (r)= , (37) ML 2 r+r β characterizedbytheanisotropyradiusr ; β Note that the ML and the T models used here are identical for (iii) ageneralizationoftheMLmodel,whichisalsoasimplified versionofthemodelofTiretetal.(2007),isotropicatr = 0and β∞ = 0.5andrβ = r−2.Withthesevalues,theMLandTmod- elsprovideagoodfittotheaverageanisotropy profileofaset of withanisotropyradiusidenticaltor−2(hereaftercalled‘T’model): cluster-masscosmologicalhaloes(MBM10). r βT(r)=β∞ r+r−2 , (38) filesaInndFtihge.1M,wLeanshisoowtrothpeyimndoidveidluwailthharlβo=velro−ci2ty(oarn,iesqoutrivoaplyenptrloy-, characterizedbytheanisotropyvalueatlargeradii, β∞.InourT theTanisotropymodelwithβ∞ =0.5).Thereisahugescatterin model,theanisotropyradiusissettothescaleradiusofthe mass theβ(r)oftheindividualhaloes,asalreadyobservedby,e.g.,Wo- densityprofile.Notealsothatinthefollowingweprovidetheval- jtak et al. (2008), especially at r > 0.3r , while 8 out of 11 200 uesof ∞ (σr/σθ)∞ =(1 β∞)−1/2,ratherthanβ∞. haloeshaveβ(0)=0 0.15. A ≡ − ± (cid:13)c 2012RAS,MNRAS000,000–000 ModellingAnisotropyandMass Profiles 7 3.2 Observingconesandinterloperremoval tracers.Allthesemodelsarecharacterisedbythetwofreeparame- ters,the‘virial’radiusr andacharacteristicscale-radius(r ,r , TotestMAMPOSSt,weselect500DMparticlesaroundeachhalo, 200 s H andr fortheNFW,Hernquist,andBurkertmodels,respectively). outtoamaximumprojecteddistance R fromthehalocentre, B max Herafter,wegenericallyuser torefertothischaracteristicscale- for which we consider three values: r 0.66r , r , and ρ 500 ≃ 200 200 radiusofthemassdensityprofile. r 1.35r .Weanalyzethreeorthogonalprojectionsforeach h1a0lo0–≃thesear2e0i0nfactconeswithanobserveratD=90h−1Mpc We use the NFW model, in projection (Bartelmann 1996; Łokas & Mamon 2001), to fit the projected number density pro- away,buttheopeninganglebeingverysmallhasnonoticeableef- file of the tracer. Note that the normalization of this profile does fectonourresults.TheparticlesintheseconesareusedbyMAM- notentertheMAMPOSStequations,sotheonlyfreeparameteris POSStastracersofthehalogravitationalpotential. However, these500-particle samplesinclude interlopers, i.e. r−2. Herafter we call this parameter rν, to avoid confusion with thecharacteristicradiusoftheNFWmassdensityprofile.Weonly DMparticlesthatarelocatedinprojectionatR 6 R ,butare max consideronemodelforthenumberdensityprofileofthetracer,be- effectivelyoutsideR inreal(3D)space,i.e.withr>R .It max max cause this is a direct observable, unlike the mass density profile. isimpossibletoremovealltheseinterlopersintheobservedredshift Whileoneshouldnotbetoorestrictiveinthemodelchoiceforthe space,whereonly3ofthe6phase-spacecoordinatesofthetracers mass density profile, the observer isgenerally able to choose the areknown(e.g.,MBM10).Moreover,sincetheLOSvelocitydis- best-suited model for the tracer number density profile by direct tributionofinterlopersinmockconesaroundΛCDMhaloesisthe examination of the data before running MAMPOSSt. We choose sumofaGaussiancomponentandauniformone(seeMBM10for the NFW model because it provides a reasonable description of aquantifiedview),andsincetheGaussianoneresemblesthatofthe the number density profiles of the DM particlesin our simulated particlesinthevirialsphere,itisimportanttoremovetheflatLOS haloes. velocitycomponent,atleastathighabsoluteLOSvelocity,where Forthevelocityanisotropyprofile,weconsiderthethreemod- itdominates.Itispossibletoremovethesehigh v objectswith | z| elsdescribedabove,Cst,ML,andT,eachcharacterisedbyasin- suitableinterloperremovalalgorithms. To see how MAMPOSSt depends on the choice of the in- gle anisotropy parameter, A,rβ, and A∞, respectively. In equa- terloperremovalalgorithm,wehereconsiderthreedifferentalgo- tion(38),weuser−2=rρ. To search for the best-fit solution, we run the MAMPOSSt rithms. algorithmincombinationwiththeNEWUOA4 minimizationrou- The first one is a new, iterative algorithm, that we name tineofPowell(2006).Forestimatingerrorbarsonthebestfitpa- “Clean”,whichisfullydescribedinAppendixB.Cleanfirstlooks rameters, as well as confidence contours on pairs of parameters, forgapsintheLOSvelocities,thenestimatesthevirialradiusr 200 wefitourmodelparametersusingtheMarkovChainMonteCarlo from the aperture velocity dispersion, assuming an NFW model (MCMC)technique(e.g.,Lewis&Bridle2002).InMCMC,thek- with ML anisotropy with an anisotropy radius rβ = r−2 and a dimensionalparameterspaceispopulatedwithproposals,foreach concentrationdependingontheestimateofr viatherelationof 200 ofwhichthelikelihoodiscomputed.Thenewproposalisaccepted Maccio`,Dutton,&vandenBosch(2008),thenonlyconsidersthe iftheratioofnewtopreviouslikelihoodiseithergreaterthanunity galaxies within2.7σ (R)from the median LOS velocity, and fi- z orelsegreaterthanauniform [0,1]randomnumber.Theproposal nallyiterates.Ourassumedanisotropyprofilefitsreasonablywell isfoundbyassumingak-dimensionalGaussianprobabilitydistri- theanisotropyprofilesofDMhaloes(MBM10),asisclearforour butionaroundthepreviousproposal.Weadoptthepubliclyavail- 11haloes(seeFig.1).Thefactor2.7wasfoundbyMBM10tobest able CosmoMC code by A. Lewis.5 We run 6 chains in parallel preservethelocalLOSvelocitydispersionfortheassumeddensity usingMessageParsingInterface(MPI),andthecovariancematrix andanisotropymodels. isusedtoupdatetheparametersoftheGaussianproposaldensity We also consider two other interloper removal algorithms, toensurefasterconvergence. namely: Fig. 2 illustrates the MAMPOSSt analysis via MCMC for (i) themethod(hereafter,dHK)ofdenHartog&Katgert(1996), thegeneralcasewithfourfreeparameters,usingtheNFWmodel a widely used procedure that works reasonably well on cluster- for the mass density profile, and the constant (free parameter) mass haloes from cosmological simulations (Biviano et al. 2006; anisotropymodel.Inparticular,itshowsthatthedifferentparame- Wojtaketal.2007),despiteitscrudeunderlyingphysics; tersarenotcorrelated,exceptforapositivecorrelationbetweenrρ (ii) themethod(hereafter,KBM)ofKatgert,Biviano,&Mazure and . A (2004, seetheirAppendix A),inwhich agalaxy isflagged asan Our FORTRAN code takes roughly 1 second to find the interloperunder thecondition v /σ > 1.85(R/r )−0.3, with MAMPOSSt 4-parameter solution for a 500 particle sample run z z 200 r derivedfrom σ usingeq.(8)ofCarlberg,Yee,&Ellingson in scalar on a decent desktop or laptop computer, and 4 minutes 200 z (1997). This method was invented as a poor-man’s proxy for the toproduce confidencelimitsforthissolutionwiththeCosmoMC dHKmethodwhentheobservationalsamplingofthehaloprojected (Lewis&Bridle2002)MCMCcode,with6chainsof40000ele- phase-spaceispoor. mentsruninparallel(MPI)onaPCequippedwitha4-core8-thread IntelCore-I72600processor. Theresultsforthedifferentinterloperrejectionmethods,mass densityandvelocityanisotropymodels,andforthedifferentmax- 3.3 Thegeneral4-parametercase imumprojectedradiiusedintheselectionofthe500particlesare There is no a priori limitation on the number of free parameters listed in Table 2 and displayed in Fig. 3. We list and show the thatcanbeusedinMAMPOSSttocharacterisethemassandve- biweight measures (see, e.g., Beers, Flynn, & Gebhardt 1990) of locityanisotropyprofiles.Withsamplesof6500tracers(assumed masslessthroughout thesetests)itisappropriatetoconsider 4 ∼ freeparameters,twoforthemassdistribution,oneforthevelocity 4 NEWUOAisavailableathttp://plato.asu.edu/ftp/other software/newuoa.zip anisotropy distribution, and one for the spatial distributionof the 5 CosmoMCisavailableathttp://cosmologist.info/cosmomc/. (cid:13)c 2012RAS,MNRAS000,000–000 8 Mamonet al. Figure2.IllustrationofMAMPOSStanalysisforthegeneralcase,withβindependentofradius,fora500particlesamplefromaxisxofhalo25174(grey brokenlineinFig.1),usingMCMC(with6chainsof40000elements).Thecontoursare1,2,and3σ.Theredarrowsandstarsindicatethemaximum likelihoodsolution,whilethegreenarrowsandcrossesshowthetruesolution(Table1).ThepriorsfortheMCMCwereuniformwithintheboxesofeach panelandzerobeyondtheboxes. meananddispersionoflog(o/t)whereoistherecoveredvalueof senanisotropymodel.Onaverage,thevaluesofther parameter 200 theparameterandtitstruevalue,because,accordingtoourtests, arerecoveredwithalmostnobias(from 1to+4%)andwithonly − theyperformbetterthanstandardstatisticalestimatorsoflocation 10%inefficiency.Ther parameterestimatesarealwaysslightly ν ∼ andscalewhentheparentdistributionsarenotpureGaussians.We positivelybiased(4–7%),andarerecoveredwith 25%efficiency. ∼ call‘bias’and‘inefficiency’themeananddispersionoflog(o/t). Also,ther parameterestimatesgenerallydisplayaslightpositive ρ Ifthedispersionintruevaluesofagivenparameterissmall,one bias,except fortheKBM interloperremoval method, and overall canspuriouslyobtainlowvaluesofthelog(o/t)dispersionwhen thebiasrangesfrom 2to+15%,whiletheefficiencyrangesfrom − theMAMPOSStandtruevaluesshownocorrelation.Wetherefore 50to 90%. ∼ ∼ alsolist the Spearman rankcorrelation coefficient between o and Asfarastheanisotropyparameterisconcerned,theMLmodel t,markinginboldfacethosecorrelationsthataresignificantatthe behaves very differently from the Cst and T models, in that it is 99%confidencelevel.Welisttheresultsforallinterloperrejection virtually impossible to constrain the anisotropy radius of the for- methodsandallanisotropymodelsonlyfortheNFWmassdensity mer, r , while it is possible to obtain quite good constraints on β model and for the R 6 r200 radial selection. For simplicity, we the anisotropy parameters of the other two models, and ∞. onlyshowalimitedsetofresultsfortheothermassdensitymodels Moreprecisely,ther estimatesarealwaysnegativelyAbiasedA(by β andfortheotherradialselections. 60%)andareaffectedbyahugedispersion(almostoneorderof ∼ Remarkably,asseeninTable2,theresultsforthefourparam- magnitude).Ontheotherhand, and ∞arealmostunbiased(the A A etersarealmost independent of the interloperremoval algorithm, biasrangesfrom 10to+5%)andtheyareaffectedbydispersions − theCleanandKBMalgorithmperformingslightlybetterthandHK. of,typically, 20%,ifweconsidertheCleanandKBMinterloper ∼ Theresultsforr ,r ,andr alsodependverylittleonthecho- removal algorithms. So,apparently, itismuch easiertoconstrain 200 ν ρ (cid:13)c 2012RAS,MNRAS000,000–000 ModellingAnisotropyandMass Profiles 9 Table2.MAMPOSStresultsfordifferentinterloperremovalalgorithms,densitymodels,apertures,andnumberofparticles N Rmax Membership ρ(r) β(r) r200 rν rρ anisotropy bias ineff. corr. bias ineff. corr. bias ineff. corr. bias ineff. corr. 500 r200 Clean NFW Cst 0.004 0.040 0.909 0.027 0.102 0.835 0.032 0.217 0.578 0.007 0.073 –0.255 500 r200 Clean NFW ML –0.003 0.040 0.904 0.024 0.104 0.832 0.057 0.229 0.601 –0.221 0.887 –0.172 500 r200 Clean NFW T –0.006 0.040 0.903 0.026 0.103 0.838 0.039 0.169 0.709 0.007 0.085 0.621 500 r200 dHK NFW Cst 0.018 0.042 0.885 0.027 0.099 0.838 0.051 0.319 0.406 0.004 0.147 –0.215 500 r200 dHK NFW ML 0.012 0.041 0.909 0.028 0.100 0.840 0.059 0.286 0.611 –0.161 0.904 –0.118 500 r200 dHK NFW T 0.012 0.044 0.902 0.027 0.100 0.844 0.022 0.199 0.636 –0.045 0.264 0.464 500 r200 KBM NFW Cst 0.005 0.038 0.906 0.018 0.100 0.850 –0.006 0.218 0.535 0.020 0.078 –0.198 500 r200 KBM NFW ML –0.003 0.039 0.908 0.020 0.100 0.851 –0.005 0.232 0.557 –0.191 0.795 0.101 500 r200 KBM NFW T –0.006 0.038 0.911 0.020 0.099 0.856 –0.010 0.184 0.689 0.018 0.094 0.595 500 r200 Clean Her T 0.002 0.039 0.909 0.026 0.102 0.835 0.039 0.132 0.755 0.014 0.086 0.546 500 r200 Clean Bur T 0.000 0.039 0.910 0.047 0.196 0.377 0.048 0.145 0.704 –0.019 0.071 0.603 500 r500 Clean NFW T –0.004 0.048 0.877 0.089 0.115 0.902 0.016 0.143 0.744 0.009 0.108 0.232 500 r100 Clean NFW T –0.014 0.035 0.905 0.039 0.179 0.420 0.093 0.210 0.538 –0.001 0.090 0.436 100 r200 Clean NFW Cst –0.001 0.058 0.844 0.033 0.201 0.537 –0.133 0.341 0.342 0.003 0.119 –0.053 100 r200 Clean NFW ML –0.011 0.061 0.834 0.034 0.199 0.539 –0.087 0.336 0.484 –0.137 0.925 –0.245 100 r200 Clean NFW T –0.008 0.058 0.850 0.032 0.200 0.532 –0.108 0.277 0.436 0.014 0.143 0.249 Notes:Theseresultsarefor11haloeseachobservedalong3axes,general4free-parametercase.Col.1:Numberofinitiallyselectedparticles(beforeinterloper removal);col.2:Maximumprojectedradiusfortheselection,wherer500 ≃0.65r200andr100 ≃1.35r200;col.3:Interloper-removalmethod(dHK:den Hartog&Katgert1996;KBM:Katgertetal.2004;Clean:App.B);col.4:massdensitymodel(NFW:Navarroetal.1996;Her:Hernquist1990;Bur:Burkert 1995);col.5:anisotropymodel(Cst:β = cst;ML:eq.[37],Mamon&Łokas2005;T:eq.[38],adaptedfromTiretetal.2007);cols.6–8:virialradius; cols.9–11:tracerscaleradius;cols.12–14:darkmatterscaleradius;cols.15–17:velocityanisotropy(i.e.,AfortheCstmodel,rβ fortheMLmodel,and A∞fortheTmodel).Thecolumns‘bias’and‘ineff.’respectivelyprovidethemeanandstandarddeviation(bothcomputedwiththebiweighttechnique)of log(o/t),whilecolumns‘corr.’listtheSpearmanrankcorrelationcoefficientsbetweenthetruevaluesandMAMPOSSt-recoveredones(valuesinboldface indicatesignificantcorrelationsbetweenoandtvaluesatthe>0.99confidencelevel). the‘normalisation’ofagivenanisotropyprofile,thantoconstrain fortheTiretanisotropymodel.Theresultsareverysimilar forthe thecharacteristicradiusatwhichtheanisotropychanges, particu- NFWandHernquistmodels.ResultsaresimilaralsofortheBurk- larlysoifthischangeismild,asintheMLmodel.Note,however, ert model, except for the scale r of the number density profile, ν that the difficulty of MAMPOSSt in constraining the anisotropy forwhichthebiasandinefficiencyarebothhigherthanthose ob- parameterof theML model does not meanthat theMLmodel is tainedusingtheNFWandHernquistmassmodels.Sincethemodel apoorrepresentationofreality,andinfactFig.1suggests theop- weuseforthenumberdensityprofilehasnotchanged(aprojected posite.Moreover,constraintsobtainedonthe r ,r ,andr pa- NFW),thisresultsuggeststhatitisdifficulttoaccomodateatracer 200 ν ρ rametersareequallygoodwiththeCstandTanisotropymodels,as withacentralcuspyspatialdistributioninapotentialwithacentral withtheMLone. core. As seen in Table 2, correlations between recovered and ob- Alltheresultsdescribedsofarwereobtainedforaselection servedvaluesoftheparametersr200,rν,andrρarealmostalways of500particleswithinRmax =r200.ChangingthevalueofRmax signficant.Thisisalsotrueforthe A∞ anisotropyparameter,but isnot without effectson theresults. Theinefficiency on r200 de- notforAandrβ.InFig.4,weshowthecorrelationsexistingbe- creaseswhenRmax isgraduallyincreasedfrom r500 tor100.The tweenthetrueandrecoveredvaluesofthedifferentparameters,us- inefficiencyonanisotropyislargestforthesmallestR ,andsta- max ingtheTanisotropymodel,forthe11haloesalongthe3different tisticallysimilarforthetwolargervalues.Increasingtheaperture orthogonalprojections.Projectionseffectsrenderthedetermination tothevirialradiusoraboveincreasesthenumberoftracersnearthe ofthemassandanisotropyprofileofasingle500-particlehalovery virialradiuswherer isestimated.Moreover,increasinglylarger 200 uncertain.However,Fig.4showsthat 500tracersaresufficient apertureswillcapturebettertheasymptoticvalueoftheanisotropy ∼ torankhaloesforeachofthedifferentparametersconsideredhere, profile (r). In contrast, r is less efficiently determined when ρ A i.e.bymass(r200),scaleradiusofthetracerdistribution(rν)andof Rmaxisincreasedfromr500 tor100,whilerν hasitsworstineffi- thetotalmassdistribution(rρ),andoutervelocityanisotropyA∞. ciencyforRmax =r100,withstatisticallyequivalentvaluesforthe The importance of projection effects is also very clear from twosmallerapertures.Thismightbeduetotheincreasingfraction Fig.5, wherewedisplay theratioof therecovered totruevalues ofunidentifiedinterlopers,and/ortothepresenceof(sub)structures oftheparametersforeachhaloalongthethreedifferentprojection atlargerradii. axes.Thisfigurealsoshowsthatthereisnotrendofunder-orover- ToassessthesensitivityoftheMAMPOSSttechniquetothe predictingtheparametervalueswithhalomass. numberoftracers,besidesthe500-particleselection,wehavealso All the above considerations apply for the NFW mass pro- considered samples of 100 particle tracers, randomly extracted file. Our tests with the Hernquist and Burkert mass profiles give fromthesameprojectionsofthesame11cosmologicalhaloes.Re- similarresults,ascanbeseeninTable2,whereforsimplicity,we sultsoftheMAMPOSStanalysisarelistedatthebottomofTable2 onlylisttheresultsfortheCleaninterloper-removalalgorithmand anddisplayed inFig.3.Alsointhiscase, forsimplicity,weonly (cid:13)c 2012RAS,MNRAS000,000–000 10 Mamonet al. Figure4.CorrelationofMAMPOSStandtruevaluesofthe4jointly-fitpa- rameters(CaseGen),withthe‘T’anisotropyprofile,foreachofthe3×11 haloeswith500tracers.Eachpanelcorrespondstoadifferentparameter,as labelled(unitsofradiiareinh−1Mpc).Differentsymbolsidentifydiffer- entprojections, x-axis:blackdiamonds,y-axis:redsquares,z-axis:blue circles. removal algorithm, and we only consider the NFW mass density model,forsimplicity. Figure3.MAMPOSStresiduals,log(o/t),fortheMAMPOSStparame- Specifically,weconsiderthefollowingCases: ters(top:virialradius,2ndpanel:tracerscaleradius,3rdpanel:DMscale radius,bottom:velocityanisotropy)forthedifferentschemesofinterloper A) General [Gen]: r , r , r , and the anisotropy parameter 200 ν ρ removal(seetext).Themean(dots)anddispersion(errorbars)oflog(o/t) (oneamongthefollowing: ,rβ, ∞,dependingontheanisotropy arerespectivelyillustratedasfilledcirclesanderrorbars,forthe33sam- modelconsidered)areallfAreeMAAMPOSStparameters.Thisisthe plesof500(‘Clean’,dHKandKBM)and100(‘Clean’(N=100))particles. caseconsideredsofar. ResultsfortheanisotropymodelsCst,T,andMLareshownlefttorightin B) Generalwithr fittedoutsideMAMPOSSt[Split]:thefree green,blue,andred,respectively. ν parameters are the same as in the Gen case, but r is fitted out- ν sideMAMPOSSt,viaMLE.Wethussplittheminimizationofthe parametersintotwoparts. displayalimitedsetof results.Whencompared totheresultsfor C) Known virial mass or radius [KVir]: r is fixed and as- the500-particlesamples, thereisnosignificantchange intheav- 200 sumed to be exactly known, r and the anisotropy parameter are erage values of the bias with which the different parameters are ρ freeparametersinMAMPOSSt,r isanexternal freeparameter, recovered, except for r ,wherethebiasbecomes negative, while ν ρ asintheSplitcase. itwasmostlypositiveforthe500-particlesamples.Ther param- ρ D) Estimatedvirialmassorradius[EVir]:similartoKVir,ex- eter value underestimation is not very severe, however, 6 25%. cept that r is not the true value, but the value estimated from Theefficiencieswithwhichthedifferentparametersareestimated 200 theLOSaperturevelocitydispersion(afterinterloperremoval,see aresignificantlyaffectedbythereductioninnumberoftracers.The AppendixB). dispersionincreasesfrom 10to15%forr ,from 25to60% ∼ 200 ∼ E) ΛCDM:r isestimatedfromr usingthetheoreticalrela- forr ,from 60to100%forr ,andfrom 20to33%for ρ 200 ν ∼ ρ ∼ A tionbetweenthesetwoquantitiesprovidedbyMaccio`etal.(2008); and A∞. Thereis no significant change in the dispersion for rβ, r and the anisotropy parameter are free parameters in MAM- butthiswasalreadyextremelylargeforthe500-particlesamples. 200 POSSt,r isanexternalfreeparameter,asintheSplitcase. ν F) MassfollowsLight[MfL]:r andtheanisotropyparameter 200 arefreeparametersinMAMPOSSt,r isanexternalfreeparame- 3.4 Caseswithconstraintsonparameters ν ter,asintheSplitcase,andr isassumedtobeidenticaltor . ρ ν Whatistheeffectofreducingthenumberoffreeparametersonthe G) TiedLightandMass[TLM]:r andtheanisotropyparam- 200 performanceoftheMAMPOSStalgorithm?Toassessthispointwe eter are free parameters in MAMPOSSt, while r and r are as- ρ ν considerseveralcasesthatreproducewhatobserversdoinpractice sumedtobeanidenticalfreeparameter. whenfacedwiththeproblemofdeterminingtheinternaldynamics H) Isotropic [β-iso]: = 1 is assumed, r ,r are free pa- 200 ρ A ofcosmologicalhaloes.Inallcases,weconsider500particlesse- rametersinMAMPOSSt,r isanexternalfreeparameter,asinthe ν lectedwithinr ineachhalo.WeonlyapplytheCleaninterloper Splitcase. 200 (cid:13)c 2012RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.