ebook img

Mallik, A. & R. Dasgupta, Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt PDF

34 Pages·2013·2.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mallik, A. & R. Dasgupta, Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt

JOURNALOFPETROLOGY VOLUME54 NUMBER11 PAGES2267^2300 2013 doi:10.1093/petrology/egt047 Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt into Fertile Peridotite at 3 GPa and Genesis of Alkalic Magmas ANANYA MALLIK1* AND RAJDEEP DASGUPTA1 D o w 1RICEUNIVERSITY, DEPARTMENTOFEARTHSCIENCE,6100 MAINSTREET, MS126, HOUSTON,TX 77005, USA nlo a d e d fro RECEIVEDJANUARY 20,2013; ACCEPTEDAUGUST 8,2013 m h ADVANCE ACCESS PUBLICATIONSEPTEMBER10,2013 ttp ://p e tro lo Weperformed experimentsbetween twodifferent carbonated eclog- 415wt %) natural nephelinites in termsof SiO, Al O, FeO*, g 2 2 3 y ite-derivedmeltsandlherzoliteat13758Cand3GPabyvaryingthe CaO,Na OandCaO/Al O.Notonlycanthesereactedmeltserupt .o 2 2 3 x reactingmeltfractionfrom8to50wt%.Thetwostartingmeltcom- by themselves, they can also act as metasomatizing agents in the ford positions were (1) alkalic basalt with 11·7wt % dissolved CO Earth’smantle.Ourstudysuggeststhatacombinationofsubducted, jo 2 u (ABC), (2) basaltic andesite with 2·6wt % dissolved CO silica-saturated crust^peridotite interaction and the presence of rn (tiBteAtCo)s.iTmhuelasttearptoinrogumserletascwtivereeimnfiixletdrahtioomnoogfenmeoeultsliynwtihtehpEearridtho’s-2 CraOng2eionftphreimmiatinvtelealskoaulriccebraegsaiolnts.aArelssou,fmfiacinetnltetpootpernotdiaulceteamplaerrag-e aals.org/ mantle.Alltheexperimentsproducedanassemblageofmeltþortho- tures of 1330^13508C appear sufficient to produce high-MgO, t U pyroxeneþclinopyroxeneþgarnet(cid:2)olivine;olivinewasabsentfor primitive basanite^nephelinite if carbonated eclogite melt and niv e a reacting melt fraction of 50wt % forABC and 40wt % for peridotiteinteractionistakenintoaccount. rs BAC. Basanitic ABC evolved to melilitites (on a CO2-freebasis, ita' d SiO (cid:3)27^39wt%,TiO (cid:3)2·8^6·3wt%,Al O (cid:3)4·1^9·1wt eg %,2FeO* (cid:3)11^16wt %,2MgO (cid:3)17^21wt%,2Ca3O (cid:3)13^21wt KEYWORDS:alkalicbasalts;carbonatedsilicatemelt;MORB-eclog- li Stu %,Na2O(cid:3)4^7wt%,CO2(cid:3)10^25wt%)uponmelt^rockreac- ite;peridotite;reactiveinfiltration di R tion and the degree of alkalinity of the reacted melts is positively o m correlated with melt^rock ratio. On the other hand, reacted melts a L dTeirOived (cid:3)fro6m·4^B8A·7Cw(ton%a,COA2l-Ofree b(cid:3)a1s0is·5^S1iO2·23w(cid:3)t42^%53,wFte%O*, INTRODUCTION a Sap (cid:3)6·52^10·5wt %, MgO (cid:3)7·92^135·4wt %, CaO (cid:3)7·3^10·3wt Intraplate oceanic basalts are one of the key tools to de- ien z %,Na O(cid:3)3·4^4wt%,CO (cid:3)6·2^11·7wt%)increaseinalka- ciphermantleprocesses.Thevariabilitydisplayedintheir a o 2 2 n linity with decreasing melt^rock ratio.We demonstrate that owing trace element and isotopic characteristics indicates the N o tothepresenceofonly0·65wt%ofCO2inthebulkmelt^rockmix- presence of several heterogeneousdomains intheir source vem ture(correspondingto25wt%BACþlherzolitemixture),nepheli- (i.e.theEarth’smantle)(Zindler&Hart,1986;Hofmann, b e nitic-basanite melts can be generated by partial reactive 1997). Because recycled, altered oceanic crust (MORB- r 2 0 crystallizationofbasalticandesiteasopposedtobasanitesproduced eclogiteatuppermantleconditions)hasbeenproposedto , 2 0 in volatile-free conditions. Post 20% olivine fractionation, the be a major contributor to mantle heterogeneity (e.g. 13 reacted melts derived from ABC at low to intermediate melt^rock Hofmann,1988,1997; Lassiter & Hauri,1998; Stixrude & ratiosmatchwith20^40%ofthepopulationofnaturalnephelinites Lithgow-Bertelloni, 2012), it is important to evaluate its and melilitites in terms of SiO and CaO/Al O, 60^80% in role in contributing to the genesis of oceanic basalts. 2 2 3 termsofTiO, Al O and FeO, and520% intermsof CaOand Basedontheirhigh 206Pb/204Pbratio, it hasbeen invoked 2 2 3 Na O. The reacted melts from BAC, at intermediate melt^rock that HIMU (high-m) basalts [i.e. basalts that bear evi- 2 ratios, are excellent matches for some of the Mg-rich (MgO dence of high, time-integrated 238U/204Pb (m)] contain (cid:2) The Author 2013. Published by Oxford University Press. All rightsreserved.ForPermissions,pleasee-mail:journals.permissions@ *Correspondingauthor.E-mail:[email protected] oup.com JOURNALOFPETROLOGY VOLUME54 NUMBER11 NOVEMBER2013 recycled oceanic crust in their source (e.g. Chase, 1981; do not produce any melt compositions that are close to Hofmann&White,1982;Hofmann,1997). silica-undersaturated basalts such as melilitites or nephel- Basalts with HIMU signatures are found to be alkalic inites(LeBas,1989). and Si-undersaturated (Kogiso et al., 1998; Jackson & Basedonthedegreeofsilica-undersaturationrequiredto Dasgupta, 2008) and the compositions of such alkalic generatesomeofthealkalicbasaltsingeneralandHIMU magmascannotsimplybegeneratedbyvaryingthecondi- basalts inparticular, thepresence of CO inthesource of 2 tions of melting of mantle peridotite (Dasgupta et al., these magmas has been proposed by many previous ex- 2010). Furthermore, partial melting of a volatile-free perimental studies (e.g. Wyllie & Huang, 1976; Eggler, MORB-eclogite (subducted oceanic crust) alone does not 1978; Wyllie, 1978; Spera, 1981; Hirose, 1997; Dasgupta explainthegenesisofsuchlavas,becausethepartialmelts et al., 2006, 2007, 2010; Jackson & Dasgupta, 2008; are dacitic to basaltic and do not contain high enough Gerbode & Dasgupta, 2010).The involvement of CO in 2 D MgO and low enough SiO (Yaxley & Green, 1998; the formation of silica-poor ocean island basalt (OIB) is o 2 w Pertermann&Hirschmann,2003;Spandleretal.,2008)to also supported by the natural association of carbonatites, nlo a serve as primary alkalic basalts. One may argue that be- carbonate minerals, and CO -rich fluids and silica-poor d 2 e d cause low-degree partial melting of peridotite produces alkalic basalts and/or mantle xenoliths and has been fro alkalic magmas, the contribution from recycled MORB- pointed out by many previous researchers (e.g. Dasgupta m h eclogite needs to provide only the appropriate chemical etal.,2007,andreferencestherein) ttp components;thatis,MORB-eclogiteshouldberesponsible In previous experimental studies it has been observed ://p e onlyforsupplyingthenecessarychemicalenrichmentthat that the presence of CO2 in the source reduces the SiO2 tro drives the peridotite partial melts to match plausible pri- and Al2O3 content and enhances the FeO*, CaO and log y mary alkali basalt compositions. However, some of those CaO/Al2O3 of peridotite-derived (Hirose,1997; Dasgupta .ox necessary vectors suchas low SiO, lowAl O, high CaO etal.,2007) andeclogite-derivedpartialmelts (Gerbode & fo 2 2 3 rd and high FeO* also cannot be derived from MORB- Dasgupta,2010; Kiseeva et al.,2012) when compared with jo u eclogitemeltingalone. theirCO -freecounterparts.Althoughpartialmeltsofcar- rn 2 a Onekeyconsideration, however, isthat partial melts of bonated peridotite, by themselves, are not sufficiently ls.o MORB-eclogite, entrained in the convective mantle, are enriched in TiO2 to explain most of the alkalic ocean arg/ not likely to segregate and mix with peridotite partial islandbasalts, partialmelts ofcarbonated MORB-eclogite t U melts or erupt unmodified. Bothvolatile-free andcarbon- failtoexplainthehighMgOandlowAl2O3concentrations niv e ate-bearing recycled oceanic crust begin to melt deeper required by most HIMU alkalic basalts, basanites and rs than volatile-free peridotite (Yasuda et al., 1994; Perter- nephelinites (Dasgupta et al.,2006; Gerbode & Dasgupta, ita' d mann&Hirschmann,2003;Spandleretal.,2008),thereby 2010;Kiseevaetal.,2012;Fig.1),whichindicatestherequire- eg creating a depth range over which MORB-eclogite- ment of a peridotitic component (Dasgupta et al., 2007; li S tu derivedpartialmeltsmay interact with subsolidusperido- Jackson&Dasgupta,2008).However,althoughlow-degree di R tite. The siliceous partial melts of MORB-eclogite, not melting of carbonated, silica-excess eclogite (with coesite o m being in equilibrium with the surrounding mantle, present inthe residue) yields highly siliceous (andesitic to a L undergo reactive crystallization (Yaxley & Green, 1998; dacitic)melts,suchmeltsmaycarryamodestconcentration a S a Lambartetal.,2012;Mallik&Dasgupta,2012).Therecent ofdissolvedCO atequilibriumwithimmisciblecarbonati- p 2 ie study of Mallik & Dasgupta (2012) investigated such a tic melts (Hammouda, 2003; Kiseeva et al., 2012). nz a melt^rock reaction in a volatile-free system to evaluate Therefore, reactive infiltration of MORB-eclogite-derived on howanMgO-poor,siliceouspartialmeltofMORB-eclog- partial melt into a peridotite matrix needs to be con- No v iteevolvesuponreactionwithasub-solidusgarnetlherzo- strained notonly under volatile-free conditionsbut also in em lite, in variable ratio, in the uppermost part of the scenarios where such reactive process takes place in the be cthoantvesicltiicveeoumsaMntOle.RABt-leocwlogmiteel-td^eroricvkedramtioesltistewvaoslvoebdsetorvaeld- epcrleosgenitceepoafrtiCalOm2,elotrisincaortbhoenratwedo.rdIsncwidheenrtealtlyh,earlleapcrteivnig- r 20, 20 1 kalic basalts in the porous flow regime with many major ousstudiesonpartialmeltingofcarbonatedperidotitecon- 3 element characteristics (high TiO and CaO; low SiO sidered a direct flux of CO or carbonates on the partial 2 2 2 and Al O) similar to those of HIMU lavas; however, at meltingbehavior nottaking intoaccountthe possibilityof 2 3 the experimental pressure^temperature conditions of this a‘flux’intheformofdissolved CO inaneclogite-derived 2 study (i.e. at 3GPa and1375^14408C) they were not low silicate melt. The difference in the two processes of CO 2 enoughinSiO andAl O orhighenoughinFeO*,CaO fluxtotheperidotitemayresultindistinctlydifferentequi- 2 2 3 andCaO/Al O toexplainthecompositionsofmanynat- librated melt compositions; however, no systematic studies 2 3 urally occurringbasanites and nephelinites. Furthermore, havebeenperformedonthelatter. volatile-free eclogite melt^peridotite interactions (Mallik One of the key reactions that drive the composition of & Dasgupta, 2012) at the base of the oceanic lithosphere dacitic or andesitic eclogitic melt undergoing partial 2268 MALLIK&DASGUPTA MORB-ECLOGITE-DERIVEDMELT 65 ABC Starting melt 60 BAC compositions Carbonated partial melt 55 compositions Volatile-free partial melt ) % compositions . 50 t w ( 2 O 45 Si D o w 40 n lo a d e d 35 fro m h 30 ttp Natural alkalic basalts ://p e 18 (oceanic and conti- trolo nental) g y 16 Average HIMU .oxfo composition rd jo %) 14 urn a wt. ls.o (O23 12 at Urg/ Al 10 niv e rs 8 ita' d e g 6 li S tu d i R 4 om a 30 40 50 60 70 80 90 100 L a S Mg# ap ie n dFeigri.v1e.d,Mvgol#ativles-fSrieOe,2M(wOtR%B)-eacnlodgAitel2Opa3r(twiatl%me)ltcocnocmenptorsaittiioonnssi(nPsetratretrimnganmnel&tcoHmirpsochsimtioannsn,A2B0C03a;nSdpBaAndClecroemtpaal.r,e2d0w08i)thaenxdpecrairmbeonntaatleldy za on MORB-eclogitepartialmeltcompositions(Hammouda,2003;Gerbode&Dasgupta,2010;Kiseevaetal.,2012),naturaloceanicandcontinental N o alkalicbasalts(referencesgivenincaptionsofFigs12,14and15)andaverageHIMUcomposition(Jackson&Dasgupta,2008).Allcompositions v e areplottedonavolatile-freebasis. m b e r 2 0 , 2 reactive crystallization in a peridotite matrix is the con- The presence of CO may critically affect these reac- 0 2 1 3 sumption of olivine and precipitation of orthopyroxene tions, because it is well known fromthe pioneering study (Yaxley & Green, 1998; Lambart et al., 2012; Mallik & ofKushiro(1975)anddocumentedbylaterstudiesbyBrey Dasgupta,2012)asfollows: & Green (1975,1977) that the stabilityof orthopyroxeneis (cid:2) (cid:3) (cid:2) (cid:3) enhanced at the expense of olivine at the liquidus of SiO þ Fe,Mg SiO ¼ Fe,Mg Si O 2 2 4 (cid:2) 2 2 6(cid:3) ð1Þ primary basaltic melts. Thus, one may expect that the ðmeltÞ ðolivineÞ orthopyroxene presence of CO would cause enhanced crystallization of 2 (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) orthopyroxene at the expense of olivine, driving the Al O þ Fe,Mg SiO ¼ Fe,Mg AlAlSiO þ Fe,Mg O: 2 3 2 4 (cid:2) (cid:3)6 reacted melt towards a more silica-depleted composition ðmeltÞ ðolivineÞ orthopyroxene ðmeltÞ as compared with its CO -free counterpart. Similarly, 2 ð2Þ comparison of 3GPa melting reactions of CO -free 2 2269 JOURNALOFPETROLOGY VOLUME54 NUMBER11 NOVEMBER2013 peridotite partial melting (Walter, 1998) with those of Table1: Compositionsofstartingmaterials CO -present peridotite partial melting (Dasgupta et al., 2 2007)suggeststhatgarnetstabilityisenhancedinacarbo- natedsystem.Ifasimilareffectisapplicableduringreact- Peridotite Startingmelts ive crystallization of MORB-eclogite melt in lherzolite, KLB-1ox MixKLB-11 ABC BAC G2PM12 then the reacted melt may achieve a more alumina- depletedcompositionthroughenhancedstabilityofgarnet and thus become a better candidate for primary alkalic SiO2 44·82 44·54 44·22 56·46 56·3(8) basalts.HencetheeffectofCO2duringreactiveinfiltration TiO2 0·15 0·21 2·87 5·66 5·65(8) of siliceous MORB-melts into fertile peridotite could be Al2O3 3·51 3·70 13·45 15·61 15·6(4) criticalingeneratingmanyofthemajorelementgeochem- Cr2O3 0·32 0·23 0·05 0·01 0·01(1) D ical features of strongly alkalic basalts. Nevertheless, the FeO* 8·19 8·08 15·28 8·17 8·2(3) o w phaseequilibriaofreactiveinfiltrationofMORB-eclogite- MnO 0·12 0·14 0·33 0·09 0·08(2) n lo derivedcarbonatedpartialmeltintoaperidotiticmedium MgO 39·50 39·30 6·87 2·51 2·5(1) ad e areInunthciosnsstturadiynewde. investigatethe fate of MORB-eclogite- CNaaO2O 03··3007 03··2592 142··2318 37··7560 47··052(2(9)) d from derived,carbonated,partialmeltuponreactionwithvola- K2O 0·02 0·01 0·33 0·21 0·21(1) http tile-free subsolidus, fertile peridotite in the uppermost Mg# 89·58 89·66 44·50 35·42 35·4(9) ://p part of the convective mantle (base of the lithosphere). e CO2 — — 11·7 2·6 — tro The experiments were performed at the same pressure^ Sum 100·00 100·02 100·00 100·00 99·99 lo g temperature conditions as the recent study by Mallik & y .o Dasgupta (2012), to understand directly the effect of CO2 Major element compositions of KLB-1ox, ABC and BAC xfo in such a melt^rock reaction scenario. We demonstrate and CO concentrations based on proportions of oxides rd that infiltration of MORB-eclogite-derived, andesitic to acnodncceanrtbr2aotnioantessomfiAxeBdCinanthdeBsAtaCrtianrgecroepmoprotesditioonns.aOCxOide- journ mildly alkalic carbonated basalts into peridotite causes free basis. 2 als thereactedmeltstoevolvetonephelinitic-basanitetomeli- *All Fe assumed to be FeO. .org lititic compositions through crystallization of orthopyrox- 1Composition of fertile peridotite as used by Mallik & a/ Dasgupta (2012). t U ecnome paonsditiognasrnaerte. aWbeetatlesromshaotcwh ftohratnastuucrhalrneeapctheedlinmiteelst, 2MCaolmlikp&osiDtioansguopftaM(O2R01B2-)e.clogite partial melt as used by nivers nephelinitic basanites, and melilitites from oceanic and ita continental provinces as compared with partial melts of ' d (Fig.1).Volatile-freeperidotiteKLB-1oxusedinthis study eg carbonated eclogite and carbonated peridotite, as well as is similar to the fertile peridotite composition MixKLB-1 li S melts that are the product of reaction between a partial tu meltofMORB-eclogiteandsubsolidusperidotiteinavola- used by Mallik & Dasgupta (2012) and, within1serror, di R similar to the KLB-1peridotite composition of Herzberg o tile-freesystem. m et al. (1990) and Davis et al. (2009). All starting compos- a L itionsusedinthisstudyarereportedinTable1. a S EXPERIMENTAL TECHNIQUES Allthestartingmaterials(carbonatedmeltsandperido- ap ie Starting materials tite)weresynthesizedusinghigh-purityoxidesandcarbon- nz a ates from Alfa Aesar. SiO,TiO, Al O and MgO were o TheMORB-eclogite-derivedcarbonatedmeltsusedinthe 2 2 2 3 n fired overnight at 10008C, Fe O at 8008C, MnO at N reaction couple with volatile-free, fertile peridotite are (1) 2 3 2 o v 4008C,MgCO at2008C,CaCO at2508C,andNa CO e ‘ABC’, which is an alkalicbasalt similar to a 43% partial 3 3 2 3 m amGneedrltb(o2d)oef‘B&AcaCDr’b,aoswgnhuaiptcethdai(s2Ma01O0b)aRsaaBnl-tdeicccloaonngtidateeisnitseG11w2·7Citwhtua%sesidmCiOlba2yr, Kawna2dsCOKad32.dCeTOdo3mtoaatiAn11Bt0aC8inCatsthoeMmdgeinCsiirOmed3i,zepCraoadpCsooOrrtb3i,oendNaow2faCtMeOrg.3:CCaOOnd22 ber 20, 201 composition to G2PM1 used by Mallik & Dasgupta inthismelt,MgwasaddedpartlyasMgOandtherestas 3 (2012), when normalizedonavolatile-freebasis. BAC cor- MgCO3. Reagent grade MgCO3 often contains variable responds to 8·9wt % partial melt of natural volatile-free amounts of water, especially in the form of brucite. To MORB-eclogite G2 (Pertermann & Hirschmann, 2003) ensure that addition of MgCO3 does not introduce water andcontains2·6wt%ofCO (Table1).TheCO concen- in our ABC melt mix, X-ray diffraction of the fired 2 2 trations mentionedabove arebasedontheproportions in MgCO powderwasperformed,whichyieldednodiscern- 3 whichoxidesandcarbonatesweremixedtosynthesizethe ible peaks for Mg(OH). In the case of BAC, CO was 2 2 starting melts. Both starting melt compositions lie within added only as Na CO. Prior to adding carbonates to 2 3 the range of MORB-eclogite ((cid:2) carbonates) derived par- introduceCO,theoxidesandcarbonatesweregroundto- 2 tial melts produced experimentally in previous studies getherunderethanolinanagatemortarfor30min.Once 2270 MALLIK&DASGUPTA MORB-ECLOGITE-DERIVEDMELT theethanolevaporated,themixtureswerefiredat10008C (2010) for the graphite^carbonate^oxygen buffer; these in a CO^CO mixing furnace at log fO (cid:3)QFM -2 variedfromQFM-1·8toQFM-2·3,whichisinagreement 2 2 (where QFM is the quartz^fayalite^magnetite buffer) for withthe predictions of Frost & Wood (1995) and Medard 24hto convert allthe Fe3þ to Fe2þ aswellasto decarbo- et al. (2008) for experiments performed in graphite cap- nate the powders. Once reduction was complete, carbon- sules.The calculated fO values also lie within the range 2 ateswereaddedinthecaseofABCandBACtointroduce ofoxygenfugacityestimates(QFMþ1·5to(cid:4)3·5)forocea- CO intothestartingmeltmixes.Thefinalmixtureswere nicandabyssalperidotitescompiledbyFoley(2011). 2 ground in an agate mortar under ethanol for 30min. All ExperimentalconditionsarereportedinTable2. starting mixtures were stored at1108C to prevent adsorp- Analysis of run products tion of moisture at any time.The starting materials com- posed of 8^50wt % carbonated eclogite-derived melt Analyses of textures and phase compositions were per- D (ABC or BAC), mixed homogeneously with peridotite, formed using a Cameca SX50 electron microprobe at o w simulatereactiveinfiltrationofeclogitemeltintoperidotite TexasA&MUniversity.High-resolutionimagingwasper- n lo via porous flow.The bulk CO2 content ranged from 0·93 formed using an FEI Quanta 400 FEG-SEM at Rice ade taond5·83frwomt%0f·o2r1extpoer1im·3ewnttsw%ithKforLBe-1xpþeAriBmCenmtsixtwuritehs UGnamivemrsaitTy.ecPhh(aPseGsTw)eereneirdgeyn-tdiifsiepdersuisviengspIemctirxosPcoripnyceatnond d from KLB-1þBACmixtures. reportedphasecompositionsweredeterminedusingwave- h ttp Experimental procedure lwenergetha-ndaislypzeerdsivaet aspneactcrcoeslceoraptyi.ngAvltohlotauggehoafl1l5tkhVe, gplhaassseess ://pe The experimentswere performedusing end-loadedpiston were analyzed under a beam current and diameter of trolo g cylinders at Rice University using a half-inch assembly 10nA and 5^10mm, respectively; all other phases except y .o comprising BaCO3 pressure medium, straight graphite quench aggregates in melt pool (olivine, orthopyroxene, xfo furnace, crushable MgO spacers, and Pt^graphite double clinopyroxene and garnet) were analyzed using a beam rd jo capsules. Pressure^temperature calibrations relevant for current and diameter of 20nA and1mm, respectively. In urn our experimental set-up have been given by Tsuno & alltheexperiments,thereactedmeltquenchedtoahetero- als Dasgupta (2011).The homogeneous mixtures were loaded geneous assemblage (except for a few experiments where .org intothickgraphitecapsulessurroundedbyouterplatinum someofthemeltformedglasspools).Alargebeamsizeof a/ capsules. Before the platinum capsules were welded shut, 20^30mm and current of 20nA were used to obtain the t U n the loaded capsules were kept at 1108C overnight to average composition of these heterogeneous aggregates ive rs removeanymoistureandensuretheleastwatercontamin- andmanysuchpointsacrosstwotothreeexposedsections ita ationpossible.Thelossinweightofthecapsulesafterweld- were analyzed to obtain a reliable mean composition of ' d e g ing was measured and in no case was the loss observed thereactedmelt.Nofilteringtechniquewasappliedtothe li S greater than 0·3% relative. The experiments were per- heterogeneous quench aggregate compositions to avoid tu d formed at13758C,3GPa; that is, at pressure^temperature any selective bias. Counting times for the elements ana- i R o conditions equivalenttothebase of mature oceaniclitho- lysedvariedfrom20to80sonthepeakandhalfthetime m a spherewheretheeclogite-derivedcarbonatedmeltswould oneachbackground.Nawasanalyzedfirstonagivenspec- L a be above their respective liquidibut the peridotite would trometer and for only 20s on the peak and 10s on each S a p be below its solidus. In all the experiments, the pressure background to limit its loss. Compositional zoning was ie n was first raised to 3GPa andthen the systemwas heated observedin some garnets andin suchcases, therimcom- za to13758Cat1008Cmin(cid:4)1.Temperaturesoftheexperiments positions were analyzedassuming that the rim is in equi- on N were controlled and monitored using W Re/W Re librium with the rest of the assemblage. The natural o 95 5 74 26 v e (Type C) thermocouples. The run durations varied from mineralandbasalticstandardsusedforphasecomposition m b 47 to 172h. Experiments were quenched by cutting off analysis are the same as those used by Mallik & er 2 power from the heater after which the runs were decom- Dasgupta (2012). For some quench aggregate analyses, Ca 0 , 2 pressedslowly,thepositionofthecapsuleandthermocouple and Mg concentrations were measured using a dolomite 0 1 3 with respect to the hotspot was checked, and the capsules standard. However, it was found that these analyses were were recovered.The capsuleswere then mounted in epoxy nodifferentfromthosewherethesameelementsweremea- and polished using silicon-carbide paper (240^600 grit) suredusinga diopside standard, as inthe studyof Mallik and polycrystalline diamond powder (diameter varying & Dasgupta (2012), thereby suggesting no particular ad- from3to0·25mm)onnylonandvelvetcloths.Inallcircum- vantage of using carbonate standards over silicate stand- stances, polishing was carried out in the absence of water ards for measuring major element cation concentrations oranylubricatingliquidtopreservequenchcarbonatecrys- incarbonatedsilicatemelts. talsexpectedtobepresentinthereactedmeltpool. Phase proportions for each experiment were calculated Oxygenfugacitiesofthemelt^rockreactionexperiments basedonmassbalanceofcomponentsusingtheoptimiza- were calculated using the calibration of Stagno & Frost tion tool Solver in MS-Excel. Minor elements such as 2271 JOURNALOFPETROLOGY VOLUME54 NUMBER11 NOVEMBER2013 Table2: Summaryofmelt^rockreactionexperimentsperformedinthisstudyincludingexperimentalconditions,phasespre- sent,andtheirmassproportions Runno. Starting Reacting T(8C) TBKN(8C) TR00(8C) P(GPa) Duration(h) Mineralmodes(wt%) (cid:2)r2 materialsused meltmass Ol Opx Cpx Gt Melt (wt%) G209* ABCþKLB-1ox 8 1375 1332 1295 3 119 51(1) 13(1) 18(1) 13(0) 4 0·5(2) G217y ABCþKLB-1ox 15 1375 1350 1298 3 144 40(2) 26(3) 13(3) 13(1) 9(2) 0·6(2) G239 ABCþKLB-1ox 25 1375 1327 1319 3 96 30(3) 28(5) 13(3) 13(1) 15(4) 0·3(1) D o G240 ABCþKLB-1ox 33 1375 1323 1313 3 96 27(2) 23(4) 16(2) 14(1) 20(3) 2·0(1) w n G227y ABCþKLB-1ox 40 1375 1328 1293 3 116 22(3) 25(5) 12(2) 20(0) 21(5) 0·20(3) lo a d G229 ABCþKLB-1ox 50 1375 1349 1301 3 93 — 40(2) 15(4) 24(1) 21(2) 0·53(9) e d B126* BACþKLB-1ox 8 1375 1334 1276 3 95 42(1) 27(1) 14(1) 12(0) 3 0·7(4) fro m B157* BACþKLB-1ox 15 1375 1357 1314 3 100 36(1) 24(1) 17(1) 14(1) 6 0·8(3) h B222 BACþKLB-1ox 25 1375 1340 1483 3 92 23(1) 43(1) 8(1) 7(1) 18(2) 0·2(2) ttp B223 BACþKLB-1ox 33 1375 1325 1404 3 139 16(1) 43(2) 12(1) 11(1) 17(2) 0·27(6) ://pe G231 BACþKLB-1ox 40 1375 1378 1281 3 90 — 52(1) 20(4) 18(1) 11(2) 2(1) trolo G226 BACþKLB-1ox 50 1375 1399 1308 3 115 — 33(3) 28(5) 15(1) 24(3) 3·7(6) gy .o x fo *Experiments where melt mass proportions are calculated by the method of linear extrapolation (equations of extrapo- rd lation are given in the caption of Fig. 3). jo u yExperiments re-reported from Dasgupta et al. (2013). rn The(cid:2)1serrors,basedonreplicateelectronmicroprobeanalyses,aregiveninparenthesesandreportedastheleastdigits als cited.Forexample,51(1)shouldbereadas51(cid:2)1wt%.ABCandBACare11·6and2·6wt%CO -bearingstartingmelts, .o respectively and KLB-1ox is the oxide mixture used as fertile peridotite. TBKN (8C), temperature o2btained using the two- arg/ pyroxene thermometer of Brey & Kohler (1990); TR00 (8C), temperature obtained using the garnet–clinopyroxene therm- t U ometer of Ravna (2000) using average pyroxene and garnet compositions reported in Tables 5, 6 and 7; Ol, olivine; Opx, n orthopyroxene; Cpx, clinopyroxene; Gt, garnet; (cid:2)r2, sum of residual squares obtained using phase proportions, phase ive compositions, and the bulk starting composition; —, absence of a phase. rsita ' d e g Cr O,MnOandK O,aswellasCO ,wereneglectedin Because it has been demonstrated that averaging quench li S 2 3 2 2 tu the mass balance. The phase proportions obtained from aggregates produces reliable estimates of melt compos- di R massbalancewereverifiedtexturallytoensuretheirvalid- itions by comparison with the compositions of glassy o m ity. Based on mass balance of FeO in the melt^rock sys- patches, CO2 estimates obtained‘bydifference’havebeen a L tems, we concludedthat there was no Fe loss tothe outer used to calculate the volatile-free melt compositions a S a Ptcapsule. reportedinTable3. p ie CO2concentrationsinthereactedmeltareestimatedin nza twoways: (1) bydifferencebetween100% andthe micro- o n probetotalsoftheaveragedcompositionofthequenchag- EXPERIMENTAL RESULTS N o v gregates(assumingallofthedeficitisattributabletoCO ; Experimental conditions and phase proportions are re- e 2 m mhceeonrdetraaaflttepiorrnorpteoofrertrieroaencdsteotdofmmaeeslltt‘CbbOyeca2alulboseyttinndogiffsteohrleeidnbcuceal’k)r;bCo(2nO)a2tefcrsooonmr- paprooersitstehidoonwisnnaTrianeblFpeilgo2.t.t2e.PdhMoaotsodamalifcuprnroocgtpriooarpnthioosfnosrfeaatnhcdteinmrguinnmeprearltlodcmouamcstss- ber 20, 20 1 CO -richfluidphasewaspresentaftermelt^rockreaction inFigs3^8andlistedinTables3^7. 3 2 andbecause carbon solubility in nominally C-free mantle silicates is negligible (Shcheka etal.,2006). Both estimates Textures and phase assemblages are included in Table 3 and plotted in Supplementary MixKLB-1 at 3GPa and 13758C produced a four-phase DataFig.S1(availablefordownloadingathttp://www.pet- lherzolite with olivine, orthopyroxene, clinopyroxene and rology.oxfordjournals.org). Given the large uncertainty in garnet as describedby Mallik & Dasgupta (2012). All ex- theestimatedCO contentsofthemelts,apositivecorrel- periments with peridotite^basaltic andesite (BAC) and 2 ationbetweenthetwosuggeststhatthetrendinmeltcom- peridotite^alkali basalt (ABC) mixtures produced an as- position evolution remains unaffected by whichever semblage of orthopyroxeneþclinopyroxeneþgarnetþ methodofCO estimationinthereactedmeltsisadopted. melt(cid:2)olivine. In the case of 8wt % melt-added 2 2272 MALLIK&DASGUPTA MORB-ECLOGITE-DERIVEDMELT Table3: Compositionofreactedmelts Runno.: G217 G239 G240 G227 G229 B222 B223 G231 G231gl G226 G226gl Startingmelt: ABC ABC ABC ABC ABC BAC BAC BAC BAC BAC BAC Meltadded(wt%) 15 25 33 40 50 25 33 40 40 50 50 n: 26 23 18 18 50 23 18 21 32 60 60 SiO2 30(4) 39(3) 38(2) 31(5) 27(6) 42(2) 47·3(1) 52(1) 51·5(6) 53(1) 53·2(6) TiO2 6·3(9) 2·8(7) 3·4(2) 4·6(8) 5(1) 6·4(4) 5·9(2) 7·0(2) 7·0(2) 8·7(3) 8·34(9) Al2O3 5·2(8) 8·4(5) 9·1(5) 5·3(8) 4·1(8) 10·5(5) 11·9(4) 12·9(3) 12·7(2) 12·3(2) 12·3(1) D Cr2O3 0·8(6) 0·13(4) 0·10(4) 0·2(3) 0·0(4) 0·2(1) 0·2(2) 0·04(1) 0·04(2) 0·1(1) 0·05(1) ow FeO* 14(2) 11(1) 12·3(9) 15(2) 16(2) 10(1) 9·9(9) 7·7(4) 7·6(2) 6·5(5) 6·35(3) nlo a MnO 0·21(3) 0·15(2) 0·17(2) 0·22(3) 0·23(4) 0·12(3) 0·11(3) 0·05(1) 0·06(1) 0·06(1) 0·064(8) de d MgO 21(2) 20·3(8) 17·2(9) 19(1) 20(1) 15·4(7) 12·2(8) 8·3(8) 9·1(5) 7·9(8) 8·6(3) fro CaO 18(5) 14(2) 13(1) 20(5) 21(3) 10(1) 7·9(3) 8·7(6) 9·0(3) 7·3(4) 7·6(2) m h Na2O 4(2) 4(1) 6(2) 4(2) 7(3) 4·0(7) 4·2(4) 3·0(3) 2·9(2) 3·4(3) 3·1(4) ttp K2O 0·23(1) 0·11(6) 0·21(5) 0·3(2) 0·4(2) 0·4(1) 0·34(5) 0·18(6) 0·14(2) 0·35(9) 0·31(4) ://pe Sum 100·00 100·00 100·00 100·00 100·00 100·00 100·00 100·00 100·00 100·00 100·00 tro lo Mg# 73(9) 73(3) 69(4) 70(6) 69(4) 73(3) 69(2) 66(9) 68(4) 68(9) 71(3) g y CO21 22(5) 12(3) 10(3) 23(5) 25(3) 12(6) 4(2) 7(3) 7(1) 6(2) 7·2(3) .ox TiO22 3·4(6) 2·8(4) 3·2(3) 3·5(5) 4·7(4) 6·0(5) 7·0(4) 12(3) 12(3) 9(1) 9(1) ford NK2aO2O22 50··25((81)) 40··83(68()9) 05··73(47()5) 06·(318)(8) 70··88(27()9) 04··53(74()4) 05··52(33()2) 05··49((73)) 50··49((73)) 40··02(15()5) 40··021(5(5)) journals CO22 15(4) 17(3) 19(1) 23(3) 20(2) 4(2) 5·1(6) 5·8(7) 7(1) 4·0(1) 7·2(3) .org a/ *All Fe assumed to be FeO. t U 1CO2 concentration determined by difference. niv 2TiO2, Na2O, K2O and CO2 concentrations determined from mass balance (refer to text for details). ers All oxide concentrations are reported in weight per cent and on a CO2-free basis. ita ' d e g experimentsforbothstartingmeltcompositionsand15wt experiments with melt present only at triple junctions, li Stu % BAC-added experiment, no melt pool, separated as a meltmodalproportionswereestimatedbylinearextrapo- di R layer,coexistingwiththeresidualfour-phaselherzoliticas- lationofthetrendofmodalproportionsofmeltasafunc- o m semblage, was observed. In these experiments, melt was tionofamountof melt addedtotheexperiments. Overall a L a found only as pockets in triple-grain junctions (Fig. 2c). the melt mass increased from 4wt % (where melt is con- S a For higher melt-added experiments, a distinct melt pool centratedonlyintriple-grainjunctions)to21wt%forex- pie composed of heterogeneous quench crystals was observed periments with ABC and from 3·1 to 24wt % for nz a incoexistencewithlherzoliticphases,exceptforthe40wt experiments with BAC. It is observed that the olivine on N % BAC-addedexperiment and 50wt % ABC-and BAC- massfractiondecreasesfrom60wt%inthestartingperi- o v added experiments, where olivine was absent. The dotite to 0wt % when 50wt % of ABC and 40wt % of em b quenched melt pools are composed of quench clinopyrox- BACareadded,respectively.Olivineisconsumedbecause e ene-likesilicatesintimatelyassociatedwithCa^Na^Fecar- of pyroxene crystallization. Accordingly, the orthopyrox- r 20 bonates (Fig. 2a, b and d). No textural evidence of a ene mode overall increases from14 to 40wt % asaresult , 20 1 separate CO -rich vapor phase was observed. This is in of addition of 0^50wt % ABC. It increases from 28 to 3 2 keeping with CO solubilities for silica-undersaturated 52wt % until 40wt % BAC is added, followed by a de- 2 melts (similartothose obtainedinthis study) determined creaseto33wt%oforthopyroxenewhen50wt%BACis by previous studies (e.g. Mysen et al.,1975; Brooker,1998; added.This decrease in orthopyroxene modal proportion Brookeretal.,2001)beingsimilartoorexceedingtheCO between40and50wt%BAC-addedexperimentsiscom- 2 concentrations determined for thereacted melts fromthis pensatedbyanincreaseinclinopyroxenemodefrom20to study. 29wt % over the same range of conditions.This reversal In our experiments, it is observedthat there is abroad in pyroxene stabilization canbe explainedby an increase linear correlation between reacting melt mass and mass in bulk Ca/Mg with increasing melt added (from 0·14 fraction of melt after melt^rock reaction (Fig.3). For the for 40% BAC-added to 0·18 for 50% BAC-added 2273 JOURNALOFPETROLOGY VOLUME54 NUMBER11 NOVEMBER2013 (a) 200 μm (b) Graphite Quenched Ol melt Gt Quench cc Opx D o Opx Quench w n cpx lo a d Gt Ol ed fro m Cpx h ttp Graphite 100 μm ://p e tro lo g y (c) (d) .o GGrraapphhiittee x fo rd jo u rn Gt a ls .o rg a/ t U n iv e rs ita ' d e MeMlt eplto cket OOppxx gli S pockets tu d i R GGllaassss ppooooll o m a 40 μm QQ uu ee nnmmcc eehhllttee dd OO55pp00xx μμmm La Sapien z a o n N Fig.2. Back-scatteredelectronimagesofexperimentswith(a)15wt%ABCþKLB-1mixture(G217).Quenchedmeltpoolisobservedtoco- o existwitholivine,orthopyroxene,clinopyroxeneandgarnetintheresidue.Thewhiteboxrepresentstheareathatisshownmagnifiedin(b). ve m (b)Magnificationoftheareamarkedbywhiteboxin(a).Thequenchaggregatescompriseclinopyroxene-likesilicatesandCa^Fe^Nacarbon- b ates.(c)Meltquenchedinthetriplejunctionoforthopyroxenecrystalsintheresidueofmelt^rockreaction(G209).Themeltdoesnotforma er 2 separatepoolinthisexperimentunlikein(a).(d)Glasspoolformedalongwithquencheddendriticaggregatein40wt%BACþKLB-1oxex- 0 periment(G231).Thesimilarityinglassandaveragedquenchmeltpoolcompositions(Fig.4)demonstratesthereliabilityofouraveragingtech- , 2 0 niqueusedtomeasurequenchmeltpoolcompositions. 13 experiments). ForABC-addedexperiments, clinopyroxene experimentswithBACfortheinitialmeltmassincreasing mode displays an overall decrease from19 to15wt % for from0to50wt%(Fig.3). 0^50wt%melt-addedruns.ForBAC-addedexperiments, theclinopyroxenemode increases sharply from 8 to 28wt Assessment of chemical equilibrium % for added melt fraction of 25^50wt %. Garnet modal The experiments in this study have not been reversed. proportions display an overall increase from 10 to 24wt Garnets are zoned in some instances, even though the % for experiments with ABC and to 15wt % for cores are less than 1% in volume with respect to the 2274 MALLIK&DASGUPTA MORB-ECLOGITE-DERIVEDMELT 60 60 %) %) on (wt. 50 n (wt. 50 porti 40 ortio 40 odal pro 2300 dal prop 2300 m o ne 10 x m 10 Olivi 300 Op%) 0 Dow dal proportion (wt.%) 122505 odal proportion (wt. 112050 http://petronloaded from o m lo x m 10 net 5 gy.o Cp 5 Gar 0 xford jo %) 1:1 0 10 20 30 40 50 urn n (wt. 40 Reacting melt mass (wt.%) als.org ortio 30 ABC Modes determined from at U/ op BAC mass-balance. niv al pr 20 ABC Modes determined from ersita mod BAC extrapolation. ' deg Melt 10 Modes in MixKLB-1. li Stud 0 Volatile-free melt-peridotite experiments. i Ro 0 10 20 30 40 50 (Mallik and Dasgupta, 2012) ma L Reacting melt mass (wt.%) Linear extrapolation for ABC a Sa p Linear extrapolation for BAC ien z a o n Fig.3. Massfractions(inwt%)ofolivine,orthopyroxene(opx),clinopyroxene(cpx),garnet,andmeltplottedasafunctionoftheinitialmelt N mass(inwt%)reactedwithperidotiteforexperimentswithtwostartingmeltsçABC(diamonds)andBAC(filledsquares).Alsoplottedfor ov e comparison are the fraction of reacted melts fromvolatile-free G2PM1þMixKLB-1mixtures performed at13758C,3GPa from Mallik & m Dasgupta(2012)(opensquares).Becausenoreactedmeltpoolwasobservedforthe8wt%ABC-addedrun,and8wt%and15wt%BAC- be addedexperiments,themeltfractionsfortheseexperimentswereestimatedbylinearextrapolationofmeltconsumptiontrendsconstructed r 2 0 forABC-andBAC-addedexperiments.Theextrapolatedmeltproportionsareplottedwithgraysymbolsandtheequationsusedare:(final , 2 meltfraction)¼0·51(cid:5)(reactingmeltfraction)forABCþKLB-1oxexperimentsand(finalmeltfraction)¼0·45(cid:5)(reactingmeltfraction)for 01 BACþKLB-1oxexperiments.The1:1linerepresentsthelocusofallpointsforwhichthemassfractionofmeltaddedandtheresultingmeltfrac- 3 tionsarethesame.Errorbars((cid:2)1swt%)arederivedfrommassbalancecalculationsbypropagatingcompositionaluncertaintiesbasedon replicatemicroprobeanalyses. entire volume of garnet, rendering them insignificant for (1)Thesumofresidualsquares((cid:2)r2;Table2)forthecar- affectingmassbalanceoroverallmineralogyintheexperi- bonated melt^rock reaction experiments varies from 0·2 ments.Thus, even though complete equilibration has not totwo. Giventheuncertainty inanalysesof meltcompos- been achieved, an approach to equilibrium and mainten- ition from averaging the heterogeneous quench phases, ance of a closed system during the experiments can be the experiments canbe consideredto havebeenclosedto demonstratedbythefollowingcharacteristics. materialexchange. 2275 JOURNALOFPETROLOGY VOLUME54 NUMBER11 NOVEMBER2013 60 24 20 50 %) %) 16 (wt.2 40 O (wt. 12 O Si 30 Mg 8 4 20 0 8 22 D o wt.%) 6 wt.%)18 wnloade O (2 4 aO (14 d from Ti C h 2 10 ttp ://p 0 6 etro 14 9 log y 8 .o wt.%) 1102 wt.%) 67 xfordjou OAl (23 468 NaO (2 345 arnals.org/ 2 t U 2 1 niv e 16 80 rsita ' d %) 14 70 eg wt. 12 #60 li Stu O* ( 10 Mg50 di Ro e m F a 8 40 L a S a 6 30 p ie 0 20 40 60 80 100 n z 25 a Reacting melt mass (wt.%) o n 20 N o %) ABC ve wt. 15 BAC Reacted melts mbe (2 10 r 20 O ABC , 2 C 5 Starting melts 01 3 BAC 0 0 20 40 60 80 100 Glass (BAC) Reacting melt mass (wt.%) Volatile-free melt-peridotite experiments (Mallik and Dasgupta, 2012) Fig.4. AveragecompositionsofreactedmeltsderivedfromABC-added(diamonds)andBAC-added(filledsquares)experimentsplottedasa functionofreactingmeltmass.PlottedforcomparisonarethestartingmeltcompositionsABCandBAC.Thereactedmeltcompositionsfor 8wt%ABC-added,8wt%and15wt%BAC-addedexperimentscouldnotbedeterminedowingtotheabsenceofaquenchorglasspool and the fact that the melt pockets at triple-grain junctions (Fig. 2c) were not large enough to be analyzed reliably by microprobe. For (continued) 2276

Description:
KEY WORDS: alkalic basalts; carbonated silicate melt; MORB-eclog- tial melting, and metasomatism beneath the Slave craton,. Canada. Geology.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.