Emerging Infectious Diseases of the 21st Century Series Editor: I. W. Fong Professor of Medicine, University of Toronto Head of Infectious Diseases, St. Michael’s Hospital Recent volumes in this series: INFECTIONS AND THE CARDIOVASCULAR SYSTEM:New Perspectives Edited by I. W. Fong REEMERGENCE OF ESTABLISHED PATHOGENS IN THE 21STCENTURY Edited by I. W. Fong and Karl Drlica BIOTERRORISM AND INFECTIOUS AGENTS:A New Dilemma for the 21st Century Edited by I. W. Fong and Kenneth Alibek MALARIA: Genetic and Evolutionary Aspects Edited by Krishna R. Dronamraju and Paolo Arese A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information, please contact the publisher. Malaria: Genetic and Evolutionary Aspects KRISHNA R. DRONAMRAJU AND PAOLO ARESE Krishna R.Dronamraju Paolo Arese President,Foundation for Department of Genetics,Biology Genetic Research and Biochemistry P.O.Box 27701-0 University of Torino Medical School Houston,Texas 77227 Via Santena 5 bis,10126 Torino USA Italy [email protected] [email protected] Library of Congress Control Number: 2005930721. ISBN-10: 0-387-28294-7 ISBN-13: 9780387282947 ©2006 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY10013, USA), except for brief excerpts in connection with reviews or scholarly analysis, Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publicaiton of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or notthey are subject to proprietary rights. Printed in the United States of America. 9 8 7 6 5 4 3 2 1 springeronline.com Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction Krishna R. Dronamraju 1. The Haldane Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Glucose-6-Phosphate Dehydrogenase Deficiency and Malarial Resistance . . . 5 3. Phagocytosis of Ring Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4. Evolutionary Considerations: Malaria’s Eve Hypothesis . . . . . . . . . . . . . . . . . 6 5. Malaria Vaccines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. J.B.S. Haldane (1892–1964) Krishna R. Dronamraju 1. Population Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2. Beanbag Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. Human Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5. Genetic Load Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6. Immunogenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7. Sociobiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8. Daedalus and Eugenics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. Removal of Early Parasite Forms from Circulation as a Mechanism of Resistance Against Malaria in Widespread Red Blood Cell Mutations Paolo Arese, Kodjo Ayi, Aleksei Skorokhod and Franco Turrini 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2. Malaria is Responsible for High Frequency and Regional Distribution of Major Protective RBC Mutations: Geographical Evidence . . . . . . . . . . . . . 27 3. Epidemiological Evidence: Degree of Protection Afforded by RBC Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1. Hemoglobin AS (Sickle-Cell Trait) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2. Thalassemias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3. Hemoglobin C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4. Hemoglobin E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 v vi Contents 3.5. Glucose-6-Phosphate Dehydrogenase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.6. Southeast Asian Ovalocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4. A Critical Assessment of the Current Mechanism of Protection by Widespread RBC Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1. Sickle-Cell Anemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2. Beta-Thalassemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3. Alpha-Thalassemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4. Glucose-6-Phosphate Dehydrogenase Deficiency . . . . . . . . . . . . . . . . . . . 38 5. Modifications in the RBC Membrane Elicited by the Developing Parasite Induce Phagocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1. Similarity of Ring Phagocytosis to Phagocytosis of Normal Senescent or Oxidatively Stressed RBCs . . . . . . . . . . . . . . . . . 39 6. Enhanced Phagocytosis of Ring Forms as a Model of Protection for Widespread RBC Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1. Membrane Binding of Hemichromes, Autologous IgG, Complement C3c Fragment; Aggregated Band 3 and Phagocytosis in Nonparasitized and Ring-Parasitized Normal and Mutant RBCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2. Why are Rings Developing in Beta-Thalassemia, Sickle-Cell Trait, HbH, and G6PD-deficient RBCs Phagocytosed More Intensely than Rings Developing in Normal RBCs? . . . . . . . . . . . . . . . . . . . . . . . . 43 6.3. What is the Evidence that Ring-Parasitized Mutant RBCs are Also Preferentially Removed In Vivo? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.4. Why is Preferential Removal of Ring-Forms Advantageous to the Host? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.5. Why are Rings Developing in Alpha-Thalassemia Very Similar to Controls? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4. Clinical, Epidemiological, and Genetic Investigations on Thalassemia and Malaria in Italy Stefano Canali and Gilberto Corbellini 1. The Evolution of the Knowledge of Thalassemia Genetics: The Italian Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2. Early Observations on the Association between Malaria and Thalassemia . . . . 58 3. Collaboration of Silvestroni and Bianco with Montalenti: At Work on Haldane’s Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. Research of Carcassi etal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5. Studies on Microcythemia Genetics in Italy Funded by the Rockefeller Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6. The Results of Siniscalco’s Genetic Studies on the Distribution of Thalassemia, G-6-PD Deficit, and of Malaria . . . . . . . . . . . . . . . . . . . . . . . 74 7. The Malaria Hypothesis and the Consequences of Eradicating the Plasmodia and of Thalassemia Prevention . . . . . . . . . . . . . . . . . . . . . . . . . 75 8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Contents vii 5. Resistance to Antimalarial Drugs: Parasite and Host Genetic Factors Rajeev K. Mehlotra and Peter A. Zimmerman 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2. Malaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3. Antimalarial Chemotherapy and Chemoprophylaxis . . . . . . . . . . . . . . . . . . . . 83 3.1. Drugs Available for Treatment of Malaria . . . . . . . . . . . . . . . . . . . . . . . . 83 4. Antimalarial Drug Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.1. Current Status of Drug-Resistant Malaria . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2. Parasite Genetic Polymorphism As a Basis for Antimalarial Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3. Genes Associated with Chloroquine Resistance in P. falciparum . . . . . . . 90 4.4. Mechanism of Resistance to Antifolate Combination Drugs inP. falciparum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.5. Mechanism of Atovaquone Resistance in P. falciparum . . . . . . . . . . . . . . 94 4.6. Mechanisms of Drug Resistance in P. vivax . . . . . . . . . . . . . . . . . . . . . . . 95 5. Human Drug Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1. Cytochrome P450 Enzyme Superfamily . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2. Uridine Diphosphate Glucuronosyltransferase Enzyme Superfamily . . . . 98 5.3. Antimalarial Drug Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4. Antimalarial Drug Levels and Treatment Outcome . . . . . . . . . . . . . . . . . 104 6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6. Evolutionary Origins of Human Malaria Parasites Stephen M. Rich and Francisco J.Ayala 1. The Phylum Apicomplexa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 2. The Genus Plasmodium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3. Transfers Between Human and Monkey Hosts . . . . . . . . . . . . . . . . . . . . . . . . 132 4. Population Structure of Plasmodium falciparum . . . . . . . . . . . . . . . . . . . . . . . 135 5. Malaria’s Eve Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. Malaria’s Eve Counterarguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7. Vector Genetics in Malaria Control V.P. Sharma Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2. The Anopheles culicifaciesComplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 2.1. Paradox Resolved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 3. Application in Malaria Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 3.1. Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 3.2. Insecticide Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3.3. Bioenvironmental Malaria Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 viii Contents 8. The Rate of Mutation of Human Genes 169 J.B.S. Haldane 9. Disease and Evolution 175 J.B.S. Haldane Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Preface This book was originally conceived at a conference at the University of Turin in Italy. The conference was organized to examine the so-called “Malaria Hypothesis”, that is to say, the higher fitness of tha- lassemia heterozygotes in a malarial environment, and to pay tribute to the proponent of that hypothesis, J.B.S. Haldane. Contributors to this book examine certain genetic and evolutionary aspects of malaria which is a major killer of human populations, especially in Africa and Asia. There were attempts to discredit Haldane’s contribution from two directions: (a) it has been suggested that the “Malaria Hypothesis” was known long before Haldane and that there was nothing original about his idea (Lederberg 1999), and that (b) the hypothesis of heterozygote supe- riority was first suggested by the Italian biologist Giuseppe Montalenti who communicated his idea to Haldane (Allison 2004). Surely, both can- not be right. In fact, the evidence presented in this book clearly indicates that both are wrong. Haldane’s malaria hypothesis has stimulated a great deal of research on the genetic, evolutionary and epidemiological aspects of malaria dur- ing the last 50 years. It has opened up a whole new chapter in the study of infectious diseases. It deserves serious consideration. For helpful discussions we thank Lucio Luzzatto, Alberto Piazza, Guido Modiano and David Roberts. Krishna R. Dronamraju Paolo Arese ix Contributors Paolo Arese Stephen M. Rich Department of Genetics, Biology and Department of Plant, Soil and Insect Sciences Biochemistry University of Massachusetts University of Torino Medical School Amherst, MA 01002 Via Santena 5 bis USA 10126 Torino Italy V.P. Sharma Centre for Rural Development and Technology Francisco J.Ayala (CRDT) Department of Ecology and Evolutionary Indian Institute of Technology (IIT) Biology Hauz Khas, University of California New Delhi 110016 Irvine, California 92697 India USA Aleksei Skorokhod Kodjo Ayi Department of Genetics, Biology and Department of Genetics, Biology and Biochemistry Biochemistry University of Torino Medical School University of Torino Medical School Via Santena 5 bis Via Santena 5 bis 10126 Torino 10126 Torino Italy Italy Franco Turrini Stefano Canali Department of Genetics, Biology and University of Cassino Biochemistry Via Passo Cento Croci University of Torino Medical School 1-00048 Nettuno (Rome) Via Santena 5 bis Italy 10126 Torino Italy Gilberto Corbellini Section of History of Medicine Peter A. Zimmerman “La Sapienza” University of Rome Center for Global Health and Diseases Viale dell’Universita 34/a Case Western Reserve University 00185 Rome School of Medicine Italy Wolstein Research Building, # 4125 2103 Cornell Road Krishna R. Dronamraju Cleveland, Ohio 44106-7286 President, Foundation for Genetic Research USA P.O. Box 27701-0 Houston, Texas 77227 USA Rajeev K. Mehlotra Center for Global Health and Diseases Case Western Reserve University School of Medicine Wolstein Research Building, # 4125 2103 Cornell Road Cleveland, Ohio 44106-7286 USA xi Introduction Krishna R. Dronamraju The global incidence of malaria and its fatal consequences continue to be one of the worst catastrophes ever faced by mankind. With over 3 mil- lion deaths per year that are attributable to the attacks by the malaria par- asite, it remains the foremost killer among all diseases, comparable only to the deaths caused by theequally disastrous disease, AIDS, which was reported to have caused 3.1 million deaths in 2004 (UNAIDS/WHO AIDS Update December 2004). However, by utilizing a combination of epidemiological, geographi- cal, and demographic data on the occurrence of malaria, Snow etal. (2005) showed that there is reason to believe that these passive statistics may well indicate gross underestimates. The total number of deaths that are occurring each year from malaria (and also perhaps from AIDS and other infectious diseases) may be much higher than indicated by these estimates. The global distribution of clinical attacks attributable to the para- site, causing the common malaria, Plasmodium falciparum, has been recently shown to be grossly underestimated in previous reports. Snow etal. (2005), in a remarkable paper, estimated that there were 515 (range 300–660) million episodes of clinical P. falciparum malaria in 2002. Their estimate is approximately 50% higher then those reported by the World Health Organization (WHO) and 200% higher for areas outside Africa. This difference was explained by Snow etal. (2005) as the result of the dependence on national statistics derived from passive detection of cases for the WHO’s present global disease estimates outside Africa. Similar passive data, when compared with survey reports of data on active case detection in the same areas, in various countries, demon- strated that the magnitude of underreporting by passive detection ranged from a 3-fold difference in Brazil to a 1000-fold difference in Pakistan. Krishna R. Dronamraju • Foundation for Genetic Research, P.O. Box 27701-0, Houston, Texas 77227. Malaria: Genetic and Evolutionary Aspects, edited by Krishna R. Dronamraju and Paolo Arese, Springer, New York, 2006. 1
Description: