ebook img

Majorana Zero Modes Protected by Hopf Invariant in Topologically Trivial Superconductors PDF

1.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Majorana Zero Modes Protected by Hopf Invariant in Topologically Trivial Superconductors

Majorana Zero Modes Protected by HopfInvariantinTopologicallyTrivialSuperconductors Zhongbo Yan,1 Ren Bi,1 and Zhong Wang1,2, ∗ 1Institute for Advanced Study, Tsinghua University, Beijing, 100084, China 2Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China Majorana zero modes are usually attributed to topological superconductors. We study a class of two- dimensional topologically trivial superconductors without chiral edge modes, which nevertheless host robust Majoranazeromodesintopologicaldefects. Theconstructionofthisminimalsingle-bandmodelisfacilitated 7 bytheHopfmapandtheHopf invariant. ThisworkwillstimulateinvestigationsofMajorana zeromodesin 1 superconductorsinthetopologicallytrivialregime. 0 2 r Majorana zero modes (MZMs) or Majorana bound states (a) y p (b) areexoticexcitationspredictedtoexistinthevortexcores[1, 1.1 A 2]oftwo-dimensional(2D)topologicalsuperconductors[3–7] 6 and at the ends of 1D topological superconductors[8]. Spa- A 1Nh.0 tially separatedMZMs giverise to degenerategroundstates, x ] o 0.9 n whichencodequbitsimmunetolocaldechoerence[8,9]. Fur- o thermore, unitary transformations among the ground states 0.8 c canbeimplementedbybraiding[10–14]ormeasurements[15, - r 16] of these modes, indicating that such qubits may be- 0.7 p come building blocks in topological quantum computation 8 12 16 20 24N28 32 36 40 u and information[17–22]. Therefore, MZMs have been vig- s FIG. 1. (a) Sketch. The Hamiltonian varies as a function of θ, . orouslypursuedincondensedmatterphysics[23–29]. at There have been a great variety of proposals for acrrcetaatnin(gy ayde)/fe(cxt axt O).(b=)T(hx0e,Hy0o)p.fiInnvatrhieanptofloarrηc=oo1rdainndateη,=θ0.≡5 m − 0 − 0 topological superconductors, including 2D semicon- (n = 1) in discretized-zone calculation, with N3 grid points in the d- ductor heterostructures[30, 31], topological insulator- (k,θ)space.Asthegridbecomesfiner,Nhconvergesrapidlyto1. n superconductor proximity[32–36], 1D spin-orbit-coupled o quantum wires[37–45], spiral magnetic chains on c superconductors[46–50], Shockley mechanism[51, 52], eryfixedθistopologicallytrivial. Stimulatedbythismecha- [ nism,whichsignificantlydiffersfromthemagnetic-vortexori- and cold atom systems in 2D[53–56] and 1D[57, 58], etc. ginofzeromodeintopologicalp-wavesuperconductor[1,2], 3 Experimentally, suggestive signatures of MZMs in both v 1D[59–69]and2D[70–75]topologicalsuperconductorshave we design trivial-superconductor-based (and vortex-free) T- 8 junctionsharboringMZMs. beenfound. 5 Zeromodes.–Beforestudyingtopologicaldefects,wecon- 5 It is often implicitly assumed that topological supercon- siderspatiallyuniform2Dsingle-bandBogoliubov-deGennes 2 ductivity is a prerequisite for MZMs, accordingly, the chiral (BdG)Hamiltoniansparameterizedbyλ: 0 edge states go hand in hand with the vortex zero modes in . 1 2Dsuperconductors.InthisLetterweshowthatcertaintopo- ξ (λ) ∆ (λ) H(k,λ)= k k (1) 70 ldougcitcoarlsdceafnecstus[p7p6o–r8t1r]obinus2tDMtZoMposl.ogSicoamlleywthriavtiaslurspurpiseirncgolny-, ∆∗k(λ) −ξ−k(λ) ! 1 single-bandsuperconductorssufficethispurpose. Themodel wherek = (kx,ky), ξk = Ek µ, Ek andµ is theenergyand : − v HamiltonianisrelatedtotheHopfmaps,whichoriginallyre- chemicalpotential,respectively,and∆kistheCooperpairing. Xi fertonontrivialmappingsfroma3DsphereS3toa2Dsphere Itdescribessingle-bandspinless(orspin-fully-polarized)su- S2,characterizedbytheintegerHopfinvariant[82,83]. Map- perconductors. This Hamiltonian can be written in terms of r a pings from a 3D torus T3 to S2 inherit the nontrivial topol- thePaulimatricesτi as ogy from the mappings S3 S2. The Hopf invariant has → H(k,λ)= di(k,λ)τi, (2) foundinterestingapplicationsinnonlinearσmodelsandspin i=Xx,y,z systems[82, 84], Hopf insulators[85–90], liquid crystals[91], andquenchdynamicsofCherninsulators[92,93]. withdx = Re∆k, dy = Im∆k, dz = ξk (wehaveξk = ξ k in − − ourmodel).Forreasontobecomeclearshortly,wetake Our model describes topologicallytrivial superconductors with zero Chernnumberand no chiraledge state. Neverthe- d =z τz, (3) i † i less,atopologicalpointdefectischaracterizedbyaHopfin- variant defined in the (kx,ky,θ) space, where kx,ky are crys- wherez=(z1,z2)T and tal momenta and θ is the polar angle[94](Fig.1a). The par- ity(even/odd)ofHopfinvariantdeterminesthepresence(ab- z1 =sinkx+isinky, sence) of robust MZMs, though the superconductor for ev- z =sinλ+i(cosk +cosk +cosλ m ), (4) 2 x y 0 − 2 with m = 3. We can check that ∆ = ∆ and ∆ = i∆ ,0thus2thepairingis p-wave. −Gkiven−Eqk.(4),the(−pkya,kirx)ing (kx,ky) ∆ isofthesameorderasthehoppingξ .Todescribeweakly- k k pairingsuperconductors,onemayconsider H (k,λ)=η(d τ +d τ )+d τ , (5) η x x y y z z withasmallbutnonzeroη. Nevertheless,tuningthevalueof ηdoesnotclosetheenergygap,henceitdoesnotqualitatively changetheresults.Thuswewillsimplytakeη=1below.The mathematicalformofEq.(4)hasbeenintroducedfor3DHopf insulators[85–90],withλreplacedbythethirdmomentumk . z Thephysicalsystemwewillstudyisneverthelessnotdirectly relatedtoHopfinsulator. ThefamiliarChernnumber[1,33,95]C thatcharacterizes 2Dtopologicalsuperconductorscanbeobtainedbyastraight- forwardnumericalcalculation,whichyieldsC(λ) = 0forev- eryλ. A topological defect can be generated if the parameter λ depends on spatial coordinates, in a manner that the config- uration cannot be smoothly deformed to a spatially uniform one. Letusfocusonthedefectswithλdependingonthepo- larangleθ(Fig.1a)as λ=nθ, (6) wherenisaninteger. Theseconfigurationsaretopologically nontrivial due to a nonzero Hopf invariant, as we now ex- plain. The unit vector dˆ(k,θ) 1 (ηd ,ηd ,d ) ≡ √η2(d2x+dy2)+dz2 x y z FIG.2. (a)ProfilesoftwoMZMsinasquaresamplewithaHopf maps the 3D torus T3 (k ,k ,θ are defined modulo 2π) defect (n = 1). The main figure shows the particle component u, x y to the 2D unit sphere S2. For nonzero n, the inverse- andtheleftinsetshowstheholecomponentv.Therightinsetshows image circles of two points on S2 are linked[96]. To quan- severalenergiescloseto0,withtwozeroenergiescoloredinred.(b) isthesameas(a)exceptthatanimpuritypotentialatthesinglesite tify such linking, the Hopf invariant can be defined[82, A(indicatedinFig.1a)isadded. 85]: N = 1 dθd2kǫµνρa ∂ a , where the integrating h −4π2 µ ν ρ range is the BrilloRuin zone for k and [0,2π] for θ, a = µ i ψ(k,θ)∂ ψ(k,θ) , with µ,ν,ρ = k ,k ,θ, and ψ is the µ x y −nehgative-e|ner|gyeigeinfunctionof H (k,θ). Alternat|iviely, we TochecktherobustnessofMZMs,weaddanimpuritypo- η candefineAµ = aµ/2π, jµ = ǫµνρ∂νAρ = (1/8π)ǫµνρdˆ (∂νdˆ tential Uc†AcA (c is the fermion operator) at a single site A ∂ρdˆ),then[82,85] · × (specifiedinFig.1a),whichamountstoaddingaUτz termat site Ainthereal-spaceBdGHamiltonian. Thenumericalre- N = d2kdθj A. (7) sultforU = 1.0 is shownin Fig.2b. TheenergiesofMZMs h −Z · remainpinnedto E = 0, thoughthemodeprofileischanged comparedtoFig.2a. ItcanbecalculatednumericallybydiscretizingtheBrillouin zone[96]. Thenumericalresultforn = 1isshowninFig.1b. For n = 2, we find two localized modesin the defectand Moregenerally,wehaveN =n. Wewillcallthetopological two at the boundary (near θ = 0 and θ = π). Unlike the h defectsdefinedbyEq.(6)asHopfdefects. n = 1 case, the energies of defect modes are not pinned to To obtain energy spectra, we Fourier-transform the BdG zero.Highern’sarealsocalculated,andtheresultssupportthe Hamiltonian to real-space lattice, then numericallysolve the conclusionthatthereisasinglerobustMZMforodd-integer Hamiltonian[96]. For n = 1, two zero modes are found n, andno robustMZMforeven-integern, therefore,itis the (Fig.2a),oneofwhichissharplylocalizedaroundthedefect, Z Hopfinvariant(even/odd)thatdeterminestheexistenceof 2 the other is localized at the sample boundary. The profile of MZM in the defect. One may notice that the Hopf invariant particle component (τ = 1 component, denoted by u) and takestheformofaChern-Simonsinvariant[76,97],whichis z holecomponent(τ = 1component,denotedbyv)isshown notaccidental,becausethelatterisindeedageneraltopologi- z − inthemainfigureandtheinset,respectively.Itisapparentthat calinvariant,nevertheless,ithasbeenapplied[76,77]onlyto thezeromodesareequal-weightsuperpositionsofparticleand topologicallynontrivial superconductors,for which it is just holecomponents,whichisafeatureofMZMs(inspectionof the productofthe Chern numberandthe vorticityof pairing thewavefunctionconfirmsthatu=v ). phase. OurmodelshowsthatnonzeroChernnumberisnota ∗ 3 y therefore, we focus on the neighborhoodof θ = 0. Suppose (a) (b) thatboththeouterandinnerradiusesR,R′ arelarge. On the outer boundary, we have λ = θ = y/R, thus the edge state 1 spectra are given by solving H (k i∂ ,λ y/R)ψ = E eff y → − y → x Eψ. Moreexplicitly,itreads 0 R R' [ivσ ∂ +(M/R)yσ ]ψ= Eψ, (9) -1 x y y whichsquaresto( v2∂2+M2y2/R2 vM/Rσ )ψ=E2ψ. This -2 0 ky 2 equationresemble−stheySchro¨dinger−equationzofharmonicos- cillators, though E is replaced by E2, and there is a cru- FIG. 3. (a) The energy bands for a ribbon with size L L = cial additional vM/Rσ term. The eigenfunctions are σ - x × y − z z 40 ;λ=0(solidcurves).Thetwodashedcurvesshowthegapped eigenvectors(eigenvaluesaredenotedbys = 1),withener- edg×e∞modes forλ = π/20asacomparison. Eachedge-mode band giesgivenby z ± isdoublydegeneratebecausearibbonhastwoboundaries(ignoring AaslmaraglelshpoliltltoiwngdtihsaktwexipthontwenotiaMllZyMdescialylussatrsataedfu.nTcthioeninonfeLrxM).Z(Mb) Eo2uter(sz,n)=2(n+1/2)vM/R−szvM/R, (10) persists as the inner radius R′ → 0, evolving to the defect MZM where n = 0,1, . There is a MZM in the sz = +1 sector, protectedbyHopfinvariant. ··· with n = 0, which is illustrated as the blue bump in Fig.3b. Since this mode is the eigenfunction of τ , it is an equal- x weightsuperpositionofparticleandholecomponents. necessaryconditionforMZM. For a semi-infinite geometry with sample occupying the Edgetheory.–Itisdesirabletohaveanintuitiveunderstand- x > 0 region, the effective edge theory is almost the same ingof theMZM fromthe perspectiveofedgetheory,which, as Eq.(8), exceptthat the sign of the first term reversed[96]. as we will show, differs significantly from that of the chiral Ontheinnerboundaryofthehollowdisk(againnearθ = 0), topologicalsuperconductor[1, 98,99]. First, we numerically we haveλ = θ = y/R, thusthe edge-modespectrumcan be solved the edge states of open-boundarysystems for various ′ obtainedfrom[ ivσ ∂ +(M/R)yσ ]ψ = Eψ, analogousto valuesofλ,andfoundthatgaplessedgemodesexistonlyfor x y ′ y − Eq.(9). Theenergiesaregivenby λ=0.InFig.3a,weshowtheenergybandsforaribbonalong y direction. The gapless edge modes for λ = 0 are shown E2 (s ,n)=2(n+1/2)vM/R +s vM/R, (11) asthesolidbluelines. Theyarenon-chiral,andareimmedi- inner z ′ z ′ ately gappedout when λ is tuned away from 0 (edge modes whichfeaturesaMZMinthe s = 1sector. Thezero-mode z ofλ = π/20areshownindashedcurves),inotherwords,the wavefunctionis − edge modes are not topologically robust. This is consistent withthevanishingofChernnumber. ψinner exp( My2/2vR′)sz = 1 , (12) ∼ − | − i This numericalobservation is confirmed by analytic solu- whichisexponentiallylocalizedneary=0,namelyθ=0(il- tions. We considera semi-infinitegeometrywiththe sample lustratedbythegreenbumpinFig.3b). Allnonzeroenergies occupyingx<0region,k beingagoodquantumnumber.For y grow as 1/R as R is decreased, while the MZM remains at λ=0,weobtaintwodegenerateedgemodesatk =0,bothof ′ ′ y zeroenergy,evolvingtothedefectmodeshowninFig.2. For which are eigenfunctionsof τ with eigenvalue 1[96], thus x − ahollowdiskwithλ = 2θ, therearetwoMZMsontheinner theyareequal-weightsuperpositionsofparticleandholecom- boundary for large R, near θ = 0 and θ = π, respectively. ponents. We introducePauli matricesσ (unrelatedto the ′ x,y,z ShrinkingR causes overlappingbetween them, which splits τ matrices)inthistwo-dimensionalspace,sothatthetwo ′ x,y,z the two zero energies to nonzero values. This is consistent eigenfunctionshaveσ = 1,respectively.Includingsmallk z y ± withtheabsenceofMZMinthen=2defect. andλasperturbations,wederiveaneffectivetheory[96]: It is useful to compare our systems with the chiral topo- Heff(ky,λ)= vkyσx+Mλσy, (8) logical superconductor,for which a magnetic vortex with π- − fluxhostsaMZM[1,2,32,100]. Inahollow-diskgeometry, wheretheeffectiveparametersv,M arefoundtobeboth3/4 this MZM comes from the chiral edge states on the bound- in our specific model[96]. Thus the edge-state spectra are ary circle[1, 98, 99]. The MZM wavefunctionis evenly dis- E±(ky) = ±qv2ky2+M2λ2. It is immediately clear that the tributed on the circle, which implies its sensitiveness to the edgestatesbecomegappedwhenλmovesawayfrom0,which magnetic flux. In contrast to this picture, the MZM in our isconsistentwiththenumericalfindinginFig.3a. Asacom- modelis notderivedfrom chiraledge state, which is simply parison,wenotethattheedgespectrumofachiraltopological absent here, moreover, the MZM is exponentially localized superconductor[1],E(k )=vk ,cannotbegappedout. nearθ = 0(Fig.3b),thusitisinsensitiveifamagneticfluxis y y Based on this effective edge theory, we proceed to study inserted. a hollow disk with polar-angle-dependentparameter, λ = θ T-junctions.–So far, we have only studied configurations (Fig.3b). We are only concerned with low-energy modes, withλcontinuouslyvaried. Itisconceivablethatthesmooth 4 the numerical results thus obtained indicate that MZMs do exist in such T-junctions, as shown in Fig.4a for λ = 0.1π, |u|2 1 λ = π. There is certain arbitrariness in choosing the hop- (a) 0.1 2 pingat the boundarybetween the λ regions, forwhich we 1,2 keeponlythenearest-neighborhopping(discardingthenext- 0.05 nearest-neighborhoppingand the pairing)[101]. The energy eigenvalues near zero are shown in Fig.4c (we show 12 of them),fromwhichitisclearthatthezero-modelevelsaresep- 0 40 aratefromallotherenergylevelsbyafinitegapintheL 30 20 30 40 limit. →∞ 20 10 y x 10 We have also studied superconductor-insulator-vacuumT- junctions.Tothisend,weconsidertheH inEq.(5),inwhich η taking η = 0 amounts to removing the Cooper pairing. We |u|2 noticethatH (k,λ = π)describesaninsulatorwithoutany (b)0.15 η=0 Fermi surface [In contrast, H (k,λ = 0.1π) describes a η=0 0.1 metal].Nowwecandesignsuperconductor-insulator-vacuum T-junctionsbytakingη=1intheλ =0.1πregion,andη=0 1 0.05 inthe λ = πregion. We findoneMZM foreachT-junction 2 (showninFig.4b),andtheenergygapbetweenthezero-mode 0 40 levelsandotherenergylevelsis apparentin Fig.4d. We em- 30 40 20 20 30 phasize that each region by itself is topologically trivial, in 10 y x 10 particular, the superconductor(with λ = 0.1π)is a topologi- callytrivialonewithoutgaplessedgestate. (c) (d) 0.5 Conclusions.–Wehaveinvestigatedtheintriguingpossibil- 0.5 ity of creating MZMs in 2D topologically trivial supercon- E E ductors. TheHopf defectis constructedas a minimalmodel 0.0 0.0 for this purpose. Furthermore, we studied the more accessi- ble T-junctions constructed from topologically trivial super- -0.5 conductors. Hopefully, the trivial-superconductor-basedap- -0.5 proachwillbroadenthescopeofsearchingMZMsinvarious 8 16 24 32 40 48 56 8 16 24 32 40 48 56 L L superconductors. In particular, absence of chiral Majorana edge state in a 2D superconducting sample does not neces- FIG. 4. (a) Superconductor-superconductor-vacuum T-junctions. The system size is L2, with L = 40. The x > L/2 and x L/2 sarilyimplyabsenceofrobustMZMinitspointdefects. ≤ region,shownindifferentcolors,isdescribedbyEq.(2)withλtaking λ =0.1πandλ =π,respectively. Thepeaksaretheprofilesofthe We conclude with several remarks. First, we have fo- 1 2 two MZMs localized around the two T-junctions (each T-junction cused on a single-band model, while many materials have hostsonemode). (b)Superconductor-insulator-vacuumT-junctions. multi-bands. We emphasize that the MZMs found here are Theparametersarethesameas(a)exceptthatdxanddyaretunedto nevertheless robust to small mixing with other bands, be- 0intheλ region,sothatλ regionisaninsulator.(c)and(d)shows 2 2 cause a single localized MZM cannotmove away from zero 12energiesclosestto0,forsystem(a)and(b),respectively. energy, as required by the intrinsic particle-hole symme- try of the BdG Hamiltonian[3]. Second, we have taken a simple model BdG Hamiltonians as our starting point (like HopfdefectdefinedbyEq.(6)canbeimitatedbyadiscontin- Ref.[1]).MorerealisticHamiltoniansshouldbeadoptedwhen uousone,forinstance,wemayconsideraT-junction: dealing with real materials, for instance, the semiconductor- λ , θ [0,π/2] superconductor heterostructures[30, 31], for which our the- 1 ∈ λ(θ)= λ2, θ [π/2,π] (13) ory implies that robust MZMs can exist in certain defects  λ3, θ∈ [π,2π]. (e.g. judiciously constructed T-junctions), without requiring ∈ λ1,2,3 being three unequal constants. Such T-junctions will trhegeiumneif.oTrmhissywsitlelmbebleeifntgfoturnfeudtutroetwheortokps.ologicallynontrivial presumably be easier to realize than configurations with λ smoothlyvaryinginspace. Acknowledgements.–We would like to thank Suk Bum Wewillstudythesimplersuperconductor-superconductor- Chung for helpful suggestions on the manuscript. This vacuumT-junctionbyreplacingtheλ -regionbythevacuum. work is supported by NSFC (No. 11674189). Z.Y. is sup- 3 Since the value of λ in the vacuum is not well defined, this portedinpartbyChinaPostdoctoralScienceFoundation(No. replacement is not fully justified in advance. Nevertheless, 2016M590082). 5 Computation with Majorana Zero Modes,” ArXiv e-prints (2016),arXiv:1610.05289[cond-mat.mes-hall]. [20] BVanHeck,ARAkhmerov,FHassler,MBurrello, andCWJ ∗ [email protected] Beenakker,“Coulomb-assistedbraidingofmajoranafermions [1] N. Read and Dmitry Green, “Paired states of fermions in a josephson junction array,” New Journal of Physics 14, in two dimensions with breaking of parity and time- 035019(2012). reversal symmetries and the fractional quantum hall effect,” [21] L.A.Landau,S.Plugge,E.Sela,A.Altland,S.M.Albrecht, Phys.Rev.B61,10267–10297(2000). andR.Egger,“Towardsrealisticimplementationsofamajo- [2] GEVolovik,“Fermionzeromodesonvorticesinchiralsuper- ranasurfacecode,”Phys.Rev.Lett.116,050501(2016). conductors,”JournalofExperimentalandTheoreticalPhysics [22] Dong-LingDengandLu-MingDuan,“Fault-tolerantquantum Letters70,609–614(1999). random-number generator certified by majorana fermions,” [3] M.Z.HasanandC.L.Kane,“Colloquium:Topologicalinsu- Phys.Rev.A88,012323(2013). lators,”Rev.Mod.Phys.82,3045–3067(2010). [23] Jason Alicea, “New directions in the pursuit of majorana [4] Xiao-Liang Qi and Shou-Cheng Zhang, fermions in solid state systems,” Reports on Progress in “Topological insulators and superconductors,” Physics75,076501(2012). Rev.Mod.Phys.83,1057–1110(2011). [24] C. W. J. Beenakker, “Search for Ma- [5] A.Bansil,HsinLin, andTanmoyDas,“Colloquium: Topo- jorana Fermions in Superconductors,” logicalbandtheory,”Rev.Mod.Phys.88,021004(2016). AnnualReviewofCondensedMatterPhysics4,113–136(2013). [6] B Andrei Bernevig and Taylor L Hughes, Topological insu- [25] Tudor DStanescuand SumantaTewari,“Majorana fermions latorsandtopologicalsuperconductors(PrincetonUniversity insemiconductornanowires:fundamentals,modeling,andex- Press,2013). periment,”JournalofPhysics: CondensedMatter25,233201 [7] Shun-Qing Shen, Topological Insulators: Dirac Equation in (2013). Condensed Matters, Vol. 174 (Springer Science & Business [26] MartinLeijnseandKarstenFlensberg,“Introductiontotopo- Media,2013). logical superconductivity and majorana fermions,” Semicon- [8] AYuKitaev,“Unpairedmajoranafermionsinquantumwires,” ductorScienceandTechnology27,124003(2012). Physics-Uspekhi44,131(2001). [27] Steven R. Elliott and Marcel Franz, “Colloquium : Majo- [9] ChetanNayak, StevenH.Simon,AdyStern,MichaelFreed- rana fermions in nuclear, particle, and solid-state physics,” man, andSankarDasSarma,“Non-abeliananyonsandtopo- Rev.Mod.Phys.87,137–163(2015). logical quantum computation,” Rev. Mod. Phys. 80, 1083 [28] Sankar Das Sarma, Michael Freedman, and Chetan Nayak, (2008). “Majorana zero modes and topological quantum computa- [10] GregoryMooreandNicholasRead,“Nonabelionsinthefrac- tion,”npjQuantumInformation1,15001(2015). tionalquantumhalleffect,”NuclearPhysicsB360,362–396 [29] Masatoshi Sato and Satoshi Fujimoto, “Majorana fermions (1991). andtopologyinsuperconductors,”JournalofthePhysicalSo- [11] Xiao-Gang Wen, “Non-abelian statistics in the fractional cietyofJapan85,072001(2016). quantumhallstates,”Physicalreviewletters66,802(1991). [30] JayD.Sau,RomanM.Lutchyn,SumantaTewari, andS.Das [12] D. A. Ivanov, “Non-abelian statistics of half- Sarma,“Genericnewplatformfortopologicalquantumcom- quantum vortices in p-wave superconductors,” putation using semiconductor heterostructures,” Phys. Rev. Phys.Rev.Lett.86,268–271(2001). Lett.104,040502(2010). [13] ChetanNayakandFrankWilczek,“2n-quasiholestatesrealize [31] JasonAlicea,“Majoranafermionsinatunablesemiconductor 2n-1-dimensionalspinorbraidingstatisticsinpairedquantum device,”Phys.Rev.B81,125318(2010). hallstates,”NuclearPhysicsB479,529–553(1996). [32] LiangFuandC.L.Kane,“Superconductingproximityeffect [14] Sankar Das Sarma, Michael Freedman, and Chetan andmajoranafermionsatthesurfaceofatopologicalinsula- Nayak, “Topologically protected qubits from a pos- tor,”Phys.Rev.Lett.100,096407(2008). sible non-abelian fractional quantum hall state,” [33] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang, Phys.Rev.Lett.94,166802(2005). “Chiral topological superconductor from the quantum hall [15] S. Vijay and L. Fu, “Braiding without Braiding: state,”Phys.Rev.B82,184516(2010). Teleportation-Based Quantum Information Processing [34] SukBumChung,Xiao-LiangQi,JosephMaciejko, andShou- with Majorana Zero Modes,” ArXiv e-prints (2016), ChengZhang,“Conductanceandnoisesignaturesofmajorana arXiv:1609.00950[cond-mat.mes-hall]. backscattering,”Phys.Rev.B83,100512(2011). [16] Parsa Bonderson, Michael Freedman, and Chetan Nayak, [35] K. T. Law, Patrick A. Lee, and T. K. Ng, “Ma- “Measurement-only topological quantum computation,” jorana fermion induced resonant andreev reflection,” Phys.Rev.Lett.101,010501(2008). Phys.Rev.Lett.103,237001(2009). [17] DavidAasen,MichaelHell,RyanV.Mishmash,AndrewHig- [36] A. R. Akhmerov, Johan Nilsson, and C. W. J. Beenakker, ginbotham, Jeroen Danon, Martin Leijnse, Thomas S. Jes- “Electricallydetectedinterferometryofmajoranafermionsin persen, Joshua A. Folk, Charles M. Marcus, Karsten Flens- atopologicalinsulator,”Phys.Rev.Lett.102,216404(2009). berg, andJasonAlicea,“Milestonestowardmajorana-based [37] Yuval Oreg, Gil Refael, and Felix von Oppen, “Heli- quantumcomputing,”Phys.Rev.X6,031016(2016). cal liquids and majorana bound states in quantum wires,” [18] Torsten Karzig, Yuval Oreg, Gil Refael, and Michael H. Phys.Rev.Lett.105,177002(2010). Freedman, “Universal geometric path to a robust majorana [38] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma, magicgate,”Phys.Rev.X6,031019(2016). “Majorana fermions and a topological phase transi- [19] T. Karzig, C. Knapp, R. Lutchyn, P. Bonderson, M. Hast- tion in semiconductor-superconductor heterostructures,” ings, C. Nayak, J. Alicea, K. Flensberg, S.Plugge, Y. Oreg, Phys.Rev.Lett.105,077001(2010). C. Marcus, and M. H. Freedman, “Scalable Designs [39] JasonAlicea,YuvalOreg,GilRefael,FelixvonOppen, and for Quasiparticle-Poisoning-Protected Topological Quantum Matthew PA Fisher, “Non-abelian statistics and topological 6 quantuminformationprocessingin1dwirenetworks,”Nature ler,MikhailD.Lukin, andPeterZoller,“Majoranafermions Physics7,412–417(2011). in equilibrium and in driven cold-atom quantum wires,” [40] Roman M.Lutchyn, TudorD. Stanescu, andS.DasSarma, Phys.Rev.Lett.106,220402(2011). “Searchformajorana fermionsinmultibandsemiconducting [58] SebastianDiehl,EnriqueRico,MikhailABaranov, andPeter nanowires,”Phys.Rev.Lett.106,127001(2011). Zoller, “Topology by dissipation in atomic quantum wires,” [41] Tudor D.Stanescu, Roman M. Lutchyn, andS.DasSarma, NaturePhysics7,971–977(2011). “Majorana fermions in semiconductor nanowires,” [59] Vincent Mourik, Kun Zuo, Sergey M Frolov, SR Plissard, Phys.Rev.B84,144522(2011). EPAM Bakkers, and LP Kouwenhoven, “Signatures of [42] Andrew C. Potter and Patrick A. Lee, “Multichan- majorana fermions in hybrid superconductor-semiconductor nel generalization of kitaev’s majorana end states nanowiredevices,”Science336,1003–1007(2012). and a practical route to realize them in thin films,” [60] Stevan Nadj-Perge, Ilya K Drozdov, Jian Li, Hua Chen, Phys.Rev.Lett.105,227003(2010). Sangjun Jeon, Jungpil Seo, Allan H MacDonald, B An- [43] Diego Rainis, Luka Trifunovic, Jelena Klinovaja, and drei Bernevig, and Ali Yazdani, “Observation of majorana Daniel Loss, “Towards a realistic transport modeling fermions in ferromagnetic atomic chains on a superconduc- in a superconducting nanowire with majorana fermions,” tor,”Science346,602–607(2014). Phys.Rev.B87,024515(2013). [61] Leonid P Rokhinson, Xinyu Liu, and Jacek K Furdyna, [44] Elsa Prada, Pablo San-Jose, and Ramo´n Aguado, “Trans- “The fractional ac josephson effect in a semiconductor- port spectroscopy of ns nanowire junctions with majorana superconductornanowireasasignatureofmajoranaparticles,” fermions,”Phys.Rev.B86,180503(2012). NaturePhysics8,795–799(2012). [45] S.DasSarma,JayD.Sau, andTudorD.Stanescu,“Splitting [62] MT Deng, CL Yu, GY Huang, Marcus Larsson, Philippe of the zero-bias conductance peak as smoking gun evidence Caroff, andHQXu,“Anomalouszero-biasconductancepeak for theexistenceof themajoranamodeinasuperconductor- in a nb–insb nanowire–nb hybrid device,” Nano letters 12, semiconductornanowire,”Phys.Rev.B86,220506(2012). 6414–6419(2012). [46] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. [63] AnindyaDas,YuvalRonen,YonatanMost,YuvalOreg,Moty Beenakker, “Majorana fermions emerging from magnetic Heiblum, andHadasShtrikman,“Zero-biaspeaksandsplit- nanoparticles on a superconductor without spin-orbit cou- ting in an al-inas nanowire topological superconductor as a pling,”Phys.Rev.B84,195442(2011). signatureof majorana fermions,”NaturePhysics8, 887–895 [47] Ivar Martin and Alberto F. Morpurgo, “Majo- (2012). rana fermions in superconducting helical magnets,” [64] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, Phys.Rev.B85,144505(2012). K. Jung, and X. Li, “Anomalous modulation of a zero- [48] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and bias peak in a hybrid nanowire-superconductor device,” Ali Yazdani, “Proposal for realizing majorana fermions Phys.Rev.Lett.110,126406(2013). in chains of magnetic atoms on a superconductor,” [65] HOH Churchill, V Fatemi, Kasper Grove-Rasmussen, Phys.Rev.B88,020407(2013). MTDeng, PhilippeCaroff,HQXu, andCharlesMMarcus, [49] Jelena Klinovaja, Peter Stano, Ali Yazdani, and Daniel “Superconductor-nanowiredevicesfromtunnelingtothemul- Loss,“Topologicalsuperconductivityandmajoranafermions tichannelregime: Zero-biasoscillationsandmagnetoconduc- inrkkysystems,”Phys.Rev.Lett.111,186805(2013). tancecrossover,”PhysicalReviewB87,241401(2013). [50] M. M. Vazifeh and M. Franz, “Self-organized [66] SM Albrecht, AP Higginbotham, M Madsen, F Kuemmeth, topological state with majorana fermions,” TSJespersen,JesperNygård,PKrogstrup, andCMMarcus, Phys.Rev.Lett.111,206802(2013). “Exponential protection of zeromodes inmajorana islands,” [51] M.Wimmer,A.R.Akhmerov,M.V.Medvedyeva,J.Tworzy- Nature531,206–209(2016). dło, andC.W.J.Beenakker,“Majoranaboundstateswithout [67] MT Deng, S Vaitieke˙nas, EB Hansen, J Danon, M Leijnse, vorticesintopologicalsuperconductors withelectrostaticde- KFlensberg,JNygård,PKrogstrup, andCMMarcus,“Ma- fects,”Phys.Rev.Lett.105,046803(2010). joranaboundstateinacoupledquantum-dothybrid-nanowire [52] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, and Lu- system,”Science354,1557–1562(2016). Ming Duan, “Proposal for observing non-abelian statis- [68] MarcelFranz,“Majorana’swires,”Naturenanotechnology8, tics of majorana-shockley fermions in an optical lattice,” 149–152(2013). Phys.Rev.B91,094513(2015). [69] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, [53] Masatoshi Sato, Yoshiro Takahashi, and Satoshi Fujimoto, S. Kawai, T. Glatzel, D. Loss, and E. Meyer, “Non-abeliantopologicalorderins-wavesuperfluidsofultra- “Probing atomic structure and Majorana wavefunc- coldfermionicatoms,”Phys.Rev.Lett.103,020401(2009). tions in mono-atomic Fe chains on superconducting [54] ChuanweiZhang,SumantaTewari,RomanM.Lutchyn, and Pb surface,” npjQuantumMechanics2,16035(2016), S.DasSarma,“p +ip superfluidfroms-waveinteractionsof arXiv:1505.06078[physics.atm-clus]. x y fermioniccoldatoms,”Phys.Rev.Lett.101,160401(2008). [70] Jin-Peng Xu, Mei-Xiao Wang, Zhi Long Liu, Jian-Feng Ge, [55] Sumanta Tewari, S Das Sarma, Chetan Nayak, Chuanwei Xiaojun Yang, Canhua Liu, Zhu An Xu, Dandan Guan, Zhang, and P Zoller, “Quantum computation using vortices ChunLeiGao, DongQian, YingLiu, Qiang-HuaWang, Fu- and majorana zero modes of a p x+ i p y superfluid of ChunZhang, Qi-KunXue, andJin-FengJia,“Experimental fermionic cold atoms,” Physical review letters 98, 010506 detectionofamajorana modeinthecoreofamagneticvor- (2007). texinsideatopologicalinsulator-superconductorbi te /nbse 2 3 2 [56] Xiong-Jun Liu, K. T. Law, and T. K. Ng, “Realization of heterostructure,”Phys.Rev.Lett.114,017001(2015). 2dspin-orbitinteractionandexotictopologicalordersincold [71] Hao-Hua Sun, Kai-Wen Zhang, Lun-Hui Hu, Chuang Li, atoms,”Phys.Rev.Lett.112,086401(2014). Guan-YongWang,Hai-YangMa,Zhu-AnXu,Chun-LeiGao, [57] LiangJiang,TakuyaKitagawa,JasonAlicea,A.R.Akhmerov, Dan-DanGuan,Yao-YiLi,CanhuaLiu,DongQian,YiZhou, David Pekker, Gil Refael, J. Ignacio Cirac, Eugene Dem- Liang Fu, Shao-Chun Li, Fu-Chun Zhang, and Jin-Feng 7 Jia, “Majorana zero mode detected with spin selective an- [90] C. Liu, F. Vafa, and C. Xu, “Symmetry Protected Topolog- dreevreflectioninthevortexofatopologicalsuperconductor,” ical Hopf Insulator and its Generalizations,” ArXiv e-prints Phys.Rev.Lett.116,257003(2016). (2016),arXiv:1612.04905[cond-mat.str-el]. [72] Y.-F.Lv,W.-L.Wang,Y.-M.Zhang,H.Ding,W.Li,L.Wang, [91] Paul J. Ackerman and Ivan I. Smalyukh, “Diversity of knot K.He, C.-L.Song, X.-C.Ma, andQ.-K.Xue,“Experimen- solitonsinliquidcrystalsmanifestedbylinkingofpreimages tal Observation of Topological Superconductivity and Majo- intoronsandhopfions,”Phys.Rev.X7,011006(2017). ranaZeroModesonbeta-Bi2PdThinFilms,”ArXive-prints [92] C. Wang, P. Zhang, X. Chen, J. Yu, and H. Zhai, (2016),arXiv:1607.07551[cond-mat.supr-con]. “Measuring Topological Number of a Chern-Insulator [73] Mei-Xiao Wang, Canhua Liu, Jin-Peng Xu, Fang Yang, Lin from Quench Dynamics,” ArXiv e-prints (2016), Miao, Meng-Yu Yao, CL Gao, Chenyi Shen, Xucun Ma, arXiv:1611.03304[cond-mat.quant-gas]. X Chen, et al., “The coexistence of superconductivity and [93] N. Fla¨schner, D. Vogel, M. Tarnowski, B. S. Rem, D.- topological order inthebi2se3thinfilms,”Science336, 52– S. Lu¨hmann, M. Heyl, J. C. Budich, L. Mathey, K. Sen- 55(2012). gstock, and C. Weitenberg, “Observation of a dynami- [74] ZFWang,HuiminZhang,DefaLiu,ChongLiu,ChenjiaTang, cal topological phase transition,” ArXiv e-prints (2016), Canli Song, Yong Zhong, Junping Peng, Fangsen Li, Caina arXiv:1608.05616[cond-mat.quant-gas]. Nie,LiLiWang,X.J.Zhou,XucunMa,Q.K.Xue, andFeng [94] Converting a momentum variable to an angle variable was Liu,“Topologicaledgestatesinahigh-temperaturesupercon- adoptedinRefs.[97]. ductor fese/srtio3 (001) film,”Nature Materials15, 968–973 [95] D.J.Thouless,M.Kohmoto,M.P.Nightingale, andM.den (2016). Nijs,“Quantizedhallconductanceinatwo-dimensionalperi- [75] Q. L. He, L. Pan, A. L. Stern, E. Burks, X. Che, G. Yin, odicpotential,”Phys.Rev.Lett.49,405–408(1982). J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, [96] SupplementalMaterial. T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, and [97] Xiao-Liang Qi, Taylor Hughes, and Shou-Cheng Zhang, K.L.Wang,“ChiralMajoranaedgestateinaquantumanoma- “Topological Field Theory of Time-Reversal Invariant Insu- lousHall insulator-superconductor structure,”ArXive-prints lators,”Phys.Rev.B78,195424(2008). (2016),arXiv:1606.05712[cond-mat.supr-con]. [98] Paul Fendley, Matthew P. A. Fisher, and Chetan Nayak, [76] J.C.Y.TeoandC.L.Kane,“Topologicaldefectsandgapless “Edge states and tunneling of non-abelian quasiparticles in modes in insulators and superconductors,” Phys. Rev. B 82, theν = 5/2quantumhallstateand p+ipsuperconductors,” 115120(2010). Phys.Rev.B75,045317(2007). [77] Ching-KaiChiu,JeffreyC.Y.Teo,AndreasP.Schnyder, and [99] Michael Stone and Rahul Roy, “Edge modes, edge currents, Shinsei Ryu, “Classification of topological quantum matter andgaugeinvariancein p +ip superfluidsandsuperconduc- x y withsymmetries,”Rev.Mod.Phys.88,035005(2016). tors,”Phys.Rev.B69,184511(2004). [78] Ken Shiozaki and Masatoshi Sato, “Topology [100] Sumanta Tewari, S. Das Sarma, and Dung-Hai Lee, of crystalline insulators and superconductors,” “Index theorem for the zero modes of majorana Phys.Rev.B90,165114(2014). fermion vortices in chiral p-wave superconductors,” [79] Dung-Hai Lee, Guang-Ming Zhang, and Tao Xiang, “Edge Phys.Rev.Lett.99,037001(2007). solitonsoftopologicalinsulatorsandfractionalizedquasiparti- [101] Keepingonlythenearest-neighborhoppingmeansthat(inreal clesintwodimensions,”Phys.Rev.Lett.99,196805–4(2007). space)H =(1.5 cosλ)τ fortheboundarysitesr=(L/2,y) rs − z [80] Xiao-Liang Qi, Taylor Hughes, and Shou-Cheng Zhang, and s = (L/2+1,y), where we take λ as λ = π (Another 2 “Fractionalchargeandquantizedcurrentinthequantumspin choicecanbeλ=λ .Thechoiceisnotunique). 1 Hallstate,”NaturePhysics4,273(2008). [81] Ying Ran, Yi Zhang, and Ashvin Vishwanath, “One- dimensionaltopologicallyprotectedmodesintopologicalin- sulatorswithlatticedislocations,”NaturePhysics5,298–303 (2009). [82] FrankWilczekandA.Zee,“Linkingnumbers,spin,andstatis- ticsofsolitons,”Phys.Rev.Lett.51,2250–2252(1983). [83] MikioNakahara,Geometry,topologyandphysics(CRCPress, 2003). [84] EduardoFradkin,Fieldtheoriesofcondensed matterphysics (CambridgeUniversityPress,2013). [85] Joel E Moore, Ying Ran, and Xiao-Gang Wen, “Topologi- cal surface states in three-dimensional magnetic insulators,” Physicalreviewletters101,186805(2008). [86] D.-L. Deng, S.-T. Wang, C. Shen, and L.-M. Duan, “Hopf insulators and their topologically protected surface states,” Phys.Rev.B88,201105(2013). [87] D.-L.Deng, S.-T.Wang, andL.-M.Duan,“Systematiccon- structionoftight-bindinghamiltoniansfortopologicalinsula- torsandsuperconductors,”Phys.Rev.B89,075126(2014). [88] D.-L. Deng, S.-T. Wang, K. Sun, and L.-M. Duan, “Probe knots and Hopf insulators with ultracold atoms,” ArXiv e- prints (2016),arXiv:1612.01518[cond-mat.mes-hall]. [89] RicardoKennedy,“Topologicalhopf-cherninsulatorsandthe hopfsuperconductor,”Phys.Rev.B94,035137(2016). 8 SupplementalMaterial Forthespecialcasem = 3,theybecome 0 2 d =2sink sinλ+2sink cosk +sin2k +2sink cosλ x x y x y y 3sink , y − d = 2sink sinλ+2sink cosk +sin2k +2sink cosλ y y x y x x − 3sink , x − 13 d = cos2k cos2k 2cosk cosk 2cosk cosλ I.EXPLICITEXPRESSIONSOFdx,y,z z − 4 − x− y− x y− x 2cosk cosλ+3(cosk +cosk +cosλ). (16) y x y − In the main article, we have taken d = z τz with z = i † i (z ,z )T and II.EXPLICITEXPRESSIONSOFBDGHAMILTONIANIN 1 2 THEREALSPACE:UNIFORMSYSTEM Inthemainarticle,theHamiltonianiswritteninacompact forminthekspace. Moreexplicit(lesscompact)expressions z =sink +isink , 1 x y forthekineticenergyξ andthepairinggap∆ are z =sinλ+i(cosk +cosk +cosλ m ). (14) k k 2 x y 0 − ξ = cos2k cos2k 2cosk cosk 2cosk cosλ k x y x y x − − − − 13 2cosk cosλ+3(cosk +cosk +cosλ) , y x y − − 4 Forgeneralm0,theexplicitformofthesedi’sread ∆k = 2iη(sinkx+isinky) − 3 [eiλ+(cosk +cosk )]. (17) x y × − 2 Formanypurposes,itisusefultodoaFouriertransformation d =2sink sinλ+2sink (cosk +cosk +cosλ m ), x x y x y − 0 totherealspace.Forauniformsystem(i.e.spatiallyindepen- dy =−2sinkysinλ+2sinkx(coskx+cosky+cosλ−m0), dentλ),theBdGHamiltonianisgivenbyHˆ = Hˆ0+Hˆ∆ with d =sin2k +sin2k sin2λ (cosk +cosk +cosλ m )(21.5) thekineticenergyterm z x y x y 0 − − − 1 Hˆ = (2cosλ 3) c c +c c + c c +c c + 0 −2 − †x,y x+1,y †x,y x,y+1 †x,y x+2,y †x,y x,y+2 Xx,y nh (cid:16) (cid:17) (cid:16) (cid:17) 13 c c +c c +h.c. ( 3cosλ)c c , (18) (cid:16) †x,y x+1,y+1 †x,y x+1,y−1(cid:17)i o−Xx,y 4 − †x,y x,y andthepairingterm 3 3 Hˆ∆ =η ("(2 −cosλ−isinλ)c†x,yc†x+1,y+h.c.#+"(sinλ−icosλ+ 2i)c†x,yc†x,y+1+h.c.# Xx,y 1 1+i 1 i −2 c†x,yc†x+2,y+ic†x,yc†x,y+2+h.c. −" 2 c†x,yc†x+1,y+1+ 2− c†x,yc†x+1,y 1+h.c.#), (19) h i − wherex,yarereal-spacecoordinatestakingintegervalues.As thus explainedin the main article, λ is simply a parameter of the Hamiltonian.Wecanseethatthepairingbetweenthenearest- neighborsites(x,y)and(x+1,y)is ∆ =i∆ , (22) (x,y);(x,y+1) (x,y);(x+1,y) 3 ∆ =η( cosλ isinλ), (20) (x,y);(x+1,y) 2 − − showing a p-wave character in real space. Since the Chern andthepairingbetweensites(x,y)and(x,y+1)is numberiszero(foranyvalueofparameterλ), thesupercon- 3 ductor is topologically trivial, as we have explained in the ∆(x,y);(x,y+1) =η(sinλ icosλ+ i), (21) mainarticle. − 2 9 III.EXPLICITEXPRESSIONSOFBDGHAMILTONIANIN instead of sites, it is natural to take the middle point of THEREALSPACE:WITHADEFECT the link to define θ, for instance, cosθc†x,ycx+1,y is taken as cosθx+1/2,yc†x,ycx+1,ywithθx+1/2,y =arctan[(y y0)/(x+1/2 − − In the previous section, we have focused on uniform sys- x )]. It is also viable to take a different convention, say 0 temswith spatiallyindependentλ. Asexplainedin themain cosθx,yc†x,ycx+1,y,whichdoesnotaffecttheexistenceofMajo- article,atopologicaldefectcanbecreatediftheHamiltonian ranazeromode,asverifiedinournumericalcalculations.The parameterλdependsonthepolarangleθ,whichismeasured reasonisthat θ θ 0as(x x )2+(y y )2 , x,y x+1/2,y 0 0 | − |→ − − →∞ fromthedefectcenter(x0,y0),i.e. thusdifferentchoicesmerelydifferinthenear-defect-corere- gion. The topologicalcharacter of the defect is fixed by the y y θx,y =arctan − 0, (23) Hamiltonianfarfromthedefectcenter,whichisnotaffected x x 0 − bymodifyingthenear-defect-coreregion. such that the configuration cannot be smoothly deformed to auniformone. Thespatialdependenceoftheparameterλin ourtopologicaldefectsisgivenby λ =nθ . (24) x,y x,y Withtheabovetechnicalaspectexplained,wearereadyto Before proceeding, it is useful to point out that, since the write down the real-space BdG Hamiltonian in the presence hoppingtermsandthe pairingtermsare definedonthe links ofadefect: 1 Hˆ = (2cosnθ 3)c c +(2cosnθ 3)c c + c c +c c + 0 −2Xxy nh x+12,y− †x,y x+1,y x,y+21 − †x,y x,y+1 (cid:16) †x,y x+2,y †x,y x,y+2(cid:17) 13 c c +c c +h.c. ( 3cosnθ )c c , (cid:16) †x,y x+1,y+1 †x,y x+1,y−1(cid:17)i o−Xxy 4 − x,y †x,y x,y 3 Hˆ∆ =ηXxy ("(2 −cosnθx+21,y−isinnθx+12,y)c†x,yc†x+1,y+h.c.# 3 +"(sinnθx,y+21 −icosnθx,y+21 + 2i)c†x,yc†x,y+1+h.c.# 1 1+i 1 i −2 c†x,yc†x+2,y+ic†x,yc†x,y+2+h.c. −" 2 c†x,yc†x+1,y+1+ 2− c†x,yc†x+1,y 1+h.c.#), (25) h i − whichsimplyreplacetheparameterλinEq.(18)andEq.(19) thereal-spaceBdGHamiltonianbecomes bynθ. Hˆ = Ψ (x,y)H Ψ(x,y), (26) † x,y;x,y ′ ′ ′ ′ x,Xy;x,y ′ ′ ItisaconventionalsteptodefineΨ(x,y)=(cx,y,c†x,y)T,and withnonzeroelementsofHx,y;x′,y′ givenby 13 +3cosnθ 0 Hx,y;x,y = −4 0 x,y 143 −3cosnθx,y !, 3 cosnθ isinnθ cosnθ 3 Hx,y;x±1,y =∓isinnθ23x±−12,yco±scnoθsx±n12θ,yx±12,y∓ 32 ∓icos−nθx23±+21,yc∓osn3θix±21sx,yi±n21n,yθ± 2 , Hx,y;x,y±1=∓i1cos1nθ2x,y−±21 ± 32ix∓,y±si21nnθx,y±121 ∓1i −x32,y±+12c±os2nθ±x,y±21 x,y±21 , Hx,y;x±2,y = −±221 ∓122 !, Hx,y;x,y±2 = ∓−122i ∓212 !, 1 1i 1 1 1i 1 Hx,y;x±1,y±1= ∓12−i±2 12 ∓2 21∓ 2 !, Hx,y;x±1,y∓1 = ±12−i±2 12 ±2 12∓ 2 !. (27) 10 whereNisthenumberoflatticesites(thelatticeconstantisset tounit)andk ,θtakediscretevaluesin π, π+ 2π,...,π x,y {− − N − 2π . N} ToobtaintheexpressionofAfromj, wedothefollowing Fouriertransformation: 1 A(k,θ)= A(q)e−i(qxkx+qyky+qθθ), N3/2 Xq 1 k kx j(k,θ)= N3/2 j(q)e−i(qxkx+qyky+qθθ), (33) y Xq FIG.5.Theinverseimagesof(0,0,1)(lightcyan)and(1,0,0)(dark whereq = (qx,qy,qθ), whose componentsqx,y,θ take discrete blue)ofthemappingdˆ(k,θ):T3 S2. valuesin N, N +1,...,N 1 . Underthegaugeq A=0, → {−2 −2 2 − } · itisreadilyfoundthat TherankofthematrixH is2L2,Lbeingthelinearsize x,y;x′,y′ q j(q) ofasquaresample. A(q)= i × , (34) − q2 IV.NUMERICALCALCULATIONOFHOPFINVARIANT thustheHopfinvariantbecomes Westartfromthek-spaceBdGHamiltonian: (2π)3 N = j( q) A(q) h − N3 − · H (k,θ) d˜τ =η(d τ +d τ )+d τ . (28) Xq η i i x x y y z z ≡Xi =i(2π)3 j(−q)·(q×j(q)). (35) N3 q2 Forη 1, Hη describesasuperconductorwithweakpairing Xq ≪ (inthemainarticle,wefocusedontheη=1case). Asweexplainedinthemainarticle,theunitvector The numerical integration convergesquite rapidly as we in- crease N. For λ = nθ, we find N = n. The n = 1 case is 1 h dˆ(k,θ) (ηd ,ηd ,d ) (29) showninFig.1bofthemainarticle. x y z ≡ η2(d2+d2)+d2 x y z q mapsthe3DtorusT3 (k ,k ,θaredefinedmodulo2π)tothe x y two-dimensionalunitsphereS2. For nonzeron, the inverse- V.MORESUPPORTINGDATAONTHEEFFECTSOF image circles of two points on S2 are linked, which is illus- IMPURITYPOTENTIAL tratedinFig.5forthen=1case. The Hopf invariant, which characterizes the topological Inthemainarticle,wehaveshownthattheMajoranazero propertyoftheHamiltonian,isgivenby mode for n = 1 is robust to an impurity potential, and re- marked that robust Majorana zero mode is absent for even- Nh = d2kdθj(k,θ) A(k,θ), (30) integer Hopf invariant. Here, more data on this is shown in −Z · Fig.6. Asexplainedinthemainarticle,animpuritypotential wherej(k,θ)=(jx, jy, jθ)(Notethatthesuperscriptsx,ystand Uc†AcA atasinglesite A(indicatedinFig.1ainthemainarti- forkx,ky)takestheformof cle) is added to test the robustness of Majorana zero modes. For odd-integerHopf invariant, Fig.6a shows that the impu- 1 jµ = ǫµνρdˆ (∂ dˆ ∂ dˆ) (31) ritypotentialcannotmovethezeromodeenergiesawayfrom ν ρ 8π · × E = 0 (in consistent with the results given in the main arti- and A = (Ax,Ay,Aθ) (again, the superscripts x,y stand for cle). Foreven-integerHopfinvariant,asshowninFig.6band k ,k ) is the gauge potential satisfying A = j, where Fig.6c, zero modes are generally absent in the defect in the x y =(∂/∂k ,∂/∂k ,∂/∂θ).Itisdifficulttod∇o×theintegrationin presence of impurity potential (the blue lines in Fig.6b and x y ∇Eq.(30)analytically. Todoitnumerically,werewriteEq.(30) Fig.6caretheenergiesformodesneartheboundary,notnear intoadiscreteform: the defect at the system center). Note that several nonzero energy eigenvalues are almost independent of U in Fig.6a, (2π)3 N = j(k,θ) A(k,θ), (32) Fig.6b,andFig.6c,becausetheireigenfunctionsarequitefar h − N3 Xk,θ · fromtheimpuritysiteA.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.