Majorana Zero Modes Protected by HopfInvariantinTopologicallyTrivialSuperconductors Zhongbo Yan,1 Ren Bi,1 and Zhong Wang1,2, ∗ 1Institute for Advanced Study, Tsinghua University, Beijing, 100084, China 2Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China Majorana zero modes are usually attributed to topological superconductors. We study a class of two- dimensional topologically trivial superconductors without chiral edge modes, which nevertheless host robust Majoranazeromodesintopologicaldefects. Theconstructionofthisminimalsingle-bandmodelisfacilitated 7 bytheHopfmapandtheHopf invariant. ThisworkwillstimulateinvestigationsofMajorana zeromodesin 1 superconductorsinthetopologicallytrivialregime. 0 2 r Majorana zero modes (MZMs) or Majorana bound states (a) y p (b) areexoticexcitationspredictedtoexistinthevortexcores[1, 1.1 A 2]oftwo-dimensional(2D)topologicalsuperconductors[3–7] 6 and at the ends of 1D topological superconductors[8]. Spa- A 1Nh.0 tially separatedMZMs giverise to degenerategroundstates, x ] o 0.9 n whichencodequbitsimmunetolocaldechoerence[8,9]. Fur- o thermore, unitary transformations among the ground states 0.8 c canbeimplementedbybraiding[10–14]ormeasurements[15, - r 16] of these modes, indicating that such qubits may be- 0.7 p come building blocks in topological quantum computation 8 12 16 20 24N28 32 36 40 u and information[17–22]. Therefore, MZMs have been vig- s FIG. 1. (a) Sketch. The Hamiltonian varies as a function of θ, . orouslypursuedincondensedmatterphysics[23–29]. at There have been a great variety of proposals for acrrcetaatnin(gy ayde)/fe(cxt axt O).(b=)T(hx0e,Hy0o)p.fiInnvatrhieanptofloarrηc=oo1rdainndateη,=θ0.≡5 m − 0 − 0 topological superconductors, including 2D semicon- (n = 1) in discretized-zone calculation, with N3 grid points in the d- ductor heterostructures[30, 31], topological insulator- (k,θ)space.Asthegridbecomesfiner,Nhconvergesrapidlyto1. n superconductor proximity[32–36], 1D spin-orbit-coupled o quantum wires[37–45], spiral magnetic chains on c superconductors[46–50], Shockley mechanism[51, 52], eryfixedθistopologicallytrivial. Stimulatedbythismecha- [ nism,whichsignificantlydiffersfromthemagnetic-vortexori- and cold atom systems in 2D[53–56] and 1D[57, 58], etc. ginofzeromodeintopologicalp-wavesuperconductor[1,2], 3 Experimentally, suggestive signatures of MZMs in both v 1D[59–69]and2D[70–75]topologicalsuperconductorshave we design trivial-superconductor-based (and vortex-free) T- 8 junctionsharboringMZMs. beenfound. 5 Zeromodes.–Beforestudyingtopologicaldefects,wecon- 5 It is often implicitly assumed that topological supercon- siderspatiallyuniform2Dsingle-bandBogoliubov-deGennes 2 ductivity is a prerequisite for MZMs, accordingly, the chiral (BdG)Hamiltoniansparameterizedbyλ: 0 edge states go hand in hand with the vortex zero modes in . 1 2Dsuperconductors.InthisLetterweshowthatcertaintopo- ξ (λ) ∆ (λ) H(k,λ)= k k (1) 70 ldougcitcoarlsdceafnecstus[p7p6o–r8t1r]obinus2tDMtZoMposl.ogSicoamlleywthriavtiaslurspurpiseirncgolny-, ∆∗k(λ) −ξ−k(λ) ! 1 single-bandsuperconductorssufficethispurpose. Themodel wherek = (kx,ky), ξk = Ek µ, Ek andµ is theenergyand : − v HamiltonianisrelatedtotheHopfmaps,whichoriginallyre- chemicalpotential,respectively,and∆kistheCooperpairing. Xi fertonontrivialmappingsfroma3DsphereS3toa2Dsphere Itdescribessingle-bandspinless(orspin-fully-polarized)su- S2,characterizedbytheintegerHopfinvariant[82,83]. Map- perconductors. This Hamiltonian can be written in terms of r a pings from a 3D torus T3 to S2 inherit the nontrivial topol- thePaulimatricesτi as ogy from the mappings S3 S2. The Hopf invariant has → H(k,λ)= di(k,λ)τi, (2) foundinterestingapplicationsinnonlinearσmodelsandspin i=Xx,y,z systems[82, 84], Hopf insulators[85–90], liquid crystals[91], andquenchdynamicsofCherninsulators[92,93]. withdx = Re∆k, dy = Im∆k, dz = ξk (wehaveξk = ξ k in − − ourmodel).Forreasontobecomeclearshortly,wetake Our model describes topologicallytrivial superconductors with zero Chernnumberand no chiraledge state. Neverthe- d =z τz, (3) i † i less,atopologicalpointdefectischaracterizedbyaHopfin- variant defined in the (kx,ky,θ) space, where kx,ky are crys- wherez=(z1,z2)T and tal momenta and θ is the polar angle[94](Fig.1a). The par- ity(even/odd)ofHopfinvariantdeterminesthepresence(ab- z1 =sinkx+isinky, sence) of robust MZMs, though the superconductor for ev- z =sinλ+i(cosk +cosk +cosλ m ), (4) 2 x y 0 − 2 with m = 3. We can check that ∆ = ∆ and ∆ = i∆ ,0thus2thepairingis p-wave. −Gkiven−Eqk.(4),the(−pkya,kirx)ing (kx,ky) ∆ isofthesameorderasthehoppingξ .Todescribeweakly- k k pairingsuperconductors,onemayconsider H (k,λ)=η(d τ +d τ )+d τ , (5) η x x y y z z withasmallbutnonzeroη. Nevertheless,tuningthevalueof ηdoesnotclosetheenergygap,henceitdoesnotqualitatively changetheresults.Thuswewillsimplytakeη=1below.The mathematicalformofEq.(4)hasbeenintroducedfor3DHopf insulators[85–90],withλreplacedbythethirdmomentumk . z Thephysicalsystemwewillstudyisneverthelessnotdirectly relatedtoHopfinsulator. ThefamiliarChernnumber[1,33,95]C thatcharacterizes 2Dtopologicalsuperconductorscanbeobtainedbyastraight- forwardnumericalcalculation,whichyieldsC(λ) = 0forev- eryλ. A topological defect can be generated if the parameter λ depends on spatial coordinates, in a manner that the config- uration cannot be smoothly deformed to a spatially uniform one. Letusfocusonthedefectswithλdependingonthepo- larangleθ(Fig.1a)as λ=nθ, (6) wherenisaninteger. Theseconfigurationsaretopologically nontrivial due to a nonzero Hopf invariant, as we now ex- plain. The unit vector dˆ(k,θ) 1 (ηd ,ηd ,d ) ≡ √η2(d2x+dy2)+dz2 x y z FIG.2. (a)ProfilesoftwoMZMsinasquaresamplewithaHopf maps the 3D torus T3 (k ,k ,θ are defined modulo 2π) defect (n = 1). The main figure shows the particle component u, x y to the 2D unit sphere S2. For nonzero n, the inverse- andtheleftinsetshowstheholecomponentv.Therightinsetshows image circles of two points on S2 are linked[96]. To quan- severalenergiescloseto0,withtwozeroenergiescoloredinred.(b) isthesameas(a)exceptthatanimpuritypotentialatthesinglesite tify such linking, the Hopf invariant can be defined[82, A(indicatedinFig.1a)isadded. 85]: N = 1 dθd2kǫµνρa ∂ a , where the integrating h −4π2 µ ν ρ range is the BrilloRuin zone for k and [0,2π] for θ, a = µ i ψ(k,θ)∂ ψ(k,θ) , with µ,ν,ρ = k ,k ,θ, and ψ is the µ x y −nehgative-e|ner|gyeigeinfunctionof H (k,θ). Alternat|iviely, we TochecktherobustnessofMZMs,weaddanimpuritypo- η candefineAµ = aµ/2π, jµ = ǫµνρ∂νAρ = (1/8π)ǫµνρdˆ (∂νdˆ tential Uc†AcA (c is the fermion operator) at a single site A ∂ρdˆ),then[82,85] · × (specifiedinFig.1a),whichamountstoaddingaUτz termat site Ainthereal-spaceBdGHamiltonian. Thenumericalre- N = d2kdθj A. (7) sultforU = 1.0 is shownin Fig.2b. TheenergiesofMZMs h −Z · remainpinnedto E = 0, thoughthemodeprofileischanged comparedtoFig.2a. ItcanbecalculatednumericallybydiscretizingtheBrillouin zone[96]. Thenumericalresultforn = 1isshowninFig.1b. For n = 2, we find two localized modesin the defectand Moregenerally,wehaveN =n. Wewillcallthetopological two at the boundary (near θ = 0 and θ = π). Unlike the h defectsdefinedbyEq.(6)asHopfdefects. n = 1 case, the energies of defect modes are not pinned to To obtain energy spectra, we Fourier-transform the BdG zero.Highern’sarealsocalculated,andtheresultssupportthe Hamiltonian to real-space lattice, then numericallysolve the conclusionthatthereisasinglerobustMZMforodd-integer Hamiltonian[96]. For n = 1, two zero modes are found n, andno robustMZMforeven-integern, therefore,itis the (Fig.2a),oneofwhichissharplylocalizedaroundthedefect, Z Hopfinvariant(even/odd)thatdeterminestheexistenceof 2 the other is localized at the sample boundary. The profile of MZM in the defect. One may notice that the Hopf invariant particle component (τ = 1 component, denoted by u) and takestheformofaChern-Simonsinvariant[76,97],whichis z holecomponent(τ = 1component,denotedbyv)isshown notaccidental,becausethelatterisindeedageneraltopologi- z − inthemainfigureandtheinset,respectively.Itisapparentthat calinvariant,nevertheless,ithasbeenapplied[76,77]onlyto thezeromodesareequal-weightsuperpositionsofparticleand topologicallynontrivial superconductors,for which it is just holecomponents,whichisafeatureofMZMs(inspectionof the productofthe Chern numberandthe vorticityof pairing thewavefunctionconfirmsthatu=v ). phase. OurmodelshowsthatnonzeroChernnumberisnota ∗ 3 y therefore, we focus on the neighborhoodof θ = 0. Suppose (a) (b) thatboththeouterandinnerradiusesR,R′ arelarge. On the outer boundary, we have λ = θ = y/R, thus the edge state 1 spectra are given by solving H (k i∂ ,λ y/R)ψ = E eff y → − y → x Eψ. Moreexplicitly,itreads 0 R R' [ivσ ∂ +(M/R)yσ ]ψ= Eψ, (9) -1 x y y whichsquaresto( v2∂2+M2y2/R2 vM/Rσ )ψ=E2ψ. This -2 0 ky 2 equationresemble−stheySchro¨dinger−equationzofharmonicos- cillators, though E is replaced by E2, and there is a cru- FIG. 3. (a) The energy bands for a ribbon with size L L = cial additional vM/Rσ term. The eigenfunctions are σ - x × y − z z 40 ;λ=0(solidcurves).Thetwodashedcurvesshowthegapped eigenvectors(eigenvaluesaredenotedbys = 1),withener- edg×e∞modes forλ = π/20asacomparison. Eachedge-mode band giesgivenby z ± isdoublydegeneratebecausearibbonhastwoboundaries(ignoring AaslmaraglelshpoliltltoiwngdtihsaktwexipthontwenotiaMllZyMdescialylussatrsataedfu.nTcthioeninonfeLrxM).Z(Mb) Eo2uter(sz,n)=2(n+1/2)vM/R−szvM/R, (10) persists as the inner radius R′ → 0, evolving to the defect MZM where n = 0,1, . There is a MZM in the sz = +1 sector, protectedbyHopfinvariant. ··· with n = 0, which is illustrated as the blue bump in Fig.3b. Since this mode is the eigenfunction of τ , it is an equal- x weightsuperpositionofparticleandholecomponents. necessaryconditionforMZM. For a semi-infinite geometry with sample occupying the Edgetheory.–Itisdesirabletohaveanintuitiveunderstand- x > 0 region, the effective edge theory is almost the same ingof theMZM fromthe perspectiveofedgetheory,which, as Eq.(8), exceptthat the sign of the first term reversed[96]. as we will show, differs significantly from that of the chiral Ontheinnerboundaryofthehollowdisk(againnearθ = 0), topologicalsuperconductor[1, 98,99]. First, we numerically we haveλ = θ = y/R, thusthe edge-modespectrumcan be solved the edge states of open-boundarysystems for various ′ obtainedfrom[ ivσ ∂ +(M/R)yσ ]ψ = Eψ, analogousto valuesofλ,andfoundthatgaplessedgemodesexistonlyfor x y ′ y − Eq.(9). Theenergiesaregivenby λ=0.InFig.3a,weshowtheenergybandsforaribbonalong y direction. The gapless edge modes for λ = 0 are shown E2 (s ,n)=2(n+1/2)vM/R +s vM/R, (11) asthesolidbluelines. Theyarenon-chiral,andareimmedi- inner z ′ z ′ ately gappedout when λ is tuned away from 0 (edge modes whichfeaturesaMZMinthe s = 1sector. Thezero-mode z ofλ = π/20areshownindashedcurves),inotherwords,the wavefunctionis − edge modes are not topologically robust. This is consistent withthevanishingofChernnumber. ψinner exp( My2/2vR′)sz = 1 , (12) ∼ − | − i This numericalobservation is confirmed by analytic solu- whichisexponentiallylocalizedneary=0,namelyθ=0(il- tions. We considera semi-infinitegeometrywiththe sample lustratedbythegreenbumpinFig.3b). Allnonzeroenergies occupyingx<0region,k beingagoodquantumnumber.For y grow as 1/R as R is decreased, while the MZM remains at λ=0,weobtaintwodegenerateedgemodesatk =0,bothof ′ ′ y zeroenergy,evolvingtothedefectmodeshowninFig.2. For which are eigenfunctionsof τ with eigenvalue 1[96], thus x − ahollowdiskwithλ = 2θ, therearetwoMZMsontheinner theyareequal-weightsuperpositionsofparticleandholecom- boundary for large R, near θ = 0 and θ = π, respectively. ponents. We introducePauli matricesσ (unrelatedto the ′ x,y,z ShrinkingR causes overlappingbetween them, which splits τ matrices)inthistwo-dimensionalspace,sothatthetwo ′ x,y,z the two zero energies to nonzero values. This is consistent eigenfunctionshaveσ = 1,respectively.Includingsmallk z y ± withtheabsenceofMZMinthen=2defect. andλasperturbations,wederiveaneffectivetheory[96]: It is useful to compare our systems with the chiral topo- Heff(ky,λ)= vkyσx+Mλσy, (8) logical superconductor,for which a magnetic vortex with π- − fluxhostsaMZM[1,2,32,100]. Inahollow-diskgeometry, wheretheeffectiveparametersv,M arefoundtobeboth3/4 this MZM comes from the chiral edge states on the bound- in our specific model[96]. Thus the edge-state spectra are ary circle[1, 98, 99]. The MZM wavefunctionis evenly dis- E±(ky) = ±qv2ky2+M2λ2. It is immediately clear that the tributed on the circle, which implies its sensitiveness to the edgestatesbecomegappedwhenλmovesawayfrom0,which magnetic flux. In contrast to this picture, the MZM in our isconsistentwiththenumericalfindinginFig.3a. Asacom- modelis notderivedfrom chiraledge state, which is simply parison,wenotethattheedgespectrumofachiraltopological absent here, moreover, the MZM is exponentially localized superconductor[1],E(k )=vk ,cannotbegappedout. nearθ = 0(Fig.3b),thusitisinsensitiveifamagneticfluxis y y Based on this effective edge theory, we proceed to study inserted. a hollow disk with polar-angle-dependentparameter, λ = θ T-junctions.–So far, we have only studied configurations (Fig.3b). We are only concerned with low-energy modes, withλcontinuouslyvaried. Itisconceivablethatthesmooth 4 the numerical results thus obtained indicate that MZMs do exist in such T-junctions, as shown in Fig.4a for λ = 0.1π, |u|2 1 λ = π. There is certain arbitrariness in choosing the hop- (a) 0.1 2 pingat the boundarybetween the λ regions, forwhich we 1,2 keeponlythenearest-neighborhopping(discardingthenext- 0.05 nearest-neighborhoppingand the pairing)[101]. The energy eigenvalues near zero are shown in Fig.4c (we show 12 of them),fromwhichitisclearthatthezero-modelevelsaresep- 0 40 aratefromallotherenergylevelsbyafinitegapintheL 30 20 30 40 limit. →∞ 20 10 y x 10 We have also studied superconductor-insulator-vacuumT- junctions.Tothisend,weconsidertheH inEq.(5),inwhich η taking η = 0 amounts to removing the Cooper pairing. We |u|2 noticethatH (k,λ = π)describesaninsulatorwithoutany (b)0.15 η=0 Fermi surface [In contrast, H (k,λ = 0.1π) describes a η=0 0.1 metal].Nowwecandesignsuperconductor-insulator-vacuum T-junctionsbytakingη=1intheλ =0.1πregion,andη=0 1 0.05 inthe λ = πregion. We findoneMZM foreachT-junction 2 (showninFig.4b),andtheenergygapbetweenthezero-mode 0 40 levelsandotherenergylevelsis apparentin Fig.4d. We em- 30 40 20 20 30 phasize that each region by itself is topologically trivial, in 10 y x 10 particular, the superconductor(with λ = 0.1π)is a topologi- callytrivialonewithoutgaplessedgestate. (c) (d) 0.5 Conclusions.–Wehaveinvestigatedtheintriguingpossibil- 0.5 ity of creating MZMs in 2D topologically trivial supercon- E E ductors. TheHopf defectis constructedas a minimalmodel 0.0 0.0 for this purpose. Furthermore, we studied the more accessi- ble T-junctions constructed from topologically trivial super- -0.5 conductors. Hopefully, the trivial-superconductor-basedap- -0.5 proachwillbroadenthescopeofsearchingMZMsinvarious 8 16 24 32 40 48 56 8 16 24 32 40 48 56 L L superconductors. In particular, absence of chiral Majorana edge state in a 2D superconducting sample does not neces- FIG. 4. (a) Superconductor-superconductor-vacuum T-junctions. The system size is L2, with L = 40. The x > L/2 and x L/2 sarilyimplyabsenceofrobustMZMinitspointdefects. ≤ region,shownindifferentcolors,isdescribedbyEq.(2)withλtaking λ =0.1πandλ =π,respectively. Thepeaksaretheprofilesofthe We conclude with several remarks. First, we have fo- 1 2 two MZMs localized around the two T-junctions (each T-junction cused on a single-band model, while many materials have hostsonemode). (b)Superconductor-insulator-vacuumT-junctions. multi-bands. We emphasize that the MZMs found here are Theparametersarethesameas(a)exceptthatdxanddyaretunedto nevertheless robust to small mixing with other bands, be- 0intheλ region,sothatλ regionisaninsulator.(c)and(d)shows 2 2 cause a single localized MZM cannotmove away from zero 12energiesclosestto0,forsystem(a)and(b),respectively. energy, as required by the intrinsic particle-hole symme- try of the BdG Hamiltonian[3]. Second, we have taken a simple model BdG Hamiltonians as our starting point (like HopfdefectdefinedbyEq.(6)canbeimitatedbyadiscontin- Ref.[1]).MorerealisticHamiltoniansshouldbeadoptedwhen uousone,forinstance,wemayconsideraT-junction: dealing with real materials, for instance, the semiconductor- λ , θ [0,π/2] superconductor heterostructures[30, 31], for which our the- 1 ∈ λ(θ)= λ2, θ [π/2,π] (13) ory implies that robust MZMs can exist in certain defects λ3, θ∈ [π,2π]. (e.g. judiciously constructed T-junctions), without requiring ∈ λ1,2,3 being three unequal constants. Such T-junctions will trhegeiumneif.oTrmhissywsitlelmbebleeifntgfoturnfeudtutroetwheortokps.ologicallynontrivial presumably be easier to realize than configurations with λ smoothlyvaryinginspace. Acknowledgements.–We would like to thank Suk Bum Wewillstudythesimplersuperconductor-superconductor- Chung for helpful suggestions on the manuscript. This vacuumT-junctionbyreplacingtheλ -regionbythevacuum. work is supported by NSFC (No. 11674189). Z.Y. is sup- 3 Since the value of λ in the vacuum is not well defined, this portedinpartbyChinaPostdoctoralScienceFoundation(No. replacement is not fully justified in advance. Nevertheless, 2016M590082). 5 Computation with Majorana Zero Modes,” ArXiv e-prints (2016),arXiv:1610.05289[cond-mat.mes-hall]. [20] BVanHeck,ARAkhmerov,FHassler,MBurrello, andCWJ ∗ [email protected] Beenakker,“Coulomb-assistedbraidingofmajoranafermions [1] N. Read and Dmitry Green, “Paired states of fermions in a josephson junction array,” New Journal of Physics 14, in two dimensions with breaking of parity and time- 035019(2012). reversal symmetries and the fractional quantum hall effect,” [21] L.A.Landau,S.Plugge,E.Sela,A.Altland,S.M.Albrecht, Phys.Rev.B61,10267–10297(2000). andR.Egger,“Towardsrealisticimplementationsofamajo- [2] GEVolovik,“Fermionzeromodesonvorticesinchiralsuper- ranasurfacecode,”Phys.Rev.Lett.116,050501(2016). conductors,”JournalofExperimentalandTheoreticalPhysics [22] Dong-LingDengandLu-MingDuan,“Fault-tolerantquantum Letters70,609–614(1999). random-number generator certified by majorana fermions,” [3] M.Z.HasanandC.L.Kane,“Colloquium:Topologicalinsu- Phys.Rev.A88,012323(2013). lators,”Rev.Mod.Phys.82,3045–3067(2010). [23] Jason Alicea, “New directions in the pursuit of majorana [4] Xiao-Liang Qi and Shou-Cheng Zhang, fermions in solid state systems,” Reports on Progress in “Topological insulators and superconductors,” Physics75,076501(2012). Rev.Mod.Phys.83,1057–1110(2011). [24] C. W. J. Beenakker, “Search for Ma- [5] A.Bansil,HsinLin, andTanmoyDas,“Colloquium: Topo- jorana Fermions in Superconductors,” logicalbandtheory,”Rev.Mod.Phys.88,021004(2016). AnnualReviewofCondensedMatterPhysics4,113–136(2013). [6] B Andrei Bernevig and Taylor L Hughes, Topological insu- [25] Tudor DStanescuand SumantaTewari,“Majorana fermions latorsandtopologicalsuperconductors(PrincetonUniversity insemiconductornanowires:fundamentals,modeling,andex- Press,2013). periment,”JournalofPhysics: CondensedMatter25,233201 [7] Shun-Qing Shen, Topological Insulators: Dirac Equation in (2013). Condensed Matters, Vol. 174 (Springer Science & Business [26] MartinLeijnseandKarstenFlensberg,“Introductiontotopo- Media,2013). logical superconductivity and majorana fermions,” Semicon- [8] AYuKitaev,“Unpairedmajoranafermionsinquantumwires,” ductorScienceandTechnology27,124003(2012). Physics-Uspekhi44,131(2001). [27] Steven R. Elliott and Marcel Franz, “Colloquium : Majo- [9] ChetanNayak, StevenH.Simon,AdyStern,MichaelFreed- rana fermions in nuclear, particle, and solid-state physics,” man, andSankarDasSarma,“Non-abeliananyonsandtopo- Rev.Mod.Phys.87,137–163(2015). logical quantum computation,” Rev. Mod. Phys. 80, 1083 [28] Sankar Das Sarma, Michael Freedman, and Chetan Nayak, (2008). “Majorana zero modes and topological quantum computa- [10] GregoryMooreandNicholasRead,“Nonabelionsinthefrac- tion,”npjQuantumInformation1,15001(2015). tionalquantumhalleffect,”NuclearPhysicsB360,362–396 [29] Masatoshi Sato and Satoshi Fujimoto, “Majorana fermions (1991). andtopologyinsuperconductors,”JournalofthePhysicalSo- [11] Xiao-Gang Wen, “Non-abelian statistics in the fractional cietyofJapan85,072001(2016). quantumhallstates,”Physicalreviewletters66,802(1991). [30] JayD.Sau,RomanM.Lutchyn,SumantaTewari, andS.Das [12] D. A. Ivanov, “Non-abelian statistics of half- Sarma,“Genericnewplatformfortopologicalquantumcom- quantum vortices in p-wave superconductors,” putation using semiconductor heterostructures,” Phys. Rev. Phys.Rev.Lett.86,268–271(2001). Lett.104,040502(2010). [13] ChetanNayakandFrankWilczek,“2n-quasiholestatesrealize [31] JasonAlicea,“Majoranafermionsinatunablesemiconductor 2n-1-dimensionalspinorbraidingstatisticsinpairedquantum device,”Phys.Rev.B81,125318(2010). hallstates,”NuclearPhysicsB479,529–553(1996). [32] LiangFuandC.L.Kane,“Superconductingproximityeffect [14] Sankar Das Sarma, Michael Freedman, and Chetan andmajoranafermionsatthesurfaceofatopologicalinsula- Nayak, “Topologically protected qubits from a pos- tor,”Phys.Rev.Lett.100,096407(2008). sible non-abelian fractional quantum hall state,” [33] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang, Phys.Rev.Lett.94,166802(2005). “Chiral topological superconductor from the quantum hall [15] S. Vijay and L. Fu, “Braiding without Braiding: state,”Phys.Rev.B82,184516(2010). Teleportation-Based Quantum Information Processing [34] SukBumChung,Xiao-LiangQi,JosephMaciejko, andShou- with Majorana Zero Modes,” ArXiv e-prints (2016), ChengZhang,“Conductanceandnoisesignaturesofmajorana arXiv:1609.00950[cond-mat.mes-hall]. backscattering,”Phys.Rev.B83,100512(2011). [16] Parsa Bonderson, Michael Freedman, and Chetan Nayak, [35] K. T. Law, Patrick A. Lee, and T. K. Ng, “Ma- “Measurement-only topological quantum computation,” jorana fermion induced resonant andreev reflection,” Phys.Rev.Lett.101,010501(2008). Phys.Rev.Lett.103,237001(2009). [17] DavidAasen,MichaelHell,RyanV.Mishmash,AndrewHig- [36] A. R. Akhmerov, Johan Nilsson, and C. W. J. Beenakker, ginbotham, Jeroen Danon, Martin Leijnse, Thomas S. Jes- “Electricallydetectedinterferometryofmajoranafermionsin persen, Joshua A. Folk, Charles M. Marcus, Karsten Flens- atopologicalinsulator,”Phys.Rev.Lett.102,216404(2009). berg, andJasonAlicea,“Milestonestowardmajorana-based [37] Yuval Oreg, Gil Refael, and Felix von Oppen, “Heli- quantumcomputing,”Phys.Rev.X6,031016(2016). cal liquids and majorana bound states in quantum wires,” [18] Torsten Karzig, Yuval Oreg, Gil Refael, and Michael H. Phys.Rev.Lett.105,177002(2010). Freedman, “Universal geometric path to a robust majorana [38] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma, magicgate,”Phys.Rev.X6,031019(2016). “Majorana fermions and a topological phase transi- [19] T. Karzig, C. Knapp, R. Lutchyn, P. Bonderson, M. Hast- tion in semiconductor-superconductor heterostructures,” ings, C. Nayak, J. Alicea, K. Flensberg, S.Plugge, Y. Oreg, Phys.Rev.Lett.105,077001(2010). C. Marcus, and M. H. Freedman, “Scalable Designs [39] JasonAlicea,YuvalOreg,GilRefael,FelixvonOppen, and for Quasiparticle-Poisoning-Protected Topological Quantum Matthew PA Fisher, “Non-abelian statistics and topological 6 quantuminformationprocessingin1dwirenetworks,”Nature ler,MikhailD.Lukin, andPeterZoller,“Majoranafermions Physics7,412–417(2011). in equilibrium and in driven cold-atom quantum wires,” [40] Roman M.Lutchyn, TudorD. Stanescu, andS.DasSarma, Phys.Rev.Lett.106,220402(2011). “Searchformajorana fermionsinmultibandsemiconducting [58] SebastianDiehl,EnriqueRico,MikhailABaranov, andPeter nanowires,”Phys.Rev.Lett.106,127001(2011). Zoller, “Topology by dissipation in atomic quantum wires,” [41] Tudor D.Stanescu, Roman M. Lutchyn, andS.DasSarma, NaturePhysics7,971–977(2011). “Majorana fermions in semiconductor nanowires,” [59] Vincent Mourik, Kun Zuo, Sergey M Frolov, SR Plissard, Phys.Rev.B84,144522(2011). EPAM Bakkers, and LP Kouwenhoven, “Signatures of [42] Andrew C. Potter and Patrick A. Lee, “Multichan- majorana fermions in hybrid superconductor-semiconductor nel generalization of kitaev’s majorana end states nanowiredevices,”Science336,1003–1007(2012). and a practical route to realize them in thin films,” [60] Stevan Nadj-Perge, Ilya K Drozdov, Jian Li, Hua Chen, Phys.Rev.Lett.105,227003(2010). Sangjun Jeon, Jungpil Seo, Allan H MacDonald, B An- [43] Diego Rainis, Luka Trifunovic, Jelena Klinovaja, and drei Bernevig, and Ali Yazdani, “Observation of majorana Daniel Loss, “Towards a realistic transport modeling fermions in ferromagnetic atomic chains on a superconduc- in a superconducting nanowire with majorana fermions,” tor,”Science346,602–607(2014). Phys.Rev.B87,024515(2013). [61] Leonid P Rokhinson, Xinyu Liu, and Jacek K Furdyna, [44] Elsa Prada, Pablo San-Jose, and Ramo´n Aguado, “Trans- “The fractional ac josephson effect in a semiconductor- port spectroscopy of ns nanowire junctions with majorana superconductornanowireasasignatureofmajoranaparticles,” fermions,”Phys.Rev.B86,180503(2012). NaturePhysics8,795–799(2012). [45] S.DasSarma,JayD.Sau, andTudorD.Stanescu,“Splitting [62] MT Deng, CL Yu, GY Huang, Marcus Larsson, Philippe of the zero-bias conductance peak as smoking gun evidence Caroff, andHQXu,“Anomalouszero-biasconductancepeak for theexistenceof themajoranamodeinasuperconductor- in a nb–insb nanowire–nb hybrid device,” Nano letters 12, semiconductornanowire,”Phys.Rev.B86,220506(2012). 6414–6419(2012). [46] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. [63] AnindyaDas,YuvalRonen,YonatanMost,YuvalOreg,Moty Beenakker, “Majorana fermions emerging from magnetic Heiblum, andHadasShtrikman,“Zero-biaspeaksandsplit- nanoparticles on a superconductor without spin-orbit cou- ting in an al-inas nanowire topological superconductor as a pling,”Phys.Rev.B84,195442(2011). signatureof majorana fermions,”NaturePhysics8, 887–895 [47] Ivar Martin and Alberto F. Morpurgo, “Majo- (2012). rana fermions in superconducting helical magnets,” [64] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, Phys.Rev.B85,144505(2012). K. Jung, and X. Li, “Anomalous modulation of a zero- [48] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and bias peak in a hybrid nanowire-superconductor device,” Ali Yazdani, “Proposal for realizing majorana fermions Phys.Rev.Lett.110,126406(2013). in chains of magnetic atoms on a superconductor,” [65] HOH Churchill, V Fatemi, Kasper Grove-Rasmussen, Phys.Rev.B88,020407(2013). MTDeng, PhilippeCaroff,HQXu, andCharlesMMarcus, [49] Jelena Klinovaja, Peter Stano, Ali Yazdani, and Daniel “Superconductor-nanowiredevicesfromtunnelingtothemul- Loss,“Topologicalsuperconductivityandmajoranafermions tichannelregime: Zero-biasoscillationsandmagnetoconduc- inrkkysystems,”Phys.Rev.Lett.111,186805(2013). tancecrossover,”PhysicalReviewB87,241401(2013). [50] M. M. Vazifeh and M. Franz, “Self-organized [66] SM Albrecht, AP Higginbotham, M Madsen, F Kuemmeth, topological state with majorana fermions,” TSJespersen,JesperNygård,PKrogstrup, andCMMarcus, Phys.Rev.Lett.111,206802(2013). “Exponential protection of zeromodes inmajorana islands,” [51] M.Wimmer,A.R.Akhmerov,M.V.Medvedyeva,J.Tworzy- Nature531,206–209(2016). dło, andC.W.J.Beenakker,“Majoranaboundstateswithout [67] MT Deng, S Vaitieke˙nas, EB Hansen, J Danon, M Leijnse, vorticesintopologicalsuperconductors withelectrostaticde- KFlensberg,JNygård,PKrogstrup, andCMMarcus,“Ma- fects,”Phys.Rev.Lett.105,046803(2010). joranaboundstateinacoupledquantum-dothybrid-nanowire [52] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, and Lu- system,”Science354,1557–1562(2016). Ming Duan, “Proposal for observing non-abelian statis- [68] MarcelFranz,“Majorana’swires,”Naturenanotechnology8, tics of majorana-shockley fermions in an optical lattice,” 149–152(2013). Phys.Rev.B91,094513(2015). [69] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, [53] Masatoshi Sato, Yoshiro Takahashi, and Satoshi Fujimoto, S. Kawai, T. Glatzel, D. Loss, and E. Meyer, “Non-abeliantopologicalorderins-wavesuperfluidsofultra- “Probing atomic structure and Majorana wavefunc- coldfermionicatoms,”Phys.Rev.Lett.103,020401(2009). tions in mono-atomic Fe chains on superconducting [54] ChuanweiZhang,SumantaTewari,RomanM.Lutchyn, and Pb surface,” npjQuantumMechanics2,16035(2016), S.DasSarma,“p +ip superfluidfroms-waveinteractionsof arXiv:1505.06078[physics.atm-clus]. x y fermioniccoldatoms,”Phys.Rev.Lett.101,160401(2008). [70] Jin-Peng Xu, Mei-Xiao Wang, Zhi Long Liu, Jian-Feng Ge, [55] Sumanta Tewari, S Das Sarma, Chetan Nayak, Chuanwei Xiaojun Yang, Canhua Liu, Zhu An Xu, Dandan Guan, Zhang, and P Zoller, “Quantum computation using vortices ChunLeiGao, DongQian, YingLiu, Qiang-HuaWang, Fu- and majorana zero modes of a p x+ i p y superfluid of ChunZhang, Qi-KunXue, andJin-FengJia,“Experimental fermionic cold atoms,” Physical review letters 98, 010506 detectionofamajorana modeinthecoreofamagneticvor- (2007). texinsideatopologicalinsulator-superconductorbi te /nbse 2 3 2 [56] Xiong-Jun Liu, K. T. Law, and T. K. Ng, “Realization of heterostructure,”Phys.Rev.Lett.114,017001(2015). 2dspin-orbitinteractionandexotictopologicalordersincold [71] Hao-Hua Sun, Kai-Wen Zhang, Lun-Hui Hu, Chuang Li, atoms,”Phys.Rev.Lett.112,086401(2014). Guan-YongWang,Hai-YangMa,Zhu-AnXu,Chun-LeiGao, [57] LiangJiang,TakuyaKitagawa,JasonAlicea,A.R.Akhmerov, Dan-DanGuan,Yao-YiLi,CanhuaLiu,DongQian,YiZhou, David Pekker, Gil Refael, J. Ignacio Cirac, Eugene Dem- Liang Fu, Shao-Chun Li, Fu-Chun Zhang, and Jin-Feng 7 Jia, “Majorana zero mode detected with spin selective an- [90] C. Liu, F. Vafa, and C. Xu, “Symmetry Protected Topolog- dreevreflectioninthevortexofatopologicalsuperconductor,” ical Hopf Insulator and its Generalizations,” ArXiv e-prints Phys.Rev.Lett.116,257003(2016). (2016),arXiv:1612.04905[cond-mat.str-el]. [72] Y.-F.Lv,W.-L.Wang,Y.-M.Zhang,H.Ding,W.Li,L.Wang, [91] Paul J. Ackerman and Ivan I. Smalyukh, “Diversity of knot K.He, C.-L.Song, X.-C.Ma, andQ.-K.Xue,“Experimen- solitonsinliquidcrystalsmanifestedbylinkingofpreimages tal Observation of Topological Superconductivity and Majo- intoronsandhopfions,”Phys.Rev.X7,011006(2017). ranaZeroModesonbeta-Bi2PdThinFilms,”ArXive-prints [92] C. Wang, P. Zhang, X. Chen, J. Yu, and H. Zhai, (2016),arXiv:1607.07551[cond-mat.supr-con]. “Measuring Topological Number of a Chern-Insulator [73] Mei-Xiao Wang, Canhua Liu, Jin-Peng Xu, Fang Yang, Lin from Quench Dynamics,” ArXiv e-prints (2016), Miao, Meng-Yu Yao, CL Gao, Chenyi Shen, Xucun Ma, arXiv:1611.03304[cond-mat.quant-gas]. X Chen, et al., “The coexistence of superconductivity and [93] N. Fla¨schner, D. Vogel, M. Tarnowski, B. S. Rem, D.- topological order inthebi2se3thinfilms,”Science336, 52– S. Lu¨hmann, M. Heyl, J. C. Budich, L. Mathey, K. Sen- 55(2012). gstock, and C. Weitenberg, “Observation of a dynami- [74] ZFWang,HuiminZhang,DefaLiu,ChongLiu,ChenjiaTang, cal topological phase transition,” ArXiv e-prints (2016), Canli Song, Yong Zhong, Junping Peng, Fangsen Li, Caina arXiv:1608.05616[cond-mat.quant-gas]. Nie,LiLiWang,X.J.Zhou,XucunMa,Q.K.Xue, andFeng [94] Converting a momentum variable to an angle variable was Liu,“Topologicaledgestatesinahigh-temperaturesupercon- adoptedinRefs.[97]. ductor fese/srtio3 (001) film,”Nature Materials15, 968–973 [95] D.J.Thouless,M.Kohmoto,M.P.Nightingale, andM.den (2016). Nijs,“Quantizedhallconductanceinatwo-dimensionalperi- [75] Q. L. He, L. Pan, A. L. Stern, E. Burks, X. Che, G. Yin, odicpotential,”Phys.Rev.Lett.49,405–408(1982). J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, [96] SupplementalMaterial. T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, and [97] Xiao-Liang Qi, Taylor Hughes, and Shou-Cheng Zhang, K.L.Wang,“ChiralMajoranaedgestateinaquantumanoma- “Topological Field Theory of Time-Reversal Invariant Insu- lousHall insulator-superconductor structure,”ArXive-prints lators,”Phys.Rev.B78,195424(2008). (2016),arXiv:1606.05712[cond-mat.supr-con]. [98] Paul Fendley, Matthew P. A. Fisher, and Chetan Nayak, [76] J.C.Y.TeoandC.L.Kane,“Topologicaldefectsandgapless “Edge states and tunneling of non-abelian quasiparticles in modes in insulators and superconductors,” Phys. Rev. B 82, theν = 5/2quantumhallstateand p+ipsuperconductors,” 115120(2010). Phys.Rev.B75,045317(2007). [77] Ching-KaiChiu,JeffreyC.Y.Teo,AndreasP.Schnyder, and [99] Michael Stone and Rahul Roy, “Edge modes, edge currents, Shinsei Ryu, “Classification of topological quantum matter andgaugeinvariancein p +ip superfluidsandsuperconduc- x y withsymmetries,”Rev.Mod.Phys.88,035005(2016). tors,”Phys.Rev.B69,184511(2004). [78] Ken Shiozaki and Masatoshi Sato, “Topology [100] Sumanta Tewari, S. Das Sarma, and Dung-Hai Lee, of crystalline insulators and superconductors,” “Index theorem for the zero modes of majorana Phys.Rev.B90,165114(2014). fermion vortices in chiral p-wave superconductors,” [79] Dung-Hai Lee, Guang-Ming Zhang, and Tao Xiang, “Edge Phys.Rev.Lett.99,037001(2007). solitonsoftopologicalinsulatorsandfractionalizedquasiparti- [101] Keepingonlythenearest-neighborhoppingmeansthat(inreal clesintwodimensions,”Phys.Rev.Lett.99,196805–4(2007). space)H =(1.5 cosλ)τ fortheboundarysitesr=(L/2,y) rs − z [80] Xiao-Liang Qi, Taylor Hughes, and Shou-Cheng Zhang, and s = (L/2+1,y), where we take λ as λ = π (Another 2 “Fractionalchargeandquantizedcurrentinthequantumspin choicecanbeλ=λ .Thechoiceisnotunique). 1 Hallstate,”NaturePhysics4,273(2008). [81] Ying Ran, Yi Zhang, and Ashvin Vishwanath, “One- dimensionaltopologicallyprotectedmodesintopologicalin- sulatorswithlatticedislocations,”NaturePhysics5,298–303 (2009). [82] FrankWilczekandA.Zee,“Linkingnumbers,spin,andstatis- ticsofsolitons,”Phys.Rev.Lett.51,2250–2252(1983). [83] MikioNakahara,Geometry,topologyandphysics(CRCPress, 2003). [84] EduardoFradkin,Fieldtheoriesofcondensed matterphysics (CambridgeUniversityPress,2013). [85] Joel E Moore, Ying Ran, and Xiao-Gang Wen, “Topologi- cal surface states in three-dimensional magnetic insulators,” Physicalreviewletters101,186805(2008). [86] D.-L. Deng, S.-T. Wang, C. Shen, and L.-M. Duan, “Hopf insulators and their topologically protected surface states,” Phys.Rev.B88,201105(2013). [87] D.-L.Deng, S.-T.Wang, andL.-M.Duan,“Systematiccon- structionoftight-bindinghamiltoniansfortopologicalinsula- torsandsuperconductors,”Phys.Rev.B89,075126(2014). [88] D.-L. Deng, S.-T. Wang, K. Sun, and L.-M. Duan, “Probe knots and Hopf insulators with ultracold atoms,” ArXiv e- prints (2016),arXiv:1612.01518[cond-mat.mes-hall]. [89] RicardoKennedy,“Topologicalhopf-cherninsulatorsandthe hopfsuperconductor,”Phys.Rev.B94,035137(2016). 8 SupplementalMaterial Forthespecialcasem = 3,theybecome 0 2 d =2sink sinλ+2sink cosk +sin2k +2sink cosλ x x y x y y 3sink , y − d = 2sink sinλ+2sink cosk +sin2k +2sink cosλ y y x y x x − 3sink , x − 13 d = cos2k cos2k 2cosk cosk 2cosk cosλ I.EXPLICITEXPRESSIONSOFdx,y,z z − 4 − x− y− x y− x 2cosk cosλ+3(cosk +cosk +cosλ). (16) y x y − In the main article, we have taken d = z τz with z = i † i (z ,z )T and II.EXPLICITEXPRESSIONSOFBDGHAMILTONIANIN 1 2 THEREALSPACE:UNIFORMSYSTEM Inthemainarticle,theHamiltonianiswritteninacompact forminthekspace. Moreexplicit(lesscompact)expressions z =sink +isink , 1 x y forthekineticenergyξ andthepairinggap∆ are z =sinλ+i(cosk +cosk +cosλ m ). (14) k k 2 x y 0 − ξ = cos2k cos2k 2cosk cosk 2cosk cosλ k x y x y x − − − − 13 2cosk cosλ+3(cosk +cosk +cosλ) , y x y − − 4 Forgeneralm0,theexplicitformofthesedi’sread ∆k = 2iη(sinkx+isinky) − 3 [eiλ+(cosk +cosk )]. (17) x y × − 2 Formanypurposes,itisusefultodoaFouriertransformation d =2sink sinλ+2sink (cosk +cosk +cosλ m ), x x y x y − 0 totherealspace.Forauniformsystem(i.e.spatiallyindepen- dy =−2sinkysinλ+2sinkx(coskx+cosky+cosλ−m0), dentλ),theBdGHamiltonianisgivenbyHˆ = Hˆ0+Hˆ∆ with d =sin2k +sin2k sin2λ (cosk +cosk +cosλ m )(21.5) thekineticenergyterm z x y x y 0 − − − 1 Hˆ = (2cosλ 3) c c +c c + c c +c c + 0 −2 − †x,y x+1,y †x,y x,y+1 †x,y x+2,y †x,y x,y+2 Xx,y nh (cid:16) (cid:17) (cid:16) (cid:17) 13 c c +c c +h.c. ( 3cosλ)c c , (18) (cid:16) †x,y x+1,y+1 †x,y x+1,y−1(cid:17)i o−Xx,y 4 − †x,y x,y andthepairingterm 3 3 Hˆ∆ =η ("(2 −cosλ−isinλ)c†x,yc†x+1,y+h.c.#+"(sinλ−icosλ+ 2i)c†x,yc†x,y+1+h.c.# Xx,y 1 1+i 1 i −2 c†x,yc†x+2,y+ic†x,yc†x,y+2+h.c. −" 2 c†x,yc†x+1,y+1+ 2− c†x,yc†x+1,y 1+h.c.#), (19) h i − wherex,yarereal-spacecoordinatestakingintegervalues.As thus explainedin the main article, λ is simply a parameter of the Hamiltonian.Wecanseethatthepairingbetweenthenearest- neighborsites(x,y)and(x+1,y)is ∆ =i∆ , (22) (x,y);(x,y+1) (x,y);(x+1,y) 3 ∆ =η( cosλ isinλ), (20) (x,y);(x+1,y) 2 − − showing a p-wave character in real space. Since the Chern andthepairingbetweensites(x,y)and(x,y+1)is numberiszero(foranyvalueofparameterλ), thesupercon- 3 ductor is topologically trivial, as we have explained in the ∆(x,y);(x,y+1) =η(sinλ icosλ+ i), (21) mainarticle. − 2 9 III.EXPLICITEXPRESSIONSOFBDGHAMILTONIANIN instead of sites, it is natural to take the middle point of THEREALSPACE:WITHADEFECT the link to define θ, for instance, cosθc†x,ycx+1,y is taken as cosθx+1/2,yc†x,ycx+1,ywithθx+1/2,y =arctan[(y y0)/(x+1/2 − − In the previous section, we have focused on uniform sys- x )]. It is also viable to take a different convention, say 0 temswith spatiallyindependentλ. Asexplainedin themain cosθx,yc†x,ycx+1,y,whichdoesnotaffecttheexistenceofMajo- article,atopologicaldefectcanbecreatediftheHamiltonian ranazeromode,asverifiedinournumericalcalculations.The parameterλdependsonthepolarangleθ,whichismeasured reasonisthat θ θ 0as(x x )2+(y y )2 , x,y x+1/2,y 0 0 | − |→ − − →∞ fromthedefectcenter(x0,y0),i.e. thusdifferentchoicesmerelydifferinthenear-defect-corere- gion. The topologicalcharacter of the defect is fixed by the y y θx,y =arctan − 0, (23) Hamiltonianfarfromthedefectcenter,whichisnotaffected x x 0 − bymodifyingthenear-defect-coreregion. such that the configuration cannot be smoothly deformed to auniformone. Thespatialdependenceoftheparameterλin ourtopologicaldefectsisgivenby λ =nθ . (24) x,y x,y Withtheabovetechnicalaspectexplained,wearereadyto Before proceeding, it is useful to point out that, since the write down the real-space BdG Hamiltonian in the presence hoppingtermsandthe pairingtermsare definedonthe links ofadefect: 1 Hˆ = (2cosnθ 3)c c +(2cosnθ 3)c c + c c +c c + 0 −2Xxy nh x+12,y− †x,y x+1,y x,y+21 − †x,y x,y+1 (cid:16) †x,y x+2,y †x,y x,y+2(cid:17) 13 c c +c c +h.c. ( 3cosnθ )c c , (cid:16) †x,y x+1,y+1 †x,y x+1,y−1(cid:17)i o−Xxy 4 − x,y †x,y x,y 3 Hˆ∆ =ηXxy ("(2 −cosnθx+21,y−isinnθx+12,y)c†x,yc†x+1,y+h.c.# 3 +"(sinnθx,y+21 −icosnθx,y+21 + 2i)c†x,yc†x,y+1+h.c.# 1 1+i 1 i −2 c†x,yc†x+2,y+ic†x,yc†x,y+2+h.c. −" 2 c†x,yc†x+1,y+1+ 2− c†x,yc†x+1,y 1+h.c.#), (25) h i − whichsimplyreplacetheparameterλinEq.(18)andEq.(19) thereal-spaceBdGHamiltonianbecomes bynθ. Hˆ = Ψ (x,y)H Ψ(x,y), (26) † x,y;x,y ′ ′ ′ ′ x,Xy;x,y ′ ′ ItisaconventionalsteptodefineΨ(x,y)=(cx,y,c†x,y)T,and withnonzeroelementsofHx,y;x′,y′ givenby 13 +3cosnθ 0 Hx,y;x,y = −4 0 x,y 143 −3cosnθx,y !, 3 cosnθ isinnθ cosnθ 3 Hx,y;x±1,y =∓isinnθ23x±−12,yco±scnoθsx±n12θ,yx±12,y∓ 32 ∓icos−nθx23±+21,yc∓osn3θix±21sx,yi±n21n,yθ± 2 , Hx,y;x,y±1=∓i1cos1nθ2x,y−±21 ± 32ix∓,y±si21nnθx,y±121 ∓1i −x32,y±+12c±os2nθ±x,y±21 x,y±21 , Hx,y;x±2,y = −±221 ∓122 !, Hx,y;x,y±2 = ∓−122i ∓212 !, 1 1i 1 1 1i 1 Hx,y;x±1,y±1= ∓12−i±2 12 ∓2 21∓ 2 !, Hx,y;x±1,y∓1 = ±12−i±2 12 ±2 12∓ 2 !. (27) 10 whereNisthenumberoflatticesites(thelatticeconstantisset tounit)andk ,θtakediscretevaluesin π, π+ 2π,...,π x,y {− − N − 2π . N} ToobtaintheexpressionofAfromj, wedothefollowing Fouriertransformation: 1 A(k,θ)= A(q)e−i(qxkx+qyky+qθθ), N3/2 Xq 1 k kx j(k,θ)= N3/2 j(q)e−i(qxkx+qyky+qθθ), (33) y Xq FIG.5.Theinverseimagesof(0,0,1)(lightcyan)and(1,0,0)(dark whereq = (qx,qy,qθ), whose componentsqx,y,θ take discrete blue)ofthemappingdˆ(k,θ):T3 S2. valuesin N, N +1,...,N 1 . Underthegaugeq A=0, → {−2 −2 2 − } · itisreadilyfoundthat TherankofthematrixH is2L2,Lbeingthelinearsize x,y;x′,y′ q j(q) ofasquaresample. A(q)= i × , (34) − q2 IV.NUMERICALCALCULATIONOFHOPFINVARIANT thustheHopfinvariantbecomes Westartfromthek-spaceBdGHamiltonian: (2π)3 N = j( q) A(q) h − N3 − · H (k,θ) d˜τ =η(d τ +d τ )+d τ . (28) Xq η i i x x y y z z ≡Xi =i(2π)3 j(−q)·(q×j(q)). (35) N3 q2 Forη 1, Hη describesasuperconductorwithweakpairing Xq ≪ (inthemainarticle,wefocusedontheη=1case). Asweexplainedinthemainarticle,theunitvector The numerical integration convergesquite rapidly as we in- crease N. For λ = nθ, we find N = n. The n = 1 case is 1 h dˆ(k,θ) (ηd ,ηd ,d ) (29) showninFig.1bofthemainarticle. x y z ≡ η2(d2+d2)+d2 x y z q mapsthe3DtorusT3 (k ,k ,θaredefinedmodulo2π)tothe x y two-dimensionalunitsphereS2. For nonzeron, the inverse- V.MORESUPPORTINGDATAONTHEEFFECTSOF image circles of two points on S2 are linked, which is illus- IMPURITYPOTENTIAL tratedinFig.5forthen=1case. The Hopf invariant, which characterizes the topological Inthemainarticle,wehaveshownthattheMajoranazero propertyoftheHamiltonian,isgivenby mode for n = 1 is robust to an impurity potential, and re- marked that robust Majorana zero mode is absent for even- Nh = d2kdθj(k,θ) A(k,θ), (30) integer Hopf invariant. Here, more data on this is shown in −Z · Fig.6. Asexplainedinthemainarticle,animpuritypotential wherej(k,θ)=(jx, jy, jθ)(Notethatthesuperscriptsx,ystand Uc†AcA atasinglesite A(indicatedinFig.1ainthemainarti- forkx,ky)takestheformof cle) is added to test the robustness of Majorana zero modes. For odd-integerHopf invariant, Fig.6a shows that the impu- 1 jµ = ǫµνρdˆ (∂ dˆ ∂ dˆ) (31) ritypotentialcannotmovethezeromodeenergiesawayfrom ν ρ 8π · × E = 0 (in consistent with the results given in the main arti- and A = (Ax,Ay,Aθ) (again, the superscripts x,y stand for cle). Foreven-integerHopfinvariant,asshowninFig.6band k ,k ) is the gauge potential satisfying A = j, where Fig.6c, zero modes are generally absent in the defect in the x y =(∂/∂k ,∂/∂k ,∂/∂θ).Itisdifficulttod∇o×theintegrationin presence of impurity potential (the blue lines in Fig.6b and x y ∇Eq.(30)analytically. Todoitnumerically,werewriteEq.(30) Fig.6caretheenergiesformodesneartheboundary,notnear intoadiscreteform: the defect at the system center). Note that several nonzero energy eigenvalues are almost independent of U in Fig.6a, (2π)3 N = j(k,θ) A(k,θ), (32) Fig.6b,andFig.6c,becausetheireigenfunctionsarequitefar h − N3 Xk,θ · fromtheimpuritysiteA.