ebook img

Majorana spinor pair creation in accelerated frames PDF

130 Pages·2010·0.96 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Majorana spinor pair creation in accelerated frames

Alma Mater Studiorum (cid:4) Universita` di Bologna FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Specialistica in Fisica MAJORANA SPINOR PAIR CREATION IN ACCELERATED FRAMES Tesi di Laurea in Teoria dei Campi Relatore: Presentata da: PIETRO LONGHI Chiar.mo Prof. ROBERTO SOLDATI Sessione I Anno Accademico 2009-2010 Ai miei genitori Nadia e Franco, con gratitudine. Contents Abstract 1 Introduction 3 Acknowledgements 7 1 Quantum Field Theory in non-Minkowskian geometries 9 1.1 Generalized spin-0 field theory 9 1.2 Spin-0 fields in Rindler geometry 12 a. The Rindler frame 12 b. The scalar field 14 1.3 Defining spinors: the generalized theory of spin-1 fields 16 2 1.4 The Majorana field in Minkowski spacetime 21 1.5 Majorana spinors in Rindler geometry 27 a. Solving the Majorana-Rindler equation 28 b. The basis of helicity eigenstates 38 c. Study of the hermiticity of the Hamiltonian 42 2 The Unruh effect 45 2.1 The Bogolyubov transform 46 2.2 General theory of the Unruh effect 48 I CONTENTS 2.3 Unruh effect for the spin-0 field 53 2.4 Unruh effect for the Majorana field 57 a. Finding the spinor algebraic RS-to-MS transformation 58 b. Consistency with the general theory of spinors in curved spacetimes 62 c. Helicity-eigenstate normal modes 63 d. Canonical normal modes 65 e. Choosing the proper representation for helicity eigenstates 66 f. Choosing the proper representation for canonical modes 71 g. Digression: normalization of Rindler modes in RS 75 h. Comparing the helicity-eigenstate scheme with the canon- ical modes one: advantages of each scheme 76 i. The thermal spectrum for Majorana fermions 78 2.5 A different derivation of the Unruh effect: helicity structure 80 2.6 Criticisms and discussions on the Unruh effect 86 3 Dark Matter 89 3.1 The idea: a connection with Dark Matter 89 3.2 Dark matter models 91 3.3 Heuristic evaluation of the energy density 94 3.4 Majorana-Unruh fermions in strong gravitational fields 98 4 Conclusions 103 Appendix 107 A.1 Orthonormality and completeness of Rindler modes 107 a. A study of the scalar Rindler modes 107 b. Proof: orthonormality of Majorana Rindler modes in MS 111 c. Proof: completeness of Majorana Rindler modes in MS 113 d. Proof: completeness of Unruh modes in MS 114 A.2 Alternative derivation of the Unruh effect 115 Table of constants 118 Bibliography i II Abstract Nel primo capitolo presenteremo gli strumenti necessari alla riformu- lazionedellateoriadeicampiinmanierageneralmentecovariante, studieremo poi le teorie di campo scalare e di Majorana dal punto di vista di un osserva- tore uniformemente accelerato. Eseguiremo uno studio esplicito e dettagliato di entrambe le teorie, dal punto di vista classico dapprima, quantistico poi. L’obiettivo del capitolo ´e quello di acquisire tutti gli strumenti necessari ad un’analisi approfondita dell’effetto Unruh. Il secondo capitolo ´e dedicato allo studio dell’effetto Unruh per i campi scalare e di Majorana. Dopo aver speso qualche cenno sulla teoria delle trasformazioni di Bogolyubov, tratteremo in maniera del tutto generale la teoria dell’effetto Unruh: mostreremo che un oggetto del tutto naturale in relativita´,comeunatrasformazionegeneraledicoordinate,pu´oindurreeffetti drammaticisulloschemadiquantizzazionecomeportareall’inequivalenzatra spazi di Fock. Procederemo analizzando questo inscindibile legame tra op- eratori di seconda quantizzazione e sistemi di coordinate nei casi di campo scalareediMajorana. Nelcasodiquest’ultimoseguiremoduepossibilistrade equivalenti, di cui una ci permettera´ di formulare la teoria quantistica in maniera particolarmente agevole, mentre l’altra avra´ il pregio di preservare il significato fisico della trattazione. Il taglio della trattazione ´e prettamente tecnico e particolare attenzione ´e posta nello studio dei modi di Unruh ot- tenuti, si dimostra in particolare che: sono analitici su tutto lo spaziotempo 1 Abstract di Minkowski, si riducono ai modi di Rindler opportunamente trasformati nei rispettivi settori, sono un set ortonormale e completo e sono dunque adatti per costruirvi una teoria quantistica. Lo studio dell’effetto Unruh si conclude con un’analisi della struttura dei coefficienti di Bogolyubov per lo spinore di Majorana, in cui stabiliremo le relazioni tra stati fisicamente osservabili dagli osservatori inerziale e non. Il capitolo chiude con una rassegna sulle recenti critiche e dispute su problemi di natura matematica legati a certe derivazioni dell’effetto Unruh. Nel terzo capitolo sfrutteremo infine i risultati ottenuti per il campo di Majorana studiando la possibilita´ di generare materia oscura tramite il mec- canismo di Unruh. Dapprima introdurremo alcune ipotesi necessarie per giustificare la possibile presenza di un ipotetico campo di Majorana. Pre- senteremo poi in sintesi alcuni tra i modelli piu´ recenti di distribuzioni di materia oscura e i rispettivi candidati particellari. Svolgeremo dunque un derivazione euristica della densit´a di tali fermioni generati tramite meccan- ismo di Unruh, ipotizzando l’accelerazione cosmica come causa scatenante di tale effetto. In una seconda parte studieremo lo stesso meccanismo in pre- senzadiaccelerazionegravitazionaledabuconero, esplicitandol’analogiacon l’effetto Hawking. Il capitolo conclude con una rassegna sugli attuali risultati circa la distribuzione di materia oscura ai livelli galattico e di grande scala. 2 Introduction Physics is just the refinement of everyday thinking Albert Einstein The unification of quantum field theories with the theory of general rela- tivity is being, since the seventies, among the greatest efforts in fundamental theoretical Physics, probably the most ambitious one. Einstein’s elegantly simple idea is that of a geometrical universe, wherein spacetime and matter are both main actors, shaping each other according to the laws of general relativity. Quantum field theory is instead a conceptually complex theory, which successfully describes the behavior and the properties of the matter forming the universe at its most fundamental level. While in general rel- ativity one completely ignores the fundamental structure of matter, in the quantum theory of fields it is spacetime that is neglected, being treated as a rigid stage which ignores the effects of the events taking place on it. Both theories have been confirmed experimentally to the highest orders of preci- sion, however all the data in our possess regard contexts wherein the effects of one theory or the other become negligible. Nonetheless there are situations in which both theories are important: it could be extreme phenomena like those happening in presence of a black hole or like the origin of universe, but it could be much more common situations as the presence of dark matter. 3 Introduction Of the various attempts to unify these theories, we will deal with that known as quantum field theory in curved spacetime. This semi-classical ap- proach consists in generalizing the quantum theory of fields through a gener- ally covariant formulation which makes is possible to incorporate the equiv- alence principle within the theory. It is not expected to be an exact theory of nature, but it should provide a good approximate description of those cir- cumstances in which the effects of quantum gravity do not play a dominant role. The most striking application of the theory is Hawking’s prediction that black holes behave as black bodies, emitting a thermal spectrum of radiation with temperature T κ 2π. There was however a very disturbing aspect of (cid:16) { Hawking’s calculation: it appeared to show a divergent density of ultrahigh energy particles in proximity of the horizon of the black hole. In order to gain insight on this issue, Unruh made an operational choice of particle: a particle is a state of the field which can induce a transition in a certain detector appa- ratus. What Unruh found out was surprising: whenever in flat spacetime a certain field is in the ordinary Minkowskian vacuum, an accelerated observer perceives a thermal spectrum of particles of temperature T a 2π. These (cid:16) { apparently paradoxical phenomena have their roots in a fundamental fact that actually lies at the heart of quantum field theory in curved spacetimes: thenotionofparticleisnotfundamentalinQFT,thequantumtheoryoffields is, indeed, a theory of fields not particles. In order to better understand the meaning of this last claim it is necessary to delve technically in the theory of QFT in curved spacetimes. There are actually three main approaches to the Unruh effect: (i) analysis of the response of accelerated detectors in Minkowski spacetime (ii) Unruh’s original derivation which is based on QFT, withoutreferencetothedetailsofdetectors(iii)thealgebraic approach, based largely on the Bisognano-Wichmann theorem which essentially says that the ordinary Minkowski vacuum, when restricted to observables localized in the right Rindler wedge, satisfies the Kubo-Martin-Schwinger condition. In this work we will deal exclusively with Unruh’s original derivation. The first chapter begins with an overview of the tools that are necessary to reformulate QFT in a generally covariant way. After reviewing the gen- eralized Klein Gordon theory we begin to study the case of a scalar field in Rindler spacetime. We solve the classical theory by finding normal modes that are suitable for quantization, we then proceed for the quantum theory. 4

Description:
Consistency with the general theory of spinors in curved spacetimes. 62 c. trasformazioni di Bogolyubov, tratteremo in maniera del tutto generale la.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.