ebook img

Majorana Fermions and Multiple Topological Phase Transition in Kitaev Ladder Topological Superconductors PDF

0.61 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Majorana Fermions and Multiple Topological Phase Transition in Kitaev Ladder Topological Superconductors

Majorana Fermions and Multiple Topological Phase Transition in Kitaev Ladder Topological Superconductors Ryohei Wakatsuki1, Motohiko Ezawa1 and Naoto Nagaosa1,2 1Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan and 2Center for Emergent Matter Science (CEMS), ASI, RIKEN, Wako 351-0198, Japan Motivated by the InSb nanowire superconductor system, we investigate a system where one-dimensional 4 topologicalsuperconductorsareplacedinparallel.ItwouldbesimulatedwellbyaladderoftheKitaevchains. 1 Thesystemundergoesmultipletopologicalphasetransitions,wherethenumberofMajoranafermionschanges 0 asafunctionoftheinterchainsuperconductingpairings. Weanalyticallydeterminethetopologicalphasedia- 2 grambyexplicitlycalculatingthetopologicalnumberandthebandstructure.Theyshoweven-oddeffectswith y respecttothenumber oflegsoftheladder. Whentherelativephasebetweentheinter-andintrachainsuper- a conductingpairingsis0orπ,thesystembelongstotheclassBDIcharacterizedbytheZindex,andotherwise M it belongs to the class D characterized by the Z2 index. This topological class change would be caused by applyingtheJosephsoncurrentoranexternalmagneticfield,andcouldbeobservedbymeasuringthezero-bias 3 differentialconductance. 2 ] I. INTRODUCTION n o c The Majorana fermion is one of the hottest topics in con- - densed matter physics1–3. Majorana fermions are particles r p which are their own antiparticles. Because of their nonlo- u cality and non-Abelian statistics, they are considered to re- s alize exotic phenomenaand there are possibilities to encode . t fault tolerant topological quantum computations. There are a m several suggestions for physical systems that support Majo- FIG.1: (Coloronline)Illustrationofaladdertopologicalsupercon- ranazero-energystates(MZES)4–10. TheKitaevmodelisthe ductor. It is decomposed into the superconducting region (purple) d- simplest model that realizes the MZES11. It well describes andthelead(blue). Thepurpleregionistheladdertopological su- perconductor. Thick lines indicate the chains, while the thin lines n a one-dimensional nanowire with strong Rashba spin-orbit o interaction5,6. Thereare generalizationsof the Kitaev model indicatetheinterchaincouplings. Listhenumberofsitesalongthe c byseveralauthors12–21. chains,whileN isthenumberoftheKitaevchains. Theblueregion [ isthenormallead,whichisattachedwhenwecalculatethedifferen- Thin films and multichannel nanowires with p+ip-wave tialconductanceoftheNSjunction. 4 superconducting pairing have been investigated12–21. In the v quasi-one-dimensionalp+ip-wavepairingsystem, onepair 2 9 ofMajoranafermionsappearsifanoddnumberofsubbands experimental results are still controversial because there are 1 are filled. This is because the class of the system is D, and manypossiblereasonsforthezero-biasanomaly,suchasthe 5 is characterized by the Z2 index. Recently, it was pointed Kondoeffect,disorder,ortunnelingviaAndreevboundstates, 1. out22 that the realistic spin-orbit nanowire system approxi- whichdonotoriginateinMajoranafermions.27–30 0 matelypossesses chiralsymmetryand thesystem belongsto In this paper, motivatedby the InSb nanowire system, we 4 theBDIclass,wherethenumberofMZEScanhavearbitrary investigate a system where one-dimensional topological su- 1 integervalues. perconductorsareplacedinparallel,wherethesuperconduct- : v To realize the Kitaev model, there is a proposal to use a ing pairing phase can be changed arbitrarily. The system i nanowirewhichhasastrongspin-orbitinteraction(SOI)with would well be simulated by the ladder of topologicalsuper- X anordinarys-wavesuperconductorandtheZeemanfield.Be- conductorsshowninFig. 1. Thismodelbelongstotheclass r cause of the strong SOI, the system becomes a helical state, BDI or D, dependingon the phase of the interchain pairing. a inwhichtheelectronspinandthemomentumcorrespondone We first analyze the system where the interchain supercon- toone. Themagneticfieldperpendiculartothespin-orbitef- ducting coupling is absent. The system belongs to the class fectivemagneticfieldbreaksthetime-reversalsymmetryand BDI,wherethetopologicalnumberischaracterizedbytheZ opensa gapatk = 0. Then,thesystem effectivelybecomes index.WefindthatthenumberoftheMZESchangesfromN spinlesswhentheFermienergyiswithinthisenergygap.Fur- to0bychangingthemagnitudeoftheinterlayerhopping.We thermore,thes-wavesuperconductorproximityisinducedin determinethetopologicalphasediagrambycalculatingtheZ the nanowire generates p-wave pairings. A most promising index,whichisatopologicalnumberofthesystem. Nextwe candidate for a strong SOI nanowire is that of InSb, which introducetheinterchainsuperconductingpairings. Whenthe has a large SOI (∆ = 0.3meV), a large electron g factor relativephasebetweentheinter-andintrachainsuperconduct- SOI (g 50),andasmalleffectivemass(m∗ = 0.015m ). Re- ing pairings is 0 or π, the system belongs to the class BDI e c|en|tl∼y,thesignatureofzero-energyboundstateswasobserved and is characterized by the Z index. Otherwise, the system in the system using InSb or InAs nanowire23–26. However, becomes class D and is characterized by the Z index: The 2 2 number of the MZES changes alternately between 0 and 1 of generality we may assume that d is real in the effective x due to the level repulsion by the interchain superconducting Hamiltonian,whiled iscomplexingeneral. We defineθ as y pairings. thephaseofd ,i.e.,d = d eiθ. y y y | | Therestofthepaperisorganizedasfollows. InSec.IIwe Theenergyspectrumissymmetricaroundzeroenergydue introducethemodelanddiscusstherelationshipbetweenour totheparticle-holesymmetryinducedbythesuperconductiv- modeland the Kitaev model. We also discuss the symmetry ity. There are N legs in the ladder (Fig. 1). We refer to L andthetopologicalclassificationoftheHamiltonian. InSecs asthenumberofsitesalongtheladder. Wenotethatthesys- .III and IV, we study the model without and with interchain temisreducedtotheKitaevchainwhenN = 1. Ifthephase superconductingpairing. We calculate the Z and Z indices difference between d and d is π/2 and L N, it is an 2 x y ≈ and determine the phase diagram. We also discuss the en- anisotropicp+ipsuperconductorsystem. Weanalyzemainly ergyspectrum. In Sec. V we derive the lowenergyeffective thesmall-N region. Hamiltonianwritten in termsofMajoranaoperatorsanddis- We clarify the topological class31 of the Hamiltonian (1). cussitslowenergybehavior.InSec. VI,examiningthetrans- Inthemomentumrepresentation,theBogoliubov–deGennes port property of the model, we study how the conductance Hamiltonianisgivenby dependsonthephasedifferencebetweenintra-andinterchain superconductingpairings. ξ ∆ H(k)= , (2) ∆† ξ (cid:18) − (cid:19) II. KITAEVLADDERMODEL whereξand∆areN N tridiagonalmatriceswiththematrix × elements Majorana fermions emerge at the edges of an InSb ξ =( µ 2t cosk)δ t δ t δ , (3) nanowireinthepresenceofthesuperconductingorderandthe i,j x i,j y i,j+1 y i+1,j − − − − externalmagneticfieldperpendiculartoit. Itiswelldescribed ∆ =2id sinkδ +d δ d δ , (4) i,j x i,j y i,j+1 y i+1,j − bytheKitaevchain11,whereaone-dimensionalp-wavetopo- logical superconductivity is realized. A natural question is where k is the crystal momentum along the chain direction, whathappenswhenweplaceseveralInSbnanowiresinparal- i.e.,thexaxis. lelonorunderthes-wavesuperconductor.Thissetupwillbe The explicit representations of the time reversal (Θ), the easilyrealizedusingrecentnanofabricationtechnology. particle-holereversal(Ξ), andthechiral(Π)operatorarede- To simulate this system, we propose to investigate the finedby HamiltoniandescribingaladderoftheKitaevchains, Θ=K, Ξ=τ K, Π=τ , (5) x x H = µ c† c − i,j i,j whereK representsthecomplexconjugateoperator. Wecan i,j X showtheHamiltoniansatisfiestherelation (t c† c +t c† c +H.c.) − x i,j i+1,j y i,j i,j+1 i,j ΞH(k)Ξ−1 = H( k), (6) X − − − (dxc†i,jc†i+1,j +dyc†i,jc†i,j+1+H.c.), (1) ΠH(k)Π−1 =−H(k). (7) i,j X WhenImd =0,theHamiltoniansatisfiestherelation whereiandj arethelatticecoordinatesforthexandyaxes. y The intrachain transfer integral tx and the intrachain super- ΘH(k)Θ−1 =H( k). (8) conducting pairing amplitude d are present in the Kitaev − x model, while we have newly introduced the effective inter- Itiseasily seenthatΘ2 = Π2 = Ξ2 = 1. Then,theHamil- chaintransferintegralt andthesuperconductingpairingam- y tonian belongs to the class BDI, which is characterized by plitudedy. the Z index. On the other hand, when Imd = 0, the time- y Physically, t andd will be derivedbythe couplingsbe- 6 y y reversalsymmetryisbroken,andtheclasschangestotheclass tweentheInSbnanowiresviathesubstratesuperconductorby DwhereonlyΞsymmetryispresent,beingcharacterizedby thesecond-orderprocess. Thesuperconductingpairingphase theZ index. 2 maybecontrolledbyasuperconductingquantuminterference Itis convenientto use the Majoranarepresentation,which devide(SQUID)configuration.Thecontrollablephasediffer- isconstructedwithuseoftheunitarytransformation, encebetweend andd isthenewfeaturecomparedwiththe x y p+ip-wave pairing system. We shall soon see that this su- 1 I iI perconductingpairingphasedifferencecausesthetopological U = √2 I iI , (9) classchangebetweenBDIandD. (cid:18) − (cid:19) Thereis an importantcommenton the coefficientsdx and whereI is the unitmatrix. IttransformsDirac fermionsinto dy. Bymakingaphasetransformationofci,j,wecanchange Majoranafermions, the overall phase of the superconducting pairings. Namely, athbesoplhuatesephdaifsfeesreonfcdexbeatnwdedeynadrxeamnedandiyngislepshs.ysWiciatlh,obuuttlothses c†i,j = γiA,j +2iγiB,j, ci,j = γiA,j −2iγiB,j, (10) 3 obeying γiα,j,γiα′,′j′ = δi,i′δj,j′δα,α′. The unitary trans- formedHnamiltonianoisgivenby 1 ∆+∆† 2iξ i ∆ ∆† U†HU = − − . 2 2iξ i ∆ ∆† ∆+∆† (cid:18)− − − − (cid:0) (cid:1)(cid:19) (11) (cid:0) (cid:1) (cid:0) (cid:1) OuranalysisiscarriedonbasedonthisMajoranarepresenta- tionoftheHamiltonian. III. TOPOLOGICALPHASEDIAGRAMWITHOUT INTERCHAINSUPERCONDUCTINGPAIRINGS We firstinvestigatethecase ofd = 0forsimplicity. The y transformedHamiltonianiswrittenas 0 v U†HU =i , (12) vT 0 (cid:18)− (cid:19) whichhasonlyoff-diagonalelements,with 1 v =ξ ∆ ∆† − 2 − =( µ (cid:0)2t cosk(cid:1) 2id sink)I t M, (13) x x y − − − − whereMrepresentsa tridiagonalmatrixwhichonlyhasele- FIG.2: (Color online) Phase diagrams of the four-leg and five-leg ments1at(n,n+1)and(n+1,n). Itisstraightforwardto lnaudmdebresr.sTinhetheenefirgguyreunrietpirsestexn,tatnhdewZeinhdavexe.taTkehnedZx2 =ind0e.x5.isTthhee diagonalizethematrixv. Asweseeattheendofthissection, parityofthenumber. theeigenvaluesare nπ z = µ 2t cos 2t cosk 2id sink, (14) otherhand,alongthet axiswithµ=0,multipletopological n y x x y − − N +1 − − phase transitions occur: The band gap closes at t = 2tx, whiletheeigenfunctionsare and the Z index is 0 for even N and 1 for odd Ny for±suzfnfi- cientlylarget . y 2 nmπ We show the energyspectrumof the ladderof chainsas a Ψn = sin (n=1,2, ,N), (15) function of t for N = 4,5 in Fig. 3. We find that the Z N +1 N +1 ··· y r indexgivesthe numberof MZES. The wave functionsof all wheremrepresentstheposition(m=1,2, ,N). theMZESarelocalizedattheedges. TheZindexW isdefinedbythechiralin·d·e·x The above behaviors can be understood as follows. The systemisequivalenttoN independentKitaevchainswiththe dk W ∂ lndetv(k) renormalizedchemicalpotential: k ≡ 2πi Z N dk dk =tr ∂ lnv(k)= ∂ lnz (k), (16) H = H , (18) k k n n 2πi 2πi Z n Z n=1 X X whereznaretheeigenvaluesofv. Itdescribesthesumofthe Hn =−µ′n c†i,nci,n winding numbers of v(k) around the origin of the complex i X plane.TheZindexiscalculablebysubstituting(14)into(16). t c† c +d c† c† +H.c. , (19) Weinvestigatethetopologicalphasediagraminthe(t ,µ) − x i,n i+1,n x i,n i+1,n plane. Thephaseboundariesaredeterminedbydetv =y0. It Xi (cid:16) n (cid:17) µ′ =µ+2t cos π. (20) followsfrom(14)thattheyaregivenby n y N +1 nπ Each renormalized Kitaev chain has MZES when µ′ < −µ−2tycosN +1 =±2tx. (17) 2t . The total number of the MZES is given by t|hen|sum x | | oftherenormalizedKitaevchains. ThetopologicalphasediagramisillustratedinFig. 2. Wesee For the sake of completeness we show how to derive the thefollowingcharacteristicfeatures: TheZindexisW = N eigenvalues(14).Theeigenvaluesz canbeobtainedbysolv- at (ty,µ) = (0,0). Along the µ axiswith ty = 0, the topo- ingthecharacteristicequationfortnM, logical phase transition occurs from W = N to W = 0 at y µ = 2t irrespectiveof the numberN of the legs. On the f (x)=det(xI t M)=0. (21) x N y ± − 4 FIG.3: (Color online) Energyspectraof anN = 4,5ladder with FIG.4:(Coloronline)EnergyspectraofN =4,5ladderwithdy = dy =0.Theenergyunitistx,andwehavetakenµ=0.7,dx =0.5. 0.3ty. Theenergyunitistx,andwehavetakenµ=0.7,dx =0.5. Thenumberofzero-energystatesdecreasesby2ateveryphasetran- Notethatbothdxanddy arereal. Thenumberofzero-energystates sitionasty increases,sinceeachzero-energystateperchaindoubly decreasesbytwoateverytopological phasetransitionwiththegap degeneratesduetothetwoendpointsofthechain.Inthestrongcou- closingofthebulkstates,becauseeachzero-energystateperchain plinglimitty → ∞,thereisno(one)MZESpereachedgeincase doubly degenerates due to the two endpoints of the chain. In the ofN =4(5).WehavesetL=64. strong coupling limit ty → ∞, there is no (one) MZES per each edgeincaseofN =4(5).WehavesetL=64. To solve this we write down the recurrence relation of the characteristicequation, Weproceedtoinvestigatetheeffectsofcomplexinterchain superconductingpairings (Imd = 0). The Hamiltonian no y f (x)=xf (x) t2f (x), (22) longersatisfiesthetime-reversals6ymmetry(8). Thetopolog- N+2 N+1 − y N icalclass ofthe Hamiltonianchangesto the classD, and the fromwhichitfollowsthat topologicalnumberis theZ index. Thesystem allowsonly 2 thetwocases,whetherornotapairofMajoranafermionsex- [N/2] x N n ist. f (x)=tNU = ( 1)n − t2nxN−2n N y N(cid:18)2ty(cid:19) nX=0 − (cid:18) n (cid:19) y (23) preWseencsehoowf dthye(Fenige.rg5y).spTehcterubmehaavsioarfoufncthtieonMoZfEtSy dinrasthtie- cally changes from the system with d = 0 to the one with with Chebyshev polynomials of the second kind. We now y Imd = 0. When we change the phase of d and the class solvetheeigenequationas y 6 y changesfrom BDI to D, the numberof MZES reducesfrom nπ even (odd) number to zero (one). This is due to the inter- x =2t cos (n=1,2, ,N), (24) n y N +1 ··· ferenceofMZESpairsduetotheinterchainsuperconducting pairings. Then,onlyoneMZESpaircanexist,whichimplies from which we find the eigenvalues (14) and the eigenfunc- that the topologicalnumber is the Z index. The numberof 2 tions(15)becauseznisconstantminusxn. MZESpairsisgivenbymod2N. The Z index is obtained by the sign of the Pfaffian at 2 the time-reversal-invariantmomenta k = 0 and π. At these IV. TOPOLOGICALPHASEDIAGRAMWITH points,sinced disappearsfrom∆definedby(4),itisconve- x INTERCHAINSUPERCONDUCTINGPAIRINGS nientto make a phasetransformationc eiθ/2c, so thatd y 7→ becomesreal.Then,theMajoranarepresentedHamiltonianat We nextinvestigatethecasedy = 0. We firstassumethat thesepointsisgivenby(12),i.e., 6 itisrealaswellasd . Then,thesystembelongstotheclass x BDI,andthesystemischaracterizedbytheZindex.Weshow 0 v U†HU =i ± (25) theenergyspectruminFig. 4. vT 0 (cid:18)− ± (cid:19) 5 FIG. 5: (Color online) Energy spectra of N = 4,5 ladder with FIG. 6: (Color online) Energy spectra of N = 4,5 ladder with |dy| < ty. The energy unit is tx, and we have taken µ = 0.7, |dy| > ty. The energy unit is tx, and we have taken µ = 0.7, dx = 0.5,anddy = 0.3ity. Eachsubgapstatedoublydegenerates. dx =0.5,anddy =0.3ity. Eachsub-gapstatedoublydegenerates. With Imdy 6= 0, MZES disappear in the parameter region where WhenN =4(5),thesystemisalwaystrivial(topological).Wehave thereareevenMZESfordy =0,whiletwoMZESremaininthepa- setL=64. rameterregionwherethereareoddMZESfordy =0. Inthestrong coupling limitty → ∞, thereisno(one) MZESper eachedge in caseofN =4(5).WehavesetL=64. whichis nothingbut(17) with the replacementof t by t′ = y t2 d 2. Thephasediagramdependsononly d . y−| y| | y| butnowwith qWeobtainthephasediagramasfollows. When t > d , y y | | | | it is simply given by Fig. 2 with the understanding that the v =(ξ ∆) ± ±− horizontal axis is t′. Recall that the energy spectrum as a =( µ 2t )δ (t + d )δ (t d )δ , y − ± x i,j − y | y| i,j+1− y −| y| (i2+61),j function of ty is given by Fig. 5. On the other hand, when d >t ,t′ becomespureimaginary,andthephasediagram | y| y y becomesverysimple: WhenN isodd,thegapclosingcondi- whereξ =ξ(0)= µ 2t andξ =ξ(π)= µ+2t . TheP−faffianissim−ply−givexnby + − x tionisgivenonlybyµ=±2tx. WhenN iseven,ontheother hand, the system is trivial in the whole range. The energy spectrumasafunctionoft isnowgivenbyFig. 6. 0 v y Pf α = detv , (27) vT 0 ± α (cid:18)− α (cid:19) with α = , since there are no diagonal elements. Then Z -invariant±isthesignoftheproductofthePfaffiansinEq. V. ENERGYSPECTRUMASAFUNCTIONOFTHE 2 (27), i.e., detv detv . We note that when d is real, the SUPERCONDUCTINGPHASEDIFFERENCE + − y Z -invariantis theparityofthe Z-invariant. The topological 2 phaseboundariesaredeterminedbydetv =0asbefore. It is interesting to investigate how the energy spectrum Weobtaintherecursionrelationofthecharacteristicpoly- changesduringthetopologicalclasschangebetweentheBDI nomialfN =detvas class and the D class. Therefore, we show the energy spec- trumasafunctionofθdefinedbyd = d eiθ inFig. 7. One fN+2 =(−µ±2tx)fN+1− t2y −|dy|2 fN. (28) canclearlyseetheMZESisclearlyyseen|iny|thebulkbandgap. Thisrelationisobtainedbyreplacin(cid:0)gt2 tot2 (cid:1) d 2 in(22). Here,wederivethesinθdependenceofthesubgaplevels. In y y −| y| the Kitaev model, if we define the Majorana operatorsas in Then,theconditionf =0yields N Eq.(10),thezero-energyMajoranafermionontheleft(right) nπ edge contains only γA (γB) as in Kitaev’s original paper11. µ 2 t2 d 2cos = 2t , (29) − y−| y| N +1 ± x Therefore, at low energy, the dy term in our Hamiltonian is q 6 laddernumerically. IntheMatsumoto-Shibaformalism42,we expressthe semi-infinite wire by the delta-functionpotential withinfinitestrength.Then,theGreen’sfunctionofthesemi- infinitewireGi,i′ isgivenby Gi,i′ =G0i,i′ −G0i,0 G00,0 −1G00,i′, (33) where G0 is the bulk Green’s f(cid:0)unctio(cid:1)n. The bulk Green’s i,i′ functionisgivenanalyticallyink-space. Thenthereal-space representationisobtainedbyperformingFouriertransforma- tionnumerically: G0i,i′ = 21π dkeik(i−i′)G0(k). (34) Z FIG.7: (Coloronline)Energyspectrumasafunctionofthesuper- On the otherhand, the surfaceGreen’sfunctionof the semi- conductingpairingphaseθ.Theenergyunitistx,andwehavetaken infinitenormalleadcanbegivenanalytically: µ=0,dx =0.5,ty =0.5,dy =0.25,andL=64. Therearefour MZESinthecaseofN =4,whichareproportionaltosinθ. A(k) E i (2t)2 E2 (E <2t) J − − J | J| g (E)=A(k)(cid:16)E + pE2 (2t)2 (cid:17) (E < 2t), reducedto m,n A(k)(cid:16)EJ pEJ2 −(2t)2(cid:17) (EJ >−2t) d eiθc† c† +H.c. J − J − J | y| i,jii,dj+1  (cid:16) p (cid:17) (35) = | y|cosθ γAγB +γBγA − 2 i,j i,j+1 i,j i,j+1 where m and n are the chain labels; A(k) = i|dy|sinθ(cid:0)γAγA γBγB (cid:1) (30) N2+121t2 ksin(mka)sin(nka); and EJ = E + µ − − 2 i,j i,j+1− i,j i,j+1 2tycoska, where t(> 0) and µ are the hopping and the P chemicalpotentialsoftheleads. i|dy|sinθ(cid:0)γAγA (i leftha(cid:1)lf) − 2 i,j i,j+1 ∈ . (31) Then,weconstructthe Green’sfunctionofthewholesys- ≈(+i|d2y|sinθγiB,jγiB,j+1 (i∈righthalf) tembythe recursionrelations. Expressingthe Green’sfunc- tion of the left(right) semi-infinite wire as G (G ) and the L R Namely,theMajoranafermionsatchainj andj+1arecou- Green’sfunctionofthewholesystemasG,weobtain pledbytheimaginarypartofthe interchainpairing,andthis causesthesinθdependenceoftheenergy: G−1 =g−1 H G H , (36) L,i,i i − i,i−1 L,i−1,i−1 i−1,i G−1 =g−1 H G H , (37) E dy sinθ. (32) R,i,i i − i,i+1 R,i+1,i+1 i+1,i ∝| | G−1 =g−1 H G H Inotherwords,breakingofthetime-reversalsymmetrybythe i,i i − i,i−1 L,i−1,i−1 i−1,i H G H , (38) imaginary part of the interchain coupling correspondsto the i,i+1 R,i+1,i+1 i+1,i − creationofthecouplingbetweenMajoranafermions. Bynu- G =G H G , (39) i,i+1 i,i i,i+1 R,i+1,i+1 mericallydiagonalizingtheHamiltonian(1),weobtaintheen- G =G H G , (40) i+1,i i+1,i+1 i+1,i L,i,i ergyspectrumasafunctionofθford /t =0.5asshownin x x g−1 =E H , (41) Fig.7. Thesubgaplevelsareingoodagreementwiththesinu- i − i soidalbehavior.Wehavethusdiscussedthesinθdependence ofthesubgaplevels. AneffectiveHamiltonianonthesubgap whereEistheenergy,Hiistheon-siteHamiltonian,andHi,i′ isthehoppingbetweensitesi,i′.Ontheotherhand,weobtain states will be derived in a manner similar to that in Ref.15. theretardedGreen’sfunctionGRbyreplacingEwithE+iε, Wenotethatthetopologicalclasschangewithoutgap-closing whereεisaninfinitesimalpositivenumber. occurswhenwechangeθ32. Next,wecalculatethedifferentialconductancebytheLee- Fisherformula35,37: VI. TRANSPORTPROPERTY 2e2 G= Tr[P (G′′ G′′ +G′′ G′′ h e i,i+1 i,i+1 i+1,i i+1,i It is well known33,34 that the local Andreevreflection rate G′′ G′′ G′′ G′′ )], (42) − i,i i+1,i+1− i+1,i+1 i,i atzerobiasis1inthepresenceofaMajoranafermion,while the zero-energy Majorana bound state gives the differential whereG′′ = ImGR ,P istheprojectionoperatorontothe i,i′ i,i′ e conductance2e2/h. We havecalculatedthedifferentialcon- particlesubspace. We chooseanarbitraryiinthenormalre- ductanceoftheNSjunction(Fig. 1),followingRefs.35–40. By gionduetocurrentconservation. employingthe recursiveGreen’sfunctionmethod,we obtain The results for the differential conductance G at zero en- the surface Green’s function41–43 of the semi-infinite Kitaev ergyareillustratedinFigs.8and9. We haveinvestigatedthe 7 FIG.8:(Coloronline)DifferentialconductanceoftheNSjunctionin FIG.9: (Coloronline) Differentialconductance oftheNSjunction unitsof2e2/hwithrealdy whenN = 4,5. Thesystembelongsto inunitsof 2e2/hwithimaginarydy when N = 4,5. Thesystem theclassBDI.Theenergyunitistx,andwehavetakendx =0.5and belongstotheclassD.Theenergyunitistx,andwehavetakendx = dy =0.3ty.WhitelinesaretopologicalphaseboundariesinFig.2. 0.5anddy = 0.3ity. Whitelinesaretopologicalphaseboundaries inFig.2. cases with real d (class BDI) and with imaginary d (class y y D).In bothoftheclasses BDI andD, the figuresofthe con- ductancestronglyresemblethephasediagrams(Fig. 2). The brightregionswherethedifferentialconductanceisquantized correspond to the topological regions. This means that the localAndreevreflectionrate is 1 with each MZES. Itagrees with the previousstudy33,44,45 that the Majorana fermion in- ducestheresonantAndreevreflection. We havecalculatedthedifferentialconductanceasafunc- tionofthesuperconductingpairingphaseθandtheenergyof injected electrons, which we show in Fig. 10. The behavior reflects the behaviorof the energyspectrumgivenin Fig. 7. FIG.10: (Coloronline)DifferentialconductanceoftheNSjunction Moreover,thedifferentialconductancepermodeisquantized inunitsof2e2/hasafunctionofthesuperconductingpairingphase to2e2/hwhenθ = 0,π. ThisisbecauseoftheresonantAn- θandtheenergy. Theenergyunitistx,andwehavetakenµ = 0, dreevreflectioninducedbyMajoranafermions. Furthermore, dx = 0.5, ty = 0.5, anddy = 0.25. TherearefourMZESinthe the peak decays rapidly when the phase is switched on and caseofN =4. therearenoMajoranafermions. WehavealsocalculatedthecrossedAndreevreflectionrate VII. CONCLUSIONANDDISCUSSION in the NSN junction,wherethe two Majoranafermionscou- ple.ThecouplingstrengthbetweenMajoranafermionsattwo edges is on the order of exp( L/ξ), where ξ is the super- MotivatedbytheInSbnanowiresuperconductorsystem,we − conductingcoherencelength. When ξ L, since there are have investigated Kitaev-ladder topological superconductors ≪ nooverlapsbetweentheMZESlocalizedattherightandleft based on the effective Hamiltonian (1). Especially, we have edges, thecrossedAndreevreflectionrate isquitesmall. On revealedthetopologicalphasetransitionbychangingthesu- theotherhand,whenξ >L,therearesomeoverlapsbetween perconductingpairing phase difference between the x and y theMZESlocalizedattherightandleftedges,andthecrossed directions(i.e.,thephaseofd /d ). Thisistheproblemnot y x Andreevreflectionrateremainsfinite. addressedinthepreviousstudies12–21onthep+ip-wavepair- 8 ingsystem. Wehavefoundthatthepairingphaseplaysacru- Noteaddedinproof. We becameawareofthenicepapers cial role to determine the topological class. If the phase is onasimilarsystem50–52 0 or π, the system belongs to the class BDI with n MZES (n = 0,1,2,...); otherwise it belongs to the class D with n MZES(n = 0,1). Thephasegradientofthe bulksupercon- ductor may be controlled by forming the SQUID configura- Acknowledgements tion. The proximity-inducedpairing in the wires also gets a phasegradient,yieldinganimaginaryparttod ,andtheclass y changestoD.Thistopologicalclasschangecanbeobserved WeareverygratefultoY.Tanakaformanyhelpfuldiscus- by differential conductance measurement. We note that our sions on the subject. This work was supported in part by systemismappedtotheKitaev-spin-laddersystem47,48inthe Grants-in-Aid for Scientific Research from the Ministry of caseofd = 0. Itmaybepossiblethatourmodelisrealized Education, Science, Sports and Culture No. 24224009 and y byusingultra-coldatomicsystems49. No. 25400317. 1 J.Alicea,Rep.Prog.Phys.75,076501(2012). S.DeFranceschi,Nat.Nanotechnol.9,79,(2014). 2 C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 28 E.J.H.Lee,X.Jiang,R.Aguado,G.Katsaros,C.M.Lieber,and (2013). S.DeFranceschi,Phys.Rev.Lett.109,186802,(2012). 3 Y.Tanaka,M.Sato,andN.Nagaosa,J.Phys.Soc.Jpn.81,011013 29 J.Liu,A.C.Potter,K.T.Law,andP.A.Lee,Phys.Rev.Lett.109, (2012). 267002(2012). 4 L.FuandC.L.Kane,Phys.Rev.Lett.100,096407(2008). 30 D.Rainis,L.Trifunovic,J.Klinovaja,andD.Loss,Phys.Rev.B 5 Y.Oreg,G.RefaelandF.vonOppen,Phys.Rev.Lett.105,177002 87,024515(2013). (2010). 31 S.Ryu,A.PSchnyder,A.Furusaki,andA.W.W.Ludwin,New 6 R.M.Lutchyn,J.D.Sau,andS.DasSarma,Phys.Rev.Lett.105, J.Phys.12,065010(2010). 077001(2010). 32 M.Ezawa,Y.Tanaka,andN.Nagaosa,Sci.Rep.3,2790(2013). 7 J.Alicea,Phys.Rev.B81,125318(2010). 33 K. T. Law, Patrick A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 8 J.D.Sau,R.M.Lutchyn,S.Tewari,andS.DasSarma,Phys.Rev. 237001(2009). Lett.104,040502(2010). 34 L.Fidkowski,J.Alicea,N.H.Lindner,R.M.Lutchyn,andM.P. 9 M.Sato,Y.Takahashi,andS.Fujimoto,Phys.Rev.B82,134521 A.Fisher,Phys.Rev.B85,245121(2012). (2010). 35 P.A.LeeandD.S.Fisher,Phys.Rev.Lett.47,882(1981). 10 M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 36 D.S.FisherandP.A.Lee,Phys.Rev.B23,6851(1981). 020401(2009). 37 A.Ii,A.Yamakage,K.Yada,M.Sato,andY.Tanaka,Phys.Rev. 11 A.Kitaev,Physics-Uspekhi44,131(2001). B86,174512(2012). 12 A.C.PotterandP.A.Lee,Phys.Rev.Lett.105,227003(2010). 38 C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electron. 12, 13 Y. Niu, S. B. Chung, C.-H. Hsu, I. Mandal, S. Raghu, and S. 203(2013). Chakravarty,Phys.Rev.B85,035110(2012) 39 J.J.He,J.Wu,T.-P.Choy, X.-J.Liu,Y.Tanaka, andK.T.Law, 14 M. -T. Rieder, G. Kells, M. Duckheim, D. Meidan, and P. W. Nat.Commun.5,3232(2014). Brouwer,Phys.Rev.B86,125423(2012). 40 J. Liu, F.-C. Zhang, and K. T. Law, Phys. Rev. B 88, 064509 15 G.Kells,D.Meidan,andP.W.Brouwer,Phys.Rev.B85,060507 (2013). (2012). 41 M.P.L.Sancho,J.M.L.Sancho,andJ.Rubio,J.Phys.F:Met. 16 D.AsahiandN.Nagaosa,Phys.Rev.B86,100504(R)(2012). Phys.15,851(1985). 17 B.ZhouandS.-Q.Shen,Phys.Rev.B84,054532(2011). 42 M.MatsumotoandH.Shiba,J.Phys.Soc.Jpn.64,1703(1995). 18 S.R.Manmana,A.M.Essin,R.M.Noack,andV.Gurarie,Phys. 43 A.Umerski,Phys.Rev.B55,5266(1997). Rev.B86205119(2012). 44 A.Romito,J.Alicea,G.Refael,andF.vonOppen,Phys.Rev.B 19 W. DeGottardi, M. Thakurathi, S. Vishveshwara, and D. Sen, 85,020502(2012). Phys.Rev.B88,165111(2013). 45 K.Flensberg,Phys.Rev.B82,180516(2010). 20 M.Wimmer,A.R.Akhmerov,M.V.Medvedyeva,J.Tworzydło, 46 S.Tewari,T.D.Stanescu,J.D.Sau,andS.DasSarma,Phys.Rev. andC.W.J.Beenakker,Phys.Rev.Lett.105,046803(2010). B86,024504(2012). 21 S.Gangadharaiah, B.Braunecker, P.Simon, and D.Loss, Phys. 47 W. DeGottardi, D. Sen, and S. Vishveshwara, New J. Phys. 13, Rev.Lett.107,036801(2011). 065028(2011). 22 S.TewariandJ.D.Sau,Phys.Rev.Lett.109,150408(2012). 48 F.L.Pedrocchi,S.Chesi,S.Gangadharaiah, andD.Loss,Phys. 23 V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Rev.B86,205412(2012). Bakkers,andL.P.Kouwenhoven,Science,336,1003(2012). 49 S.-L.Zhu,L.-B.Shao,Z.D.Wang,andL.-M.Duan,Phys.Rev. 24 A.Das,Y.Ronen,Y.Most,Y.Oreg,M.Heiblum,andH.Shtrik- Lett.106,100404(2011). man,Nat.Phys.8,887(2012). 50 Y.Li,D.Wang,andC.Wu,New.J.Phys.15,085002(2013). 25 M.T.Deng,C.L.Yu,G.Y.Huang,M.Larsson,P.Caroff,andH. 51 D.Wang,Z.Huang,andC.Wu,Phys.Rev.B89,174510(2014). Q.Xu,Nano.Lett.12,6414(2012). 52 M. Diez, I. C. Fulga, D. I. Pikulin, J. Tworzydło, and C. W. J. 26 L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795 Beenakker,arXiv:1403.6421. (2012). 27 E.J.H.Lee,X.Jiang,M.Houzet,R.Aguado,C.M.Lieber,and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.