ebook img

Maintenance scheduling in the electricity industry PDF

181 Pages·2017·3.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Maintenance scheduling in the electricity industry

Thèse de Doctorat Aurélien F ROGER Mémoire présenté en vue de l’obtention du gradedeDocteurdel’Université d’Angers sous le sceau de l’Université Bretagne Loire Écoledoctorale: Sciencesettechnologiesdel’information,etmathématiques Discipline: Informatiqueetapplications,sectionCNU27,61 Unitéderecherche: LaboratoireAngevindeRechercheenIngénieriedesSystèmes(LARIS) Soutenuele14décembre2016 Maintenance scheduling in the electricity industry: a particular focus on a problem rising in the onshore wind industry JURY Rapporteurs: M.JacquesCARLIER,Professeurdesuniversités,UniversitédeTechnologiedeCompiègne M.ChristianARTIGUES,Directeurderecherche,LAAS-CNRS Examinateurs: M.Jean-CharlesBILLAUT,Professeurdesuniversités,ÉcolePolytechniquedel’UniversitédeTours M.DavidRIVREAU,Professeur,InstitutdeMathématiquesAppliquéesd’Angers Invité: M.MichelGENDREAU,Professeurtitulaire,ÉcolePolytechniquedeMontréal Directeurdethèse: M.ÉricPINSON,Professeur,InstitutdeMathématiquesAppliquéesd’Angers Co-encadrantsdethèse: M.JorgeE.MENDOZA,Maîtredeconférences,ÉcolePolytechniquedel’UniversitédeTours M.Louis-MartinROUSSEAU,Professeurtitulaire,ÉcolePolytechniquedeMontréal Acknowledgments Thisthesishasbecomerealitywiththekindsupportofmanyindividuals. The path I was following some years ago was definitely not leading me pursuing PhD studies. Therefore,IwouldliketoparticularlythankProfessorsEricPinsonandJorgeE.Mendozaforhaving believedinmewhenIcamebackformymaster’sdegree,andforhavingconvincedmethatIcould becomearesearcher. IamgratefultothemformakingmepassionateforOperationsResearch. Iwouldlikenowtoexpressmygratitudetomygroupofadvisors. Withouttheirprecioussupport theconductedresearchwouldnothavebeenpossible. Iamsincerelygratefultothemforputtingtheir trust in me during the 3 years of this thesis when it came to define the main research orientations. I thank Eric for all his invaluable comments on my work. The many discussions and debates we had havebeenveryinstructive. IthankJorgeforhisencouragementandhisvaluableadviceonbothmy research and my career. I am also very thankful for the help he provides me, all along this thesis, to improve my writing skills in English. I also thank Professors Michel Gendreau and Louis Martin Rousseau who provided me with the opportunity to spend one year and a half at Polytechnique Montreal. Ithasbeenanexceptionalexperiencetoworkwiththem. I thank very sincerely Pr. Jacques Carlier and Christian Artigues for having accepted to be "rap- porteur"ofmythesis. IalsothankPr. Jean-CharlesBillautandDavidRivreauforhavingacceptedto bepartofthejury. I also wish to express my gratitude to the WPred team (Christophe, Thomas, Hugo, Jérôme, François) for this enriching collaboration. I am very thankful to them for having taken the time to explain me their work with the wind industry and having kindly accepted me as a member of the team. Ihavegreatlyappreciatedthisexperiencethathasenabledthisworktobereallyconnectedto whatishappeningontheground. Thiscollaborationhasbeenpossiblethankstothegrantprogram of the Natural Sciences and Engineering Research Council of Canada – this support is gratefully acknowledged. IwouldalsoliketoacknowledgethefinancialsupportfromAngersLoireMetropole. I also thank Julien, Maria, Vinicius, Selene, Philippe, Diego, Shohre, Andrea, Slavic, Maëlle, Ragheb, Pirmin, and all my fellow labmates in CIRRELT for the stimulating discussions and also allthefunwehavehad. Thankyouforhavingcreatedanenjoyableenvironmentduringmystayin Montreal. Finally,Ithankmyparentsfortheirunanimoussupportofmychoices,whatevertheywere. 3 Contents Introduction 9 Listofpublications 17 I Context,literature,andtechnicalbackground 19 1 Maintenanceschedulingintheelectricityindustry: aliteraturereview 21 1.1 Theenergyindustry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2 Maintenanceintheelectricityindustry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2.1 Maintenanceschedulingofgeneratingunits . . . . . . . . . . . . . . . . . . . . 24 1.2.2 Transmissionmaintenanceschedulingandnetworkconsiderations . . . . . . . 28 1.2.3 Managementofuncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.4 Fuelmanagementandmaintenancescheduling . . . . . . . . . . . . . . . . . . 30 1.2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.2.6 Electricitygeneratingtechnologies . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3 Solutionmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.1 Mathematicalprogrammingapproaches . . . . . . . . . . . . . . . . . . . . . . 32 1.3.2 Heuristicsandmetaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.3.3 Constraintprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3.4 Gametheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.4 Conclusionandperspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.5 Classificationofthebibliographicalreferences . . . . . . . . . . . . . . . . . . . . . . . 37 2 Technicalbackground 41 2.1 ConstraintprogrammingvsLinearprogramming . . . . . . . . . . . . . . . . . . . . . 41 2.2 LargeNeighborhoodSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3 Bendersdecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4 Dantzig-Wolfedecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.5 Robustoptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 II Awindturbinemaintenanceschedulingproblemintheonshorewindindustry 57 3 Problemdescription 61 3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Problemstatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 Instancegeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 6 CONTENTS 4 Formalization 69 4.1 NaturalILPformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 CompactILPformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.1 Baselineformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.2 Alternativeformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.3 Breakingsymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Aconstraintprogramming-basedlargeneighborhoodsearchtosolvethedeterministicprob- lem 79 5.1 Constraintprogrammingformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Aconstraintprogramming-basedlargeneighborhoodapproach . . . . . . . . . . . . . 81 5.2.1 Destroyoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.2 Repairoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.3 Acceptancecriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3.1 CPformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3.2 CPLNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.5 IndustrialprototypeforWPred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6 Abranch-and-checkapproachtosolvethedeterministicproblem 95 6.1 Problemdecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2 Cutgenerationprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.1 Bendersfeasibilitycuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.2 Maximumcardinalityb-matchingcuts. . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.3 Maximum-weightcliquecuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.4 Illustrativeexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 Thealgorithm: generalstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.4 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.4.1 Resultsoftheexactapproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4.2 Acooperativeapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.6 Complement: sub-problemandcomplexity . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.6.1 EquivalencetotheL-coloringproblem. . . . . . . . . . . . . . . . . . . . . . . . 115 6.6.2 Specialcasesofpolynomialcomplexity . . . . . . . . . . . . . . . . . . . . . . . 116 7 Maximizingavailabilityvsmaximizingrevenue: ashortcomparativestudy 119 8 Arobustapproachtotacklethestochasticproblem 123 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 Additionalelementsintheproblemdefinition . . . . . . . . . . . . . . . . . . . . . . . 124 8.3 Definitionoftheuncertaintyconsideredintheproblem . . . . . . . . . . . . . . . . . . 125 8.3.1 Non-correlateduncertaintyset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.3.2 Correlateduncertaintyset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.4 Robustcounterpartoftheproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.5 Solutionmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.5.1 Problemreformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.5.2 Generalschemeofthesolutionmethod . . . . . . . . . . . . . . . . . . . . . . . 131 8.5.3 Alternativerobustapproach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.6 Computationalexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.6.1 Baselinerobustapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.6.2 Alternativerobustapproach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 CONTENTS 7 8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.8 Complement: combiningcolumngenerationwiththedecomposition . . . . . . . . . . 141 Generalconclusionandperspectives 145 A Notations 159 B Instancegeneration 163 C Detailedcomputationalresults 169 C.1 CPformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 C.2 CPLNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 C.3 Branch-and-check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Introduction This thesis discusses the optimization of maintenance scheduling in the electricity industry and particularly focuses on a problem rising in the onshore wind industry. This introductory chapter aimstomakethereaderunderstandthepositioning,themotivation,andtherelevanceofthiswork. Nowadays,theelectricityindustryexperiencesmajorchallengesandiscurrentlyinatransitional phaseinvariousrespects. Theopeningoftheelectricitymarkettocompetition,followingthedereg- ulation of the sector, has notably triggered fundamental changes. Electricity prices are no longer essentially regulated by the government (hence the terms deregulation and liberalization), but they aresubjecttomarketinteractions. Giventhesuccessofthissystemintheaeronauticsandtelephone industries, this reform is promoted as a benefit for the sector. It is intended to favor innovation, to lower prices, and to lead to better services. But the fact is that the transition from the original monopoly (state) system is a slow and lengthy process. Indeed, this new system introduces new actors and redefines the role or activities of the existing ones in such a way that this raises new is- sues, especially on the organization and the regulation of the market. Along with this change, the sectorissteadilygrowing. Withtheincreasingworldpopulation, thedevelopmentofcountries, the overallneedsforenergyservicesfortheworldispredictedtobemultipliedby3.2between2000and 2100 (European Commission, 2011). If we exclusively focus on the electricity industry, the demand ispredictedtoincreaseatarateof2%peryearuntil2035(EuropeanCommission,2011). Inamarket driven economy, electric companies are turned towards cost-management and profitability. There- fore,inthisgrowthcontext,theytendtopledgeformoreand/orreliableelectricitytomaintaintheir positiononthemarketortogainmarketshare. Predominantly,companiesinthesectorconsistently aimtobeabletomeetthedemandtheycommittedtoproducewithahighdegreeofreliabilitywhile being cost-effective for suppliers. As a long-term development strategy, they may also choose to built more generating units or to increase the capacity of those existing if the return on investments isworthit. Thedifferentelectricitygeneratingtechnologiesthenpresentvariousinvestmentsoptions tothosecompanies. As it is widely known, electricity can be produced from fuel (e.g., oil, gasoline, uranium, gas, coal, wood) or natural forces (e.g., sun, wind, water, biomass, geothermal). The costs incurred in producingelectricityandtherevenuegeneratedfromitssalevarydependingonthegeneratingtech- nologies. Take the example of nuclear power plants; the construction costs excesses by far the fuel (uranium and heavy water), operating and maintenance costs (even if these latter costs are signifi- cant). Onthecontrary,fossilfuelpowerplants(coal,oilornaturalgas)arelessexpensivetobuild,but thefuelcostsaremoreimportantandsubjecttorisingorvolatility. Similartonuclearplants,hydro- electricpowerstationshavemuchhigherfixedcoststhanfossilfueltechnologiesbut,onceinstalled, tendtorequirelessmaintenanceandlastmuchlongerthantheirnuclearandfossil-fuelcounterpart. The remarkable advantage of hydroelectricity is the elimination of fuel costs. The same holds for wind farms and photovoltaic (PV) power stations for which the costs are essentially composed of the building costs and some maintenance costs. Nonetheless, for the amount of electricity they can generate, renewable energy technologies are quite often more expensive. One should not ignored that the renewable sources of power are usually located in the desert, the mountains, or off-shore, that is far away from the location of the large proportion of the demand. New transmission lines are therefore required to connect to the existing network, and these building costs are significant. However,inthepastdecade,theinvestmentandexploitationcostsofrenewableenergytechnologies have already drastically reduced to make them competitive alternatives, especially if we also take 9 10 INTRODUCTION intoaccounttaxbreaksandincentivesthathavebeensetupinmanycountries. Nonetheless,perfor- mance and efficiency of electricity generating technologies still remain the most critical point when speaking about profitability. If one looks at the availability factor (AF) of generating units, renew- able energy sounds attractive. Indeed, while gas, coal, and nuclear plants carry AF over 80%, often around90%,windfarmsAFtop95%,PVpowerplantsAFreachover98%,andhydropowerplants AFstaysabove90%everysummer(butfellaslowas75%infallandspring). However,highAFdoes nottranslateintoafullcapacitypowergeneration. Forinstance,itisnotalwayspossibletoreleaseall thewaterneededtoreachthemaximumpower. Inthesameway,inthemiddleofthenight,during cloudy days, or during winter, an available PV power plant will not generate any output or a very small one. Similarly, a wind farm will not generate power if the wind speed is too low. In order to assess the effectiveness of the electricity generating technologies, the most relevant criterion is the capacity factor (CF). Figures are then clearly different. Nuclear plants have a CF usually between 80% and 90% , gas and coal plants around 50-60%, biomass around 80%, geothermal around 60%, hydro power plants around 40% and wind farms around 25-30%, while PV power stations barely reach 15-20%1. However, the choice of an electricity generating technology over another cannot be madesolelybasedonthisfactor. Takingalookattheevolutionoftheelectricityproductionperfueltypefrom2005to2015forthe countriespartoftheOrganizationforEconomicCo-operationandDevelopment(OECD)andforthe particular case of France (see Figure 1), we observe that the share of renewable energy sources has significantly increased, whereas the share of combustible fuels (coal, gas) and nuclear have slightly reducedinthepastdecade. AlthoughCFfiguresandtheprofit-drivennatureofcompaniesraisele- gitimatequestionsaboutrenewableenergysources(aspointedoutabove),theunprecedentedboom experienced by renewable energy is in fact explained by the increasing development of policies to reduce (if not cut) greenhouse gas emissions. Driven by climate change mitigation and adaptation measures (e.g., the tax incentives previously mentioned), the renewable energy sector is called to keep growing as producing low-carbon power or carbon-free electricity becomes the priority. The Paris Agreement – resulting from the 2015 United Nations Climate Change Conference (COP21) – is in this respect a clear evidence supporting this claim. Nuclear and/or natural gas power stations (called to replace coal power plants since they produce twice less CO emissions) are then usually 2 predictedtocompensatetheintermittencyofrenewableenergyaslongasenergystoragedevicesare not fully developed and applicable on a wide scale. It is therefore clear that the transition to a low carbon society by 2050 has already a significant impact on the electricity industry, and this impact willcontinuetogrow. Thisbriefoverviewoftheenergysectorpointsouttheveryimportantchallengesfacednowadays bytheelectricityindustrytoreconcilethequestofprofits–whichgrewoutwiththepolicyofopening upcompetition–withenvironmentalsustainability. The issue of profitability is naturally, although not exclusively, linked to the question of relia- bility. Indeed, electrical companies aim to avoid costly unexpected breakdowns and try to mini- mizethedowntimethatfollows. Maintenancemanagementisthereforeamajoreconomicissueasit savessomeinvestmentcostswiththelifeextensionofthegeneratingunitsandpreventsunnecessary downtime and excessive operational costs. Just to cite few examples, equipment maintenance man- agement in electric power systems is concerned with decisions such as: when to stop a generation unit for maintenance, according to what criteria, and when to re-start it again. These decisions are taken under complex environments and constraints such as resource availability, demand satisfac- tion, and reliability thresholds. They aim to build effective and efficient business strategies based on revenue or profits maximization. Maintenance in the electricity industry is therefore an ongoing challenge. For clarification purposes, maintenance represents the actions required to ensure that a generating unit provides reliable service. Maintenance is generally split into two categories accord- ingtothenatureoftheactions,whethertheyareproactiveorreactive. Ontheonehand,asareactive approach,correctivemaintenanceisperformedafterabreakdowninordertorestoretheserviceability 1. U.S.EnergyInformationAdministration-Electricgeneratorcapacityfactorsvarywidelyacrosstheworld, http://www.eia.gov/todayinenergy/detail.cfm?id=22832

Description:
Unité de recherche : Laboratoire Angevin de Recherche en Ingénierie des 1 Maintenance scheduling in the electricity industry: a literature review.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.