ebook img

Magnonic Devices: Numerical Modelling and Micromagnetic Simulation Approach PDF

89 Pages·2023·3.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnonic Devices: Numerical Modelling and Micromagnetic Simulation Approach

SpringerBriefs in Materials C. S. Nikhil Kumar Magnonic Devices Numerical Modelling and Micromagnetic Simulation Approach SpringerBriefs in Materials SeriesEditors SujataK.Bhatia,UniversityofDelaware,Newark,DE,USA AlainDiebold,Schenectady,NY,USA JuejunHu,DepartmentofMaterialsScienceandEngineering,Massachusetts InstituteofTechnology,Cambridge,MA,USA KannanM.Krishnan,UniversityofWashington,Seattle,WA,USA DarioNarducci,DepartmentofMaterialsScience,UniversityofMilanoBicocca, Milano,Italy SuprakasSinhaRay ,CentreforNanostructuresMaterials,CouncilforScientific andIndustrialResearch,Brummeria,Pretoria,SouthAfrica GerhardWilde,Altenberge,Nordrhein-Westfalen,Germany TheSpringerBriefsSeriesinMaterialspresentshighlyrelevant,concisemonographs on a wide range of topics covering fundamental advances and new applications in the field. Areas of interest include topical information on innovative, structural andfunctionalmaterialsandcompositesaswellasfundamentalprinciples,physical properties,materialstheoryanddesign.IndexedinScopus(2022). SpringerBriefspresentsuccinctsummariesofcutting-edgeresearchandpractical applicationsacrossawidespectrumoffields.Featuringcompactvolumesof50to 125pages,theseriescoversarangeofcontentfromprofessionaltoacademic.Typical topicsmightinclude (cid:129) Atimelyreportofstate-of-theartanalyticaltechniques (cid:129) A bridge between new research results, as published in journal articles, and a contextualliteraturereview (cid:129) Asnapshotofahotoremergingtopic (cid:129) Anin-depthcasestudyorclinicalexample (cid:129) Apresentationofcoreconceptsthatstudentsmustunderstandinordertomake independentcontributions Briefsarecharacterizedbyfast,globalelectronicdissemination,standardpublishing contracts, standardized manuscript preparation and formatting guidelines, and expeditedproductionschedules. C. S. Nikhil Kumar Magnonic Devices Numerical Modelling and Micromagnetic Simulation Approach C.S.NikhilKumar AdamMickiewiczUniversity Poznan´,Poland ISSN 2192-1091 ISSN 2192-1105 (electronic) SpringerBriefsinMaterials ISBN 978-3-031-22664-9 ISBN 978-3-031-22665-6 (eBook) https://doi.org/10.1007/978-3-031-22665-6 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedicatedtomyparents,Naina,Supervisors Prof.AnilPrabhakarandProf.AshwinA. Tulapurkar Preface Magnonics—thestudyofspinwaves—hasseenaremarkablescopeforthecreation of magnetic field-controlled devices with properties tailored on the nanoscale. It aims to control and manipulate spin waves in ferromagnetic material. Spin wave caneffectivelycarryandprocessinformationinmagneticnanostructures.Themost controllabilityoftheirfunctioningisbyanexternalmagneticfield. The magnonic devices which are periodically modulated in space are seen as very promising devices because of the possibility of tunning their band structure. Periodically modulated magnonic devices can also be called as “magnonic crys- tal”magneticcounterpartofphotoniccrystal,withspinwaveactingasinformation carrier.Magnoniccrystalsarebettercandidatesforminiaturization,sincethewave- lengthofspinwaveisseveralordersofmagnitudeshorterthanthatofelectromagnetic wavesofthesamefrequency.Anexampleofone-dimensionalmagnoniccrystalis amultilayeredmagneticstructureconsistingofalternatedferromagneticlayers.The basic advantage of a such device is that frequency position and width of the band gaparetunablebyanappliedfieldandthroughmaterialproperties.Thedispersion propertiescanbetunedbychangingthedimensionsofmagnonicwaveguide. Spectrumofmagnoniccrystalshowsbandgapsinwhichspinwavecannotprop- agate.SuchbandgapshavebeenexperimentallystudiedusingBrillouinlightscat- teringspectroscopy[1,2]andtime-resolvedscanningKerrmicroscopy[3].Thestudy ofmagnoniccrystalisfirstproposedin[4].PuszkarskiandKrawczykhavetheoreti- callycalculatedthemagnonicbandstructureof2DMCsconsistingofinfinitelylong cylindricalFerodsperiodicallyembeddedinayttriumirongarnet(YIG)background [5].ThematerialsFeandYIGwereselectedfortheirlargedifferenceinmagnetic properties, as it has been predicted that the larger the difference, the wider would bethebandgapwidth.Theyinvestigatedthepositionandwidthofbandgapsinthe spinwavespectrumversusperiodofthestructureandmagneticproperties. Apopularmethodtoinvestigatethebandstructureofperiodicstructureisplane wave expansion method. Plane wave method has been successfully implemented in both photonic [6], phononic [7] and magnonic crystals [5, 4, 8]. We follow the main idea behind the plane wave method to investigate the band structure of peri- odicallymodulatedmagnonicwaveguide.Theequationofmotionforaperiodically vii viii Preface magnetic structure is transformed into reciprocal space using Fourier transforma- tionandBloch’stheorem.Theequationofmotionisthenreducedtoaneigenvalue problem. The numerical solutions were found out for such an eigenvalue problem bystandardnumericalroutines.Thesolutionyieldeigenfrequenciesthathelptofind thebandstructureandeigenvectoryieldsspinwaveprofileinsidetheperiodicmate- rial. One of the main objectives of this thesis is to follow the plane wave method in order to investigate the spin wave spectrum of the striped magnonic crystal in backwardvolumeconfiguration.Theresultispublishedin[9].Weinitiallyinvesti- gated the magnetostatic field insidethegeometry usingtheidea presented in[10]. TheobtainedmagnetostaticfieldisusedinthegoverningLandau-Lifshitzequation. This helps us to reduce the equation in to an eigenvalue problem. This eigenvalue problemissolvednumericallyinordertoinvestigatethespinwavespectrum.The eigenvectorconceptisusedtoinvestigatethespinwaveprofileinsidethestructure. This book describes the dispersion relation of dipolar spin wave in a magnonic curvedwaveguide.Walker’sequationincylindricalcoordinatesissolvedwithappro- priateboundaryconditions.Thedispersionofexchangespinwavesisthencalculated using perturbation theory. We validated our results by investigating the dispersion relationforahigherbendingradiusandcomparedittothatofastraightwaveguide forhigherbendingradius.Byintroducingsymmetryabouttheazimuthaldirection, wealsoobtainanalyticalsolutionsforWalker’sequationandthemodeprofilechar- acteristics of dipolar spin waves in a magnonic ring. Perturbation theory is used toinvestigatethemodeprofilecharacteristicsofmagnonicring.Finally,analytical dispersionrelationofcurvedwaveguideiscomparedwithmicromagneticsimulation. Wecouldseeareasonableagreementoffundamentalmodebetweensimulationand analyticalresultsandattributethedifferencestothelargeexchangeinthesimulation andtheweakexchangeinperturbationtheory. Thisbookalsodescribesnanocontact-drivenspinwaveexcitationsinmagnonic cavity. A spin-polarized electric current injected into Permalloy (Py) through a nanocontactexertsatorqueonthemagnetization,leadingtospinwave(SW)exci- tation. We considered an array of nanocontacts on a Py film for an enhanced SW excitation.Wedesignedanantidotmagnoniccrystal(MC)aroundthenanocontactto formacavity.TheMCwasdesignedsothatthefrequencyoftheSWmodegenerated bythenanocontactliesinthebandgapoftheMC.Thenanocontactswereplacedina linedefectcreatedintheMCbyremovingarowofantidots.TheSWtimeseriesand powerspectrumwereobservedattheoutputofthecavity.WeobservethattheSWs decay in the absence of the MC cavity, and when the nanocontacts are within the antidotMCcavity,theSWamplitudeisamplifiedandstable.Thisisalsoreflectedin theSWspectrumobtainedattheoutputport.Finally,Qfactorofthedeviceiscalcu- latedusingdecaymethodandobservedahighQfactor Q =3.8×105foracurrent of7.8mA.TheproposeddevicebehavesasaSWASER(spinwaveamplificationby thestimulatedemissionofradiation). Poznan´,Poland C.S.NikhilKumar Preface ix References 1. Tacchi S, Madami M, Gubbiotti G, Carlotti G, Tanigawa H, Ono T, Kostylev MP (2010) Anisotropic dynamical coupling for propagating collective modes in a two-dimensional magnoniccrystalconsistingofinteractingsquarednanodots.PhysRevB82:024401. 2. TacchiS,MadamiM,GubbiottiG,CarlottiG,GoolaupS,AdeyeyeAO,SinghN,Kostylev M.P(2010)Analysisofcollectivespin-wavemodesatdifferentpointswithinthehysteresis loopofaone-dimensionalmagnoniccrystalcomprisingalternative-widthnanostripes.Phys RevB82:184408. 3. KruglyakVV,KeatleyPS,NeudertA,HickenRJ,ChildressJR,KatineJA(2010)Imaging collectivemagnonicmodesin2darraysofmagneticnanoelements.PhysRevLett104:027201. 4. VasseurJO,DobrzynskiL,Djafari-RouhaniB,PuszkarskiH(1996)Magnonbandstructure ofperiodiccomposites.PhysRevB54:1043. 5. PuszkarskiH,KrawczykM.(2003)Magnoniccrystals-themagneticcounterpartofmagnonic crystal.SolidStatePhenomena94:125. 6. JoannopoulosJD,JohnsonSG,WinnJN,MeadeRDPhotonicCrystals:MoldingtheFlowof Light(SecondEdition).PrincetonUniversityPress,2ed.,Feb. 7. BenchabaneS,KhelifA,RauchJ-Y,RobertL,LaudeV(2006)Evidenceforcompletesurface wavebandgapinapiezoelectricphononiccrystal.PhysRevE73:065601. 8. KrawczykM,PuszkarskiH(2008)Plane-wavetheoryofthree-dimensionalmagnoniccrystals. PhysRevB77:054437. 9. KumarN,PrabhakarA.(2013)Spinwavedispersioninstripedmagnonicwaveguide.IEEE TransactionsMagnetics49(3):1024–1028. 10. KaczerJ,MurtinovaL.Onthedemagnetizingenergyofperiodicmagneticdistributions.Phys StatusSolidi(a)23(1). Contents 1 Introduction .................................................... 1 References ...................................................... 4 2 BackwardVolumeSpinWavesinaRectangularGeometry .......... 7 2.1 SolutiontoWalker’sEquation ................................. 7 2.1.1 DispersionCharacteristicsforDipolarSpinWaves ......... 10 2.1.2 DispersionCharacteristicsofExchangeSpinWaves ........ 10 Reference ....................................................... 11 3 MagnetostaticWavesinMagnonicCrystals:APWMApproach ..... 13 3.1 MagnetostaticWavesin1DMagnonicCrystal ................... 17 3.2 Walker’sEquationinaOne-DimensionalMagnonicCrystal ....... 17 3.3 DispersionCharacteristicsofBackwardVolumeSpinWaves ....... 20 References ...................................................... 22 4 FieldLocalizationinStripedMagnonicCrystalWaveguide .......... 23 4.1 GeometryandMethodofAnalysis ............................. 24 4.2 StaticDemagnetizingField ................................... 26 4.3 SpinWaveMagnonicBand ................................... 28 4.4 SpinWaveLocalizationsinStripedMagnonicWaveguide ......... 32 4.5 Convergence ................................................ 33 4.6 Conclusion ................................................. 34 References ...................................................... 34 5 Walker’sSolutionforCurvedMagnonicWaveguideandResonant ModesinMagnonicRing ......................................... 37 5.1 SpinWaveDispersionforCurvedMagnonicWaveguide .......... 37 5.1.1 GeometryandAnalysis ................................ 38 5.1.2 DispersionRelationofCurvedMagnonicWaveguide ....... 42 5.1.3 Validations ........................................... 44 5.1.4 ModesinaMagnonicRing ............................. 46 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.