ebook img

Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas

Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas R.SolerandJ.L.Ballester 2 1 0 2 n a J 8 1 AbstractProminencesorfilamentsarecoolcloudsofpartiallyionizedplasmaliving inthesolarcorona.Ground-andspace-basedobservationshaveconfirmedthepres- ] R enceofoscillatorymotionsinprominencesandtheyhavebeeninterpretedinterms S ofmagnetohydrodynamic(MHD)waves.Existingobservationalevidencepointsout . that these oscillatory motions are damped in short spatial and temporal scales by h p somestillnotwellknownphysicalmechanism(s).Sinceprominencesarepartially - ionized plasmas, a potential mechanism able to damp these oscillations could be o ion-neutralcollisions.Here,wewillreviewtheworkdoneontheeffectsofpartial r t ionizationonMHDwavesinprominenceplasmas. s a [ 1 1 Introduction v 2 5 Quiescent solar filaments are clouds of cool and dense plasma suspended against 7 gravitybyforcesthoughttobeofmagneticorigin.High-resolutionHa observations 3 . ([1],[2])haverevealedthatthefinestructureoffilamentsisapparentlycomposedby 1 manyhorizontalandthindarkthreads(see[3],forareview).Themeasuredaverage 0 widthofresolvedthinthreadsisabout0.3arc.sec(∼210km)whiletheirlengthis 2 1 between5and40arc.sec(∼3500-28000km).Thefinethreadsofsolarfilaments : seemtobepartiallyfilledwithcoldplasma[1],typicallytwoordersofmagnitude v denserandcoolerthanthesurroundingcorona,anditisgenerallyassumedthatthey i X outlinetheirmagneticfluxtubes[4,5,1,6,7,8].Thisideaisstronglysupportedby r a R.Soler Centre for Plasma Astrophysics,Department of Mathematics, KULeuven, e-mail: [email protected] J.L.Ballester Departament de F´ısica, Universitat de les Illes Balears e-mail: [email protected] 1 2 R.SolerandJ.L.Ballester observationswhichsuggestthattheyareinclinedwithrespecttothefilamentlong axisinasimilarwaytowhathasbeenfoundforthemagneticfield([9,10,11]). Smallamplitudeoscillationsinprominencesandfilamentsareacommonlyob- servedphenomenon.Thedetectedpeakvelocityrangesfromthenoiselevel(down to 0.1 km s−1 in some cases) to 2–3 km s−1. The observed periodic signals are mainlydetectedfromDopplervelocitymeasurementsandcanthereforebeassoci- atedtothetransversedisplacementofthefinestructures[12].Two-dimensionalob- servationsoffilaments[13,14]revealedthatindividualthreadsorgroupsofthreads may oscillate independently with their own periods, which range between 3 and 20minutes.Furthermore,[15]haveshownevidenceabouttravelingwavesalonga numberof filamentthreadswith an averagephase velocityof 12 km s−1, a wave- lengthof4′′(∼2800 km),andoscillatoryperiodsoftheindividualthreadsthatvary from3to9minutes. Observationalevidenceforthedampingofsmallamplitudeoscillationsinpromi- nences can be found in [16]. Observational studies have allowed to obtain some characteristic spatial and time scales. Reliable values for the damping time have beenderived,fromdifferentDopplervelocitytimeseriesby[17],inprominences, andby[5]infilaments.Thevaluesthusobtainedareusuallybetween1and4times thecorrespondingperiod,andlargeregionsofprominences/filamentsdisplaysimi- lardampingtimes. Finally,smallamplitudeoscillationsinquiescentfilamentshavebeeninterpreted intermsofmagnetohydrodynamic(MHD)waves[18]and,inmanycases,theoret- ical works studying the dampingof prominenceoscillations have studied first the effect of a given damping mechanism on MHD waves in a simple, uniform, and unbounded media before to introduce structuring and non-uniformity.This is the approachthatwewillfollowinthispaper. 2 MHD wavesinunbounded partially ionizedprominence plasmas Sincethetemperatureofprominencesistypicallyoftheorderof104 K,thepromi- nenceplasmaisonlypartiallyionized.Theexactionizationdegreeofprominences is unknownand the reportedratio of electron density to neutral hydrogendensity [19] coversabouttwo ordersof magnitude(0.1–10). Partialionization bringsthe presence of neutrals in addition to electrons and ions, thus collisions between the differentspeciesarepossible.Becauseoftheoccurrenceofcollisionsbetweenelec- tronswithneutralatomsandions,andmoreimportantlybetweenionsandneutrals, Jouledissipationisenhancedwhencomparedwiththefullyionizedcase.Apartially ionizedplasmacanberepresentedasasingle-fluidinthestrongcouplingapproxi- mation,whichisvalidwhenthe iondensityinthe plasmais lowandthe collision timebetweenneutralsandionsisshortcomparedwithothertime-scalesoftheprob- lem.Usingthisapproximationitispossibletodescribetheverylowfrequencyand large-scalefluid-likebehaviourofplasmas[20]. MHDwavesinpartiallyionizedprominenceplasmas 3 Partialionizationaffectstheinductionequation,whichcontainsadditionalterms due to the presence of neutrals and a non-zero resistivity [21]. These additional termsaccountfortheprocessesofohmicdiffusion,ambipolardiffusion,andHall’s magnetic diffusion. Ohmic diffusion is mainly due to electron-ion collisions and produces magnetic diffusion parallel to the magnetic field lines; ambipolar diffu- sion is mostly caused by ion-neutral collisions and Hall’s effect is enhanced by ion-neutralcollisionssincetheytendtodecoupleionsfromthemagneticfieldwhile electronsremainable to driftwith the magneticfield [22]. Due to the presence of neutrals,perpendicularmagneticdiffusionismuchmoreefficientthanlongitudinal magneticdiffusionina partiallyionizedplasma.Itisimportantto notethatthisis soevenforasmallrelativedensityofneutrals. 2.1 Homogeneousand unbounded prominencemedium Several studies have considered the damping of MHD waves in partially ionized plasmas of the solar atmosphere [23, 24, 25, 26]. In the context of solar promi- nences,[21]derivedthefullsetofMHDequationsforapartiallyionized,one-fluid hydrogenplasmaandappliedthemtothestudyofthetimedampingoflinear,adi- abaticfastandslowmagnetoacousticwavesinanunboundedprominencemedium. Thisstudywaslaterextendedtothenon-adiabaticcase,includingthermalconduc- tionby neutralsandelectronsandradiativelosses [27]. [21]considereda uniform andunboundedprominenceplasma andfoundthation-neutralcollisionsare more importantfor fast waves, for which the ratio of the damping time to the period is in the range1 to 105, thanfor slow waves, forwhich valuesbetween104 and108 areobtained.Fastwavesareefficientlydampedformoderatevaluesoftheioniza- tionfraction,whileinanearlyfullyionizedplasma,thesmallamountofneutralsis insufficienttodamptheperturbations. In the above studies, a hydrogenplasma was considered, although 90% of the prominence chemical composition is hydrogen while the remaining 10% is he- lium. The effect of including helium in the model of [27] was assessed by [28]. The species present in the medium are electrons, protons, neutral hydrogen,neu- tralhelium(HeI)andsinglyionizedhelium(HeII),whilethepresenceofHeIII is neglected[29]. Thehydrogenionizationdegreeischaracterizedbym˜ whichisequivalenttothe H mean atomic weight of a pure hydrogenplasma and ranges between 0.5 for fully ionizedhydrogenand1forfullyneutralhydrogen.Theheliumionizationdegreeis characterized by d = xHeII, where x and x denote the relative densities of He x HeII HeI HeI singleionizedandneutralhelium,respectively.Figure1a,b,cdisplayst /Pasa D functionofthewavenumber,k,fortheAlfve´n,fastandslowwaves.InthisFigure, theresultscorrespondingtoseveralheliumabundancesarecomparedforhydrogen and heliumionizationdegreesof m˜ =0.8 and d =0.1,respectively,and it can H He beobservedthatthepresenceofheliumhasaminoreffectontheresults. 4 R.SolerandJ.L.Ballester Fig.1 Wavedampingbyion-neutraleffectsinauniformmedium.(a)–(c)Ratioofthedamping timetotheperiod,tD/P,versusthewavenumber,k,correspondingtotheAlfve´nwave,fastwave andslowwave,respectively.(d)Dampingtime,t ,ofthethermalwaveversusthewavenumber, D k.Thedifferentlinestylesrepresentthefollowingabundances:x =0%(solidline),x =10% HeI HeII (dotted line) and xHeI=20% (dashed line). In all computations, m˜H=0.8 and dHe=0.1. The resultsforxHeI=10%anddHe=0.5areplottedbymeansofsymbolsforcomparison.Theshaded regionscorrespondtotherangeoftypicallyobservedwavelengthsofprominenceoscillations.In allthefiguresshown,theangle,q ,betweenthewavevectorandthemagneticfieldisp /4.From [28] The thermal mode is a purely damped, non-propagatingdisturbance (w =0), r soonlythedampingtime,t ,isplotted(Figure1d).We observethattheeffectof D heliumisdifferentintworangesofk.Fork>10−4m−1,thermalconductionisthe dominantdampingmechanism,so the largerthe amountofhelium,the shortert D becauseoftheenhancedthermalconductionbyneutralheliumatoms.Ontheother hand,radiativelossesaremorerelevantfork<10−4m−1.Inthisregion,thethermal modedampingtimegrowsastheheliumabundanceincreases.Sincethesevariations in the dampingtime are verysmall, we again concludethatthe dampingtime ob- tainedintheabsenceofheliumdoesnotsignificantlychangewhenheliumistaken intoaccount.Therefore,theinclusionofneutralorsingleionizedheliuminpartially ionizedprominenceplasmas doesnotmodifythe behaviourof linear,adiabatic or non-adiabaticMHD waves already found by [21] and [27]. On the other hand, in Figure 1c we can observe that in the case of slow waves, and within most of the intervalofobservedwavelengthsinprominenceoscillations,theratiobetweenthe dampingtimeandtheperiodagreeswiththeobservationaldeterminations,whichis duetothejointeffectofion-neutralcollisionsandnon-adiabaticeffects([27],[28]). MHDwavesinpartiallyionizedprominenceplasmas 5 Fig.2 Sketchofthelongitudinallyhomogeneousprominencethreadmodelusedin[30]withl=0 andin[31,32]withl6=0.InthisFigureadenotestheradiusofthecylinderwhileinthetextwe useR.Adaptedfrom[32]. 3 Magnetohydrodynamic WavesinProminence Threads InthisSection,wesummarizetheresultsofpaperswhichinvestigatethedamping ofMHDwavesinpartiallyionizedprominencethreadmodels.Forsimplicity,early investigationsneglectedthe variationofdensityalongthethreadandtookintoac- count the variation of density in the transverse direction only. Subsequent works incorporatedlongitudinalinhomogeneityinadditiontotransverseinhomogeneity. 3.1 LongitudinallyHomogeneousThread Models Thefirstpapersthatstudiedpartialionizationeffectsonwavepropagationinalon- gitudinallyhomogeneousprominencethreadmodelwere[30,31,32].Theseauthors investigatedlinearMHDwavessuperimposedonastraightmagneticcylinderofra- diusR,representingthethreaditself,andembeddedinafullyionizedanduniform coronal plasma. Gravity was neglected and the magnetic field was taken constant along the axis of the cylinder. [30] considered an abrupt jump of density in the transverse direction from the internal (prominence), r , to the external (coronal), p r , densities at the thread boundary, while [31, 32] replaced the discontinuity in c densitybyacontinuousvariationofdensityinaregionofthicknessl.Forl=0the equilibriumof[31,32]revertstothatof[30].Hencetheratiol/Rindicatesthein- homogeneitylength-scaleinthetransversedirection.Inbothpaperstheprominence plasma was assumed partially ionized with an arbitrary ionization degree, while theexternalcoronalmediumwasfullyionized.Thesingle-fluidapproximationwas adopted and Ohm’s, Hall’s, and Cowling’s terms were included in the induction equation.Thus,theequilibriumconfigurationissimilartotheclassicalstraightflux tubemodelinvestigatedby,e.g.,[33,34],withtheadditionofpartialionization.A sketchofthemodelisdisplayedinFigure2. 6 R.SolerandJ.L.Ballester Inthismodeltheobservedtransverseoscillationsofprominencethreadscanbe interpretedintermsoftransverse(Alfve´nic)kinkmodes.Becauseoftheirobserva- tional relevance, here we discuss the results for transverse (Alfve´nic) kink waves only.Theinterestedreaderisrefereedtotheoriginalpapers[30,31,32]wherethe resultsofotherwavesareexplainedindetail.Itiswellknownthatforl6=0thekink modeisresonantlycoupledtoAlfve´ncontinuummodesintheregionoftransversely non-uniformdensity.As a consequencethe kink mode is dampedby resonantab- sorption. In addition, the kink mode is also damped by magnetic diffusion effects duetopartialionization.Inthefullyionizedcase,theidealresonantdampingofthe kinkmodeinprominencethreadswasinvestigatedby[35,36],whilepartialioniza- tiondoesnotaffectthemechanismofresonantabsorption,whichisanidealprocess independentof dissipation by ion-neutralcollisions. This has been shown by [37] usingmultifluidtheory. [30,31]studiedtemporaldampingofstandingwaves.Byneglectingtheeffects ofOhm’sandHall’sdiffusionincomparisontothatofCowling’sdiffusion,approx- imateexpressionsfortheperiod,P,andfortheratioofthedampingtime,t ,tothe D periodofthekinkmodecanbeobtainedinthelong-wavelengthlimit,i.e.,l /R≫1, wherel isthewavelength.Thelong-wavelengthlimitisareasonableapproximation sincewavelengthstypicallyobservedinprominencesareroughlybetween103 km and105km(see[18])whiletheobservedwidthsofthethreadsarebetween100km and600km(see[3]).TheexpressionsforPandt /Pare D l z +1 P = , (1) vAs 2z t 2 l z −1 2x 2 w −1 D = + n k , (2) P p Rz +1 1−x n (cid:18) n in(cid:19) wherev istheprominenceAlfve´nvelocity,z =r /r isthedensitycontrast,w = A p c k 2p /Pisthekinkmodefrequency(withPgivenbyEquation(1)),x isthefraction n of neutrals, and n the ion-neutralcollision frequency.x =0 for a fully ionized in n plasmaandx =1foraneutralmedium.Toperformacheck,wetakel =104km, n v =50km−1,andz =200.Equation(1)givesP≈2.4min,whichisconsistent A withtheobservedperiods. Regardingdamping,thefirsttermwithintheparenthesisofEquation(2) isdue toresonantabsorptionandthesecondtermisduetoCowling’sdiffusion.Notethat theoriginalexpressionoft /Pgivenin[31]involvesCowling’sdiffusivity,h .In D C the present discussion we have replaced h by its expression in terms of x and C n n (see the expression of h in, e.g., [30]). Our purpose is to show that the term in C relatedtoCowling’sdiffusionisproportionaltotheratiow /n .Toperformasim- k in pleorder-of-magnitudeestimationoftheimportanceofCowling’sdiffusion,letus take a period of 3 min and compute n using x =0.5, a prominence density of in n 5×10−11kgm−3,andaprominencetemperatureof8,000K(seetheexpressionof n in [30]).Theresultisw /n ≈2.38×10−4.Thisestimationindicatesthatthe in k in effectofCowling’sdiffusionisnegligibleunlesstheprominenceisalmostneutral, MHDwavesinpartiallyionizedprominenceplasmas 7 Fig.3 (a)tD/Pvs.kzaforthekinkmodeinalongitudinallyhomogeneousthreadwithl/a=0 (dotted),l/a=0.1(dashed),l/a=0.2(solid),andl/a=0.4(dash-dotted).Theshadedzonede- notesrealisticwavelengths.Adaptedfrom[31].(b)tD/Pvs.Lp/Lforthekinkmodeinalongitu- dinallyinhomogeneousthreadwithl/a=0.05(dotted),l/a=0.1(dashed),l/a=0.2(solid),and l/a=0.4(dash-dotted).SymbolsaretheresultfromEquation(2)withl/a=0.2.InthisFigurea denotestheradiusofthecylinderwhileinthetextweuseR.Adaptedfrom[38]. i.e.,x ≈1,whichisanunrealisticlimit.Therefore,resonantabsorptiondominates n thekinkmodedampingandthesecondtermwithintheparenthesisofEquation(2) canbedropped.Hence,forz =200andl/R=0.2weobtaint /P≈3.22,which D againisconsistentwiththeobservations. [31]alsoobtainedresultsbeyondthelong-wavelengthapproximationbymeans offullnumericalsolutions.TheyincludedOhm’sandHall’stermsalongwithCowl- ing’s diffusion. [31] computed the kink mode t /P as a function of the param- D eter k R, where k =2p /l (see Fig. 3a). They concluded that Hall’s term is al- z z ways negligible in prominence conditions, Ohm’s diffusion is only important for extremely long wavelengths (very small values of k R), and Cowling’s diffusion z is only relevant for short wavelengths (large k R). For realistic wavelengths, i.e., z 10−3 <k R<10−1, resonant absorption determines the damping rate of the kink z modeandtheanalyticalformulagiveninEquation(2)isveryaccurate. Subsequently,[32]usedthesamemodelas[31]tostudyspatialdampingofkink waves.Theresultsof[32]arequalitativelyequivalenttothoseof[31],i.e.,resonant dampingdominatesforrealisticfrequencieswhereasCowling’sdiffusionisefficient forhighfrequenciesonly. 3.2 LongitudinallyInhomogeneous Thread Models A longitudinallyhomogeneouscylinderis a cruderepresentationof a prominence fine structure. High-resolution observations of prominences (see [3]) suggest that thecoolanddensematerialofthethreadsonlyoccupiesasmallpartoflongermag- neticfluxtubes,withtherestofthemagnetictubeprobablyfilledwithhotcoronal plasma.Theobservedlengthofthethreadsisbelievedtobeonlyasmallpercentage of the total length of the magnetic tube, whose feet are rooted in the solar photo- 8 R.SolerandJ.L.Ballester Fig.4 Sketchofthelongitudinallyinhomogeneousprominencethreadmodelusedin[38].Inthis FigureadenotestheradiusofthecylinderwhileinthetextweuseR.Adaptedfrom[38]. sphere[39, 40]. Thisobservationalevidencemaybe omitted to study propagating waves in the dense part of the magnetic tube if the wavelengthsare much shorter thanthelengthofthe threads.Forthiscase thelongitudinallyhomogeneousmod- els discussed in Section 3.1 may be appropriate.However,in the case of standing modes,theassociatedwavelengthsareofthe orderofthe totallengthofmagnetic fieldlines.Thereforethelongitudinalstructuringoftheprominencemagnetictube cannotbeneglectedwhenstandingmodesareinvestigated. This observationalevidence has been taken into accountin some works which studiedideal,undampedkinkmodesinthefullyionizedcase(see,e.g.,[41,42,43]). The first paper that incorporated the effects of damping by Cowling’s diffusion andresonantabsorptionon standingkinkmodesin longitudinallyinhomogeneous threads was [38]. These authors used the model displayed in Figure 4. It is com- posedofastraightmagneticcylinderoflengthLandradiusRwhoseendsarefixed attworigidwallsrepresentingthesolarphotosphere.Themagneticfieldisconstant. ThecylinderiscomposedofaregionoflengthL anddensityr ,representingthe p p prominencethread,surroundedbytworegionsofdensityr representingtheevac- e uatedpartofthetube.Theexternalcoronaldensityisr andforsimplicityitisset c r =r .Theprominencethreadistransverselyinhomogeneousinaregionofthick- e c nesslwherethedensitycontinuouslyvariesfromr tor .Theprominenceplasma p c ispartiallyionizedwhilethecoronalandevacuatedplasmasarefullyionized. Toinvestigatestandingkinkmodesanalytically,[38]usedthethintubeapprox- imation, i.e., R/L≪1 and R/L ≪1. To check this approximation we take the p values of R and L typically reported from the observations (see [3]) and assume p L∼105 km, so that R/L and R/L are in the ranges 2×10−3 <R/L <0.1 and p p 5×10−4<R/L<3×10−3,meaningthattheuseoftheTTapproximationisjus- tified. [44] have shown that the results of [38] remain valid beyond the thin tube approximation.[38]derivedapproximateexpressionsforPandtheratiot /P.The D expressionforPis p z +1 P= L−L L , (3) vAs 2z p p q (cid:0) (cid:1) MHDwavesinpartiallyionizedprominenceplasmas 9 where here v is the Alfve´n velocity of the dense, prominence plasma only, and A z =r /r isthedensityconstrastasbefore.InEquation(3)itisassumedthatthe p c prominencethreadislocatedatthecenterofthemagnetictube(ageneralexpression isgivenin[38]).AdirectcomparisonofEquations(1)and(3)showsthattheeffect ofthelongitudinalstructuringofthetubeistoselectaparticularvalueofthewave- length,l ,whichdependsoftherelationbetweenLandL .Regardingthedamping p rate, the expression for t /P is not explicitly given here because it is exactly the D sameasthatinEquation(2),wherenoww =2p /Phastobecomputedusingthe k periodfromEquation(3).Thus,ashappensforkinkmodesinlongitudinallyhomo- geneousthreads,the effectof Cowling’sdiffusionis negligibleforrealistic values oftheperiodwhencomparedtothatofresonantabsorption. Figure3b showsthe ratio t /Pnumericallycomputedby [38] asa functionof D L /L.Remarkably,thedampingratioisindependentofthelengthofthethreadand p onlydependsonthetransversenon-uniformitylengthscalel/R.Thesemeansthat the expression of t /P for longitudinally homogeneous(Equation (2)) tubes also D applieswhenlongitudinalstructuringisincluded. Acknowledgements RS acknowledges support from a Marie Curie Intra-European Fellowship withintheEuropeanCommission7thFrameworkProgram(PIEF-GA-2010-274716).RSandJLB acknowledgefinancialsupportfromMICINNandFEDERfundsthroughgrantAYA2011-22486. References 1. Y.Lin,O.Engvold,L.RouppevanderVoort,J.Wiik,T.Berger,SolarPhys.226,239(2005). DOI10.1007/s11207-005-6876-3 2. P.Heinzel,U.Anzer,Astrophys.J.Lett.643,L65(2006). DOI10.1086/504980 3. Y.Lin,SpaceSci.Rev.(2011). DOI10.1007/s11214-010-9672-9 4. O. Engvold, in New Perspectives on Solar Prominences, ASP Conference Series, vol. 150, ed.byD.Webb,B.Schmieder,D.Rust(AstronomicalSocietyofthePacific,SanFrancisco, 1998),ASPConferenceSeries,vol.150,pp.23–31 5. Y.Lin.Magneticfieldtopologyinferredfromstudiesoffinethreadsinsolarfilaments(2005) 6. O. Engvold, in Waves & Oscillations in the Solar Atmosphere: Heating and Magneto- Seismology, IAU Symposia, vol. 247, ed. by R. Erde´lyi, C. Mendoza-Bricen˜o (Cambridge UniversityPress,Cambridge;NewYork,2008),IAUSymposia,vol.247,pp.152–157. DOI 10.1017/S1743921308014816 7. S.Martin,Y.Lin,O.Engvold,SolarPhys.250,31(2008). DOI10.1007/s11207-008-9194-8 8. Y.Lin,S.Martin,O.Engvold,inSubsurfaceandAtmosphericInfluences onSolarActivity, ASPConferenceSeries,vol.383,ed.byR.Howe,R.Komm,K.Balasubramaniam,G.Petrie (AstronomicalSocietyofthePacific,SanFrancisco,2008),ASPConferenceSeries,vol.383, pp.235–242 9. J.Leroy,inProceedingsoftheJapan-FranceSeminaronSolarPhysics,ed.byF.Moriyama, J.Henoux(NihonGakujutsuShinkokaiandCNRS,Tokyo,1980),p.155 10. V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Bre´chot, Solar Phys. 154, 231 (1994) 11. V.Bommier, J. Leroy, inNewPerspectives on SolarProminences, ASPConference Series, vol.150,ed.byD.Webb,B.Schmieder,D.Rust(AstronomicalSocietyofthePacific,San Francisco,1998),ASPConferenceSeries,vol.150,pp.434–438 10 R.SolerandJ.L.Ballester 12. Y.Lin,R.Soler,O.Engvold,J.Ballester,Ø.Langangen,R.Oliver,L.RouppevanderVoort, Astrophys.J.704,870(2009). DOI10.1088/0004-637X/704/1/870 13. Z.Yi,O.Engvold,SolarPhys.134,275(1991) 14. Z.Yi,O.Engvold,S.Keil,SolarPhys.132,63(1991) 15. Y.Lin,O.Engvold,L.RouppevanderVoort,M.vanNoort,SolarPhys.246,65(2007). DOI 10.1007/s11207-007-0402-8 16. I.Arregui,J.L.Ballester,SpaceSci.Rev.158,169(2011). DOI10.1007/s11214-010-9648-9 17. J.Terradas,R.Molowny-Horas,E.Wiehr,H.Balthasar,R.Oliver,J.Ballester,Astron.Astro- phys.393,637(2002). DOI10.1051/0004-6361:20020967 18. R.Oliver,J.Ballester,SolarPhys.206,45(2002). DOI10.1023/A:1014915428440 19. S.Patsourakos,J.C.Vial,SolarPhys.208,253(2002) 20. M. Goossens, An Introduction to Plasma Astrophysics and Magnetohydrodynamics, Astro- physicsandSpaceScienceLibrary,vol.294(Kluwer,Dordrecht;Norwell,MA,2003) 21. P.Forteza,R.Oliver,J.Ballester,M.Khodachenko,Astron.Astrophys.461,731(2007).DOI 10.1051/0004-6361:20065900 22. B. Pandey, M. Wardle, Mon. Not. R. Astron. Soc. 385, 2269 (2008). DOI 10.1111/j. 1365-2966.2008.12998.x 23. B.DePontieu,P.Martens,H.Hudson,Astrophys.J.558,859(2001). DOI10.1086/322408 24. S. James, R. Erde´lyi, B. De Pontieu, Astron. Astrophys. 406, 715 (2003). DOI 10.1051/ 0004-6361:20030685 25. M.Khodachenko,T.Arber,H.Rucker,A.Hanslmeier,Astron.Astrophys.422,1073(2004). DOI10.1051/0004-6361:20034207 26. J.Leake, T.Arber, M.Khodachenko, Astron. Astrophys. 442,1091 (2005). DOI10.1051/ 0004-6361:20053427 27. P. Forteza, R. Oliver, J. Ballester, Astron. Astrophys. 492, 223 (2008). DOI 10.1051/ 0004-6361:200810370 28. R.Soler,R.Oliver,J.Ballester,Astron.Astrophys.512,A28(2010).DOI10.1051/0004-6361/ 200913478 29. P.Gouttebroze,N.Labrosse,Astron.Astrophys.503,663(2009). DOI10.1051/0004-6361/ 200811483 30. R.Soler,R.Oliver,J.Ballester,Astrophys.J.699,1553(2009). DOI10.1088/0004-637X/ 699/2/1553 31. R.Soler,R.Oliver,J.Ballester,Astrophys.J.707,662(2009). DOI10.1088/0004-637X/707/ 1/662 32. R.Soler,R.Oliver,J.Ballester,Astrophys.J.726(2011).DOI10.1088/0004-637X/726/2/102 33. P.Edwin,B.Roberts,SolarPhys.88,179(1983). DOI10.1007/BF00196186 34. M. Goossens, J. Terradas, J. Andries, I. Arregui, J. Ballester, Astron. Astrophys. 503, 213 (2009). DOI10.1051/0004-6361/200912399 35. I. Arregui, J. Terradas, R. Oliver, J. Ballester, Astrophys. J. Lett. 682, L141 (2008). DOI 10.1086/591081 36. R. Soler, R. Oliver, J. Ballester, M. Goossens, Astrophys. J. Lett. 695, L166 (2009). DOI 10.1088/0004-637X/695/2/L166 37. R.Soler,J.Andries,M.Goossens,Astron.Astrophys.537,A84(2012) 38. R.Soler, I.Arregui, R.Oliver, J.Ballester, Astrophys. J.722, 1778(2010). DOI10.1088/ 0004-637X/722/2/1778 39. J.Ballester,E.Priest,Astron.Astrophys.225,213(1989) 40. M.Rempel,D.Schmitt,W.Glatzel,Astron.Astrophys.343,615(1999) 41. A.D´ıaz,R.Oliver,J.Ballester,Astrophys.J.580,550(2002). DOI10.1086/343039 42. J. Terradas, I. Arregui, R. Oliver, J. Ballester, Astrophys. J. Lett. 678, L153 (2008). DOI 10.1086/588728 43. R.Soler,M.Goossens,Astron.Astrophys.531(2011). DOI10.1051/0004-6361/201116536 44. I.Arregui, R.Soler,J.L.Ballester,A.N.Wright,Astron.Astrophys.533, A60(2011). DOI 10.1051/0004-6361/201117477

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.