Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas R.SolerandJ.L.Ballester 2 1 0 2 n a J 8 1 AbstractProminencesorfilamentsarecoolcloudsofpartiallyionizedplasmaliving inthesolarcorona.Ground-andspace-basedobservationshaveconfirmedthepres- ] R enceofoscillatorymotionsinprominencesandtheyhavebeeninterpretedinterms S ofmagnetohydrodynamic(MHD)waves.Existingobservationalevidencepointsout . that these oscillatory motions are damped in short spatial and temporal scales by h p somestillnotwellknownphysicalmechanism(s).Sinceprominencesarepartially - ionized plasmas, a potential mechanism able to damp these oscillations could be o ion-neutralcollisions.Here,wewillreviewtheworkdoneontheeffectsofpartial r t ionizationonMHDwavesinprominenceplasmas. s a [ 1 1 Introduction v 2 5 Quiescent solar filaments are clouds of cool and dense plasma suspended against 7 gravitybyforcesthoughttobeofmagneticorigin.High-resolutionHa observations 3 . ([1],[2])haverevealedthatthefinestructureoffilamentsisapparentlycomposedby 1 manyhorizontalandthindarkthreads(see[3],forareview).Themeasuredaverage 0 widthofresolvedthinthreadsisabout0.3arc.sec(∼210km)whiletheirlengthis 2 1 between5and40arc.sec(∼3500-28000km).Thefinethreadsofsolarfilaments : seemtobepartiallyfilledwithcoldplasma[1],typicallytwoordersofmagnitude v denserandcoolerthanthesurroundingcorona,anditisgenerallyassumedthatthey i X outlinetheirmagneticfluxtubes[4,5,1,6,7,8].Thisideaisstronglysupportedby r a R.Soler Centre for Plasma Astrophysics,Department of Mathematics, KULeuven, e-mail: [email protected] J.L.Ballester Departament de F´ısica, Universitat de les Illes Balears e-mail: [email protected] 1 2 R.SolerandJ.L.Ballester observationswhichsuggestthattheyareinclinedwithrespecttothefilamentlong axisinasimilarwaytowhathasbeenfoundforthemagneticfield([9,10,11]). Smallamplitudeoscillationsinprominencesandfilamentsareacommonlyob- servedphenomenon.Thedetectedpeakvelocityrangesfromthenoiselevel(down to 0.1 km s−1 in some cases) to 2–3 km s−1. The observed periodic signals are mainlydetectedfromDopplervelocitymeasurementsandcanthereforebeassoci- atedtothetransversedisplacementofthefinestructures[12].Two-dimensionalob- servationsoffilaments[13,14]revealedthatindividualthreadsorgroupsofthreads may oscillate independently with their own periods, which range between 3 and 20minutes.Furthermore,[15]haveshownevidenceabouttravelingwavesalonga numberof filamentthreadswith an averagephase velocityof 12 km s−1, a wave- lengthof4′′(∼2800 km),andoscillatoryperiodsoftheindividualthreadsthatvary from3to9minutes. Observationalevidenceforthedampingofsmallamplitudeoscillationsinpromi- nences can be found in [16]. Observational studies have allowed to obtain some characteristic spatial and time scales. Reliable values for the damping time have beenderived,fromdifferentDopplervelocitytimeseriesby[17],inprominences, andby[5]infilaments.Thevaluesthusobtainedareusuallybetween1and4times thecorrespondingperiod,andlargeregionsofprominences/filamentsdisplaysimi- lardampingtimes. Finally,smallamplitudeoscillationsinquiescentfilamentshavebeeninterpreted intermsofmagnetohydrodynamic(MHD)waves[18]and,inmanycases,theoret- ical works studying the dampingof prominenceoscillations have studied first the effect of a given damping mechanism on MHD waves in a simple, uniform, and unbounded media before to introduce structuring and non-uniformity.This is the approachthatwewillfollowinthispaper. 2 MHD wavesinunbounded partially ionizedprominence plasmas Sincethetemperatureofprominencesistypicallyoftheorderof104 K,thepromi- nenceplasmaisonlypartiallyionized.Theexactionizationdegreeofprominences is unknownand the reportedratio of electron density to neutral hydrogendensity [19] coversabouttwo ordersof magnitude(0.1–10). Partialionization bringsthe presence of neutrals in addition to electrons and ions, thus collisions between the differentspeciesarepossible.Becauseoftheoccurrenceofcollisionsbetweenelec- tronswithneutralatomsandions,andmoreimportantlybetweenionsandneutrals, Jouledissipationisenhancedwhencomparedwiththefullyionizedcase.Apartially ionizedplasmacanberepresentedasasingle-fluidinthestrongcouplingapproxi- mation,whichisvalidwhenthe iondensityinthe plasmais lowandthe collision timebetweenneutralsandionsisshortcomparedwithothertime-scalesoftheprob- lem.Usingthisapproximationitispossibletodescribetheverylowfrequencyand large-scalefluid-likebehaviourofplasmas[20]. MHDwavesinpartiallyionizedprominenceplasmas 3 Partialionizationaffectstheinductionequation,whichcontainsadditionalterms due to the presence of neutrals and a non-zero resistivity [21]. These additional termsaccountfortheprocessesofohmicdiffusion,ambipolardiffusion,andHall’s magnetic diffusion. Ohmic diffusion is mainly due to electron-ion collisions and produces magnetic diffusion parallel to the magnetic field lines; ambipolar diffu- sion is mostly caused by ion-neutral collisions and Hall’s effect is enhanced by ion-neutralcollisionssincetheytendtodecoupleionsfromthemagneticfieldwhile electronsremainable to driftwith the magneticfield [22]. Due to the presence of neutrals,perpendicularmagneticdiffusionismuchmoreefficientthanlongitudinal magneticdiffusionina partiallyionizedplasma.Itisimportantto notethatthisis soevenforasmallrelativedensityofneutrals. 2.1 Homogeneousand unbounded prominencemedium Several studies have considered the damping of MHD waves in partially ionized plasmas of the solar atmosphere [23, 24, 25, 26]. In the context of solar promi- nences,[21]derivedthefullsetofMHDequationsforapartiallyionized,one-fluid hydrogenplasmaandappliedthemtothestudyofthetimedampingoflinear,adi- abaticfastandslowmagnetoacousticwavesinanunboundedprominencemedium. Thisstudywaslaterextendedtothenon-adiabaticcase,includingthermalconduc- tionby neutralsandelectronsandradiativelosses [27]. [21]considereda uniform andunboundedprominenceplasma andfoundthation-neutralcollisionsare more importantfor fast waves, for which the ratio of the damping time to the period is in the range1 to 105, thanfor slow waves, forwhich valuesbetween104 and108 areobtained.Fastwavesareefficientlydampedformoderatevaluesoftheioniza- tionfraction,whileinanearlyfullyionizedplasma,thesmallamountofneutralsis insufficienttodamptheperturbations. In the above studies, a hydrogenplasma was considered, although 90% of the prominence chemical composition is hydrogen while the remaining 10% is he- lium. The effect of including helium in the model of [27] was assessed by [28]. The species present in the medium are electrons, protons, neutral hydrogen,neu- tralhelium(HeI)andsinglyionizedhelium(HeII),whilethepresenceofHeIII is neglected[29]. Thehydrogenionizationdegreeischaracterizedbym˜ whichisequivalenttothe H mean atomic weight of a pure hydrogenplasma and ranges between 0.5 for fully ionizedhydrogenand1forfullyneutralhydrogen.Theheliumionizationdegreeis characterized by d = xHeII, where x and x denote the relative densities of He x HeII HeI HeI singleionizedandneutralhelium,respectively.Figure1a,b,cdisplayst /Pasa D functionofthewavenumber,k,fortheAlfve´n,fastandslowwaves.InthisFigure, theresultscorrespondingtoseveralheliumabundancesarecomparedforhydrogen and heliumionizationdegreesof m˜ =0.8 and d =0.1,respectively,and it can H He beobservedthatthepresenceofheliumhasaminoreffectontheresults. 4 R.SolerandJ.L.Ballester Fig.1 Wavedampingbyion-neutraleffectsinauniformmedium.(a)–(c)Ratioofthedamping timetotheperiod,tD/P,versusthewavenumber,k,correspondingtotheAlfve´nwave,fastwave andslowwave,respectively.(d)Dampingtime,t ,ofthethermalwaveversusthewavenumber, D k.Thedifferentlinestylesrepresentthefollowingabundances:x =0%(solidline),x =10% HeI HeII (dotted line) and xHeI=20% (dashed line). In all computations, m˜H=0.8 and dHe=0.1. The resultsforxHeI=10%anddHe=0.5areplottedbymeansofsymbolsforcomparison.Theshaded regionscorrespondtotherangeoftypicallyobservedwavelengthsofprominenceoscillations.In allthefiguresshown,theangle,q ,betweenthewavevectorandthemagneticfieldisp /4.From [28] The thermal mode is a purely damped, non-propagatingdisturbance (w =0), r soonlythedampingtime,t ,isplotted(Figure1d).We observethattheeffectof D heliumisdifferentintworangesofk.Fork>10−4m−1,thermalconductionisthe dominantdampingmechanism,so the largerthe amountofhelium,the shortert D becauseoftheenhancedthermalconductionbyneutralheliumatoms.Ontheother hand,radiativelossesaremorerelevantfork<10−4m−1.Inthisregion,thethermal modedampingtimegrowsastheheliumabundanceincreases.Sincethesevariations in the dampingtime are verysmall, we again concludethatthe dampingtime ob- tainedintheabsenceofheliumdoesnotsignificantlychangewhenheliumistaken intoaccount.Therefore,theinclusionofneutralorsingleionizedheliuminpartially ionizedprominenceplasmas doesnotmodifythe behaviourof linear,adiabatic or non-adiabaticMHD waves already found by [21] and [27]. On the other hand, in Figure 1c we can observe that in the case of slow waves, and within most of the intervalofobservedwavelengthsinprominenceoscillations,theratiobetweenthe dampingtimeandtheperiodagreeswiththeobservationaldeterminations,whichis duetothejointeffectofion-neutralcollisionsandnon-adiabaticeffects([27],[28]). MHDwavesinpartiallyionizedprominenceplasmas 5 Fig.2 Sketchofthelongitudinallyhomogeneousprominencethreadmodelusedin[30]withl=0 andin[31,32]withl6=0.InthisFigureadenotestheradiusofthecylinderwhileinthetextwe useR.Adaptedfrom[32]. 3 Magnetohydrodynamic WavesinProminence Threads InthisSection,wesummarizetheresultsofpaperswhichinvestigatethedamping ofMHDwavesinpartiallyionizedprominencethreadmodels.Forsimplicity,early investigationsneglectedthe variationofdensityalongthethreadandtookintoac- count the variation of density in the transverse direction only. Subsequent works incorporatedlongitudinalinhomogeneityinadditiontotransverseinhomogeneity. 3.1 LongitudinallyHomogeneousThread Models Thefirstpapersthatstudiedpartialionizationeffectsonwavepropagationinalon- gitudinallyhomogeneousprominencethreadmodelwere[30,31,32].Theseauthors investigatedlinearMHDwavessuperimposedonastraightmagneticcylinderofra- diusR,representingthethreaditself,andembeddedinafullyionizedanduniform coronal plasma. Gravity was neglected and the magnetic field was taken constant along the axis of the cylinder. [30] considered an abrupt jump of density in the transverse direction from the internal (prominence), r , to the external (coronal), p r , densities at the thread boundary, while [31, 32] replaced the discontinuity in c densitybyacontinuousvariationofdensityinaregionofthicknessl.Forl=0the equilibriumof[31,32]revertstothatof[30].Hencetheratiol/Rindicatesthein- homogeneitylength-scaleinthetransversedirection.Inbothpaperstheprominence plasma was assumed partially ionized with an arbitrary ionization degree, while theexternalcoronalmediumwasfullyionized.Thesingle-fluidapproximationwas adopted and Ohm’s, Hall’s, and Cowling’s terms were included in the induction equation.Thus,theequilibriumconfigurationissimilartotheclassicalstraightflux tubemodelinvestigatedby,e.g.,[33,34],withtheadditionofpartialionization.A sketchofthemodelisdisplayedinFigure2. 6 R.SolerandJ.L.Ballester Inthismodeltheobservedtransverseoscillationsofprominencethreadscanbe interpretedintermsoftransverse(Alfve´nic)kinkmodes.Becauseoftheirobserva- tional relevance, here we discuss the results for transverse (Alfve´nic) kink waves only.Theinterestedreaderisrefereedtotheoriginalpapers[30,31,32]wherethe resultsofotherwavesareexplainedindetail.Itiswellknownthatforl6=0thekink modeisresonantlycoupledtoAlfve´ncontinuummodesintheregionoftransversely non-uniformdensity.As a consequencethe kink mode is dampedby resonantab- sorption. In addition, the kink mode is also damped by magnetic diffusion effects duetopartialionization.Inthefullyionizedcase,theidealresonantdampingofthe kinkmodeinprominencethreadswasinvestigatedby[35,36],whilepartialioniza- tiondoesnotaffectthemechanismofresonantabsorption,whichisanidealprocess independentof dissipation by ion-neutralcollisions. This has been shown by [37] usingmultifluidtheory. [30,31]studiedtemporaldampingofstandingwaves.Byneglectingtheeffects ofOhm’sandHall’sdiffusionincomparisontothatofCowling’sdiffusion,approx- imateexpressionsfortheperiod,P,andfortheratioofthedampingtime,t ,tothe D periodofthekinkmodecanbeobtainedinthelong-wavelengthlimit,i.e.,l /R≫1, wherel isthewavelength.Thelong-wavelengthlimitisareasonableapproximation sincewavelengthstypicallyobservedinprominencesareroughlybetween103 km and105km(see[18])whiletheobservedwidthsofthethreadsarebetween100km and600km(see[3]).TheexpressionsforPandt /Pare D l z +1 P = , (1) vAs 2z t 2 l z −1 2x 2 w −1 D = + n k , (2) P p Rz +1 1−x n (cid:18) n in(cid:19) wherev istheprominenceAlfve´nvelocity,z =r /r isthedensitycontrast,w = A p c k 2p /Pisthekinkmodefrequency(withPgivenbyEquation(1)),x isthefraction n of neutrals, and n the ion-neutralcollision frequency.x =0 for a fully ionized in n plasmaandx =1foraneutralmedium.Toperformacheck,wetakel =104km, n v =50km−1,andz =200.Equation(1)givesP≈2.4min,whichisconsistent A withtheobservedperiods. Regardingdamping,thefirsttermwithintheparenthesisofEquation(2) isdue toresonantabsorptionandthesecondtermisduetoCowling’sdiffusion.Notethat theoriginalexpressionoft /Pgivenin[31]involvesCowling’sdiffusivity,h .In D C the present discussion we have replaced h by its expression in terms of x and C n n (see the expression of h in, e.g., [30]). Our purpose is to show that the term in C relatedtoCowling’sdiffusionisproportionaltotheratiow /n .Toperformasim- k in pleorder-of-magnitudeestimationoftheimportanceofCowling’sdiffusion,letus take a period of 3 min and compute n using x =0.5, a prominence density of in n 5×10−11kgm−3,andaprominencetemperatureof8,000K(seetheexpressionof n in [30]).Theresultisw /n ≈2.38×10−4.Thisestimationindicatesthatthe in k in effectofCowling’sdiffusionisnegligibleunlesstheprominenceisalmostneutral, MHDwavesinpartiallyionizedprominenceplasmas 7 Fig.3 (a)tD/Pvs.kzaforthekinkmodeinalongitudinallyhomogeneousthreadwithl/a=0 (dotted),l/a=0.1(dashed),l/a=0.2(solid),andl/a=0.4(dash-dotted).Theshadedzonede- notesrealisticwavelengths.Adaptedfrom[31].(b)tD/Pvs.Lp/Lforthekinkmodeinalongitu- dinallyinhomogeneousthreadwithl/a=0.05(dotted),l/a=0.1(dashed),l/a=0.2(solid),and l/a=0.4(dash-dotted).SymbolsaretheresultfromEquation(2)withl/a=0.2.InthisFigurea denotestheradiusofthecylinderwhileinthetextweuseR.Adaptedfrom[38]. i.e.,x ≈1,whichisanunrealisticlimit.Therefore,resonantabsorptiondominates n thekinkmodedampingandthesecondtermwithintheparenthesisofEquation(2) canbedropped.Hence,forz =200andl/R=0.2weobtaint /P≈3.22,which D againisconsistentwiththeobservations. [31]alsoobtainedresultsbeyondthelong-wavelengthapproximationbymeans offullnumericalsolutions.TheyincludedOhm’sandHall’stermsalongwithCowl- ing’s diffusion. [31] computed the kink mode t /P as a function of the param- D eter k R, where k =2p /l (see Fig. 3a). They concluded that Hall’s term is al- z z ways negligible in prominence conditions, Ohm’s diffusion is only important for extremely long wavelengths (very small values of k R), and Cowling’s diffusion z is only relevant for short wavelengths (large k R). For realistic wavelengths, i.e., z 10−3 <k R<10−1, resonant absorption determines the damping rate of the kink z modeandtheanalyticalformulagiveninEquation(2)isveryaccurate. Subsequently,[32]usedthesamemodelas[31]tostudyspatialdampingofkink waves.Theresultsof[32]arequalitativelyequivalenttothoseof[31],i.e.,resonant dampingdominatesforrealisticfrequencieswhereasCowling’sdiffusionisefficient forhighfrequenciesonly. 3.2 LongitudinallyInhomogeneous Thread Models A longitudinallyhomogeneouscylinderis a cruderepresentationof a prominence fine structure. High-resolution observations of prominences (see [3]) suggest that thecoolanddensematerialofthethreadsonlyoccupiesasmallpartoflongermag- neticfluxtubes,withtherestofthemagnetictubeprobablyfilledwithhotcoronal plasma.Theobservedlengthofthethreadsisbelievedtobeonlyasmallpercentage of the total length of the magnetic tube, whose feet are rooted in the solar photo- 8 R.SolerandJ.L.Ballester Fig.4 Sketchofthelongitudinallyinhomogeneousprominencethreadmodelusedin[38].Inthis FigureadenotestheradiusofthecylinderwhileinthetextweuseR.Adaptedfrom[38]. sphere[39, 40]. Thisobservationalevidencemaybe omitted to study propagating waves in the dense part of the magnetic tube if the wavelengthsare much shorter thanthelengthofthe threads.Forthiscase thelongitudinallyhomogeneousmod- els discussed in Section 3.1 may be appropriate.However,in the case of standing modes,theassociatedwavelengthsareofthe orderofthe totallengthofmagnetic fieldlines.Thereforethelongitudinalstructuringoftheprominencemagnetictube cannotbeneglectedwhenstandingmodesareinvestigated. This observationalevidence has been taken into accountin some works which studiedideal,undampedkinkmodesinthefullyionizedcase(see,e.g.,[41,42,43]). The first paper that incorporated the effects of damping by Cowling’s diffusion andresonantabsorptionon standingkinkmodesin longitudinallyinhomogeneous threads was [38]. These authors used the model displayed in Figure 4. It is com- posedofastraightmagneticcylinderoflengthLandradiusRwhoseendsarefixed attworigidwallsrepresentingthesolarphotosphere.Themagneticfieldisconstant. ThecylinderiscomposedofaregionoflengthL anddensityr ,representingthe p p prominencethread,surroundedbytworegionsofdensityr representingtheevac- e uatedpartofthetube.Theexternalcoronaldensityisr andforsimplicityitisset c r =r .Theprominencethreadistransverselyinhomogeneousinaregionofthick- e c nesslwherethedensitycontinuouslyvariesfromr tor .Theprominenceplasma p c ispartiallyionizedwhilethecoronalandevacuatedplasmasarefullyionized. Toinvestigatestandingkinkmodesanalytically,[38]usedthethintubeapprox- imation, i.e., R/L≪1 and R/L ≪1. To check this approximation we take the p values of R and L typically reported from the observations (see [3]) and assume p L∼105 km, so that R/L and R/L are in the ranges 2×10−3 <R/L <0.1 and p p 5×10−4<R/L<3×10−3,meaningthattheuseoftheTTapproximationisjus- tified. [44] have shown that the results of [38] remain valid beyond the thin tube approximation.[38]derivedapproximateexpressionsforPandtheratiot /P.The D expressionforPis p z +1 P= L−L L , (3) vAs 2z p p q (cid:0) (cid:1) MHDwavesinpartiallyionizedprominenceplasmas 9 where here v is the Alfve´n velocity of the dense, prominence plasma only, and A z =r /r isthedensityconstrastasbefore.InEquation(3)itisassumedthatthe p c prominencethreadislocatedatthecenterofthemagnetictube(ageneralexpression isgivenin[38]).AdirectcomparisonofEquations(1)and(3)showsthattheeffect ofthelongitudinalstructuringofthetubeistoselectaparticularvalueofthewave- length,l ,whichdependsoftherelationbetweenLandL .Regardingthedamping p rate, the expression for t /P is not explicitly given here because it is exactly the D sameasthatinEquation(2),wherenoww =2p /Phastobecomputedusingthe k periodfromEquation(3).Thus,ashappensforkinkmodesinlongitudinallyhomo- geneousthreads,the effectof Cowling’sdiffusionis negligibleforrealistic values oftheperiodwhencomparedtothatofresonantabsorption. Figure3b showsthe ratio t /Pnumericallycomputedby [38] asa functionof D L /L.Remarkably,thedampingratioisindependentofthelengthofthethreadand p onlydependsonthetransversenon-uniformitylengthscalel/R.Thesemeansthat the expression of t /P for longitudinally homogeneous(Equation (2)) tubes also D applieswhenlongitudinalstructuringisincluded. Acknowledgements RS acknowledges support from a Marie Curie Intra-European Fellowship withintheEuropeanCommission7thFrameworkProgram(PIEF-GA-2010-274716).RSandJLB acknowledgefinancialsupportfromMICINNandFEDERfundsthroughgrantAYA2011-22486. References 1. Y.Lin,O.Engvold,L.RouppevanderVoort,J.Wiik,T.Berger,SolarPhys.226,239(2005). DOI10.1007/s11207-005-6876-3 2. P.Heinzel,U.Anzer,Astrophys.J.Lett.643,L65(2006). DOI10.1086/504980 3. Y.Lin,SpaceSci.Rev.(2011). DOI10.1007/s11214-010-9672-9 4. O. Engvold, in New Perspectives on Solar Prominences, ASP Conference Series, vol. 150, ed.byD.Webb,B.Schmieder,D.Rust(AstronomicalSocietyofthePacific,SanFrancisco, 1998),ASPConferenceSeries,vol.150,pp.23–31 5. Y.Lin.Magneticfieldtopologyinferredfromstudiesoffinethreadsinsolarfilaments(2005) 6. O. Engvold, in Waves & Oscillations in the Solar Atmosphere: Heating and Magneto- Seismology, IAU Symposia, vol. 247, ed. by R. Erde´lyi, C. Mendoza-Bricen˜o (Cambridge UniversityPress,Cambridge;NewYork,2008),IAUSymposia,vol.247,pp.152–157. DOI 10.1017/S1743921308014816 7. S.Martin,Y.Lin,O.Engvold,SolarPhys.250,31(2008). DOI10.1007/s11207-008-9194-8 8. Y.Lin,S.Martin,O.Engvold,inSubsurfaceandAtmosphericInfluences onSolarActivity, ASPConferenceSeries,vol.383,ed.byR.Howe,R.Komm,K.Balasubramaniam,G.Petrie (AstronomicalSocietyofthePacific,SanFrancisco,2008),ASPConferenceSeries,vol.383, pp.235–242 9. J.Leroy,inProceedingsoftheJapan-FranceSeminaronSolarPhysics,ed.byF.Moriyama, J.Henoux(NihonGakujutsuShinkokaiandCNRS,Tokyo,1980),p.155 10. V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Bre´chot, Solar Phys. 154, 231 (1994) 11. V.Bommier, J. Leroy, inNewPerspectives on SolarProminences, ASPConference Series, vol.150,ed.byD.Webb,B.Schmieder,D.Rust(AstronomicalSocietyofthePacific,San Francisco,1998),ASPConferenceSeries,vol.150,pp.434–438 10 R.SolerandJ.L.Ballester 12. Y.Lin,R.Soler,O.Engvold,J.Ballester,Ø.Langangen,R.Oliver,L.RouppevanderVoort, Astrophys.J.704,870(2009). DOI10.1088/0004-637X/704/1/870 13. Z.Yi,O.Engvold,SolarPhys.134,275(1991) 14. Z.Yi,O.Engvold,S.Keil,SolarPhys.132,63(1991) 15. Y.Lin,O.Engvold,L.RouppevanderVoort,M.vanNoort,SolarPhys.246,65(2007). DOI 10.1007/s11207-007-0402-8 16. I.Arregui,J.L.Ballester,SpaceSci.Rev.158,169(2011). DOI10.1007/s11214-010-9648-9 17. J.Terradas,R.Molowny-Horas,E.Wiehr,H.Balthasar,R.Oliver,J.Ballester,Astron.Astro- phys.393,637(2002). DOI10.1051/0004-6361:20020967 18. R.Oliver,J.Ballester,SolarPhys.206,45(2002). DOI10.1023/A:1014915428440 19. S.Patsourakos,J.C.Vial,SolarPhys.208,253(2002) 20. M. Goossens, An Introduction to Plasma Astrophysics and Magnetohydrodynamics, Astro- physicsandSpaceScienceLibrary,vol.294(Kluwer,Dordrecht;Norwell,MA,2003) 21. P.Forteza,R.Oliver,J.Ballester,M.Khodachenko,Astron.Astrophys.461,731(2007).DOI 10.1051/0004-6361:20065900 22. B. Pandey, M. Wardle, Mon. Not. R. Astron. Soc. 385, 2269 (2008). DOI 10.1111/j. 1365-2966.2008.12998.x 23. B.DePontieu,P.Martens,H.Hudson,Astrophys.J.558,859(2001). DOI10.1086/322408 24. S. James, R. Erde´lyi, B. De Pontieu, Astron. Astrophys. 406, 715 (2003). DOI 10.1051/ 0004-6361:20030685 25. M.Khodachenko,T.Arber,H.Rucker,A.Hanslmeier,Astron.Astrophys.422,1073(2004). DOI10.1051/0004-6361:20034207 26. J.Leake, T.Arber, M.Khodachenko, Astron. Astrophys. 442,1091 (2005). DOI10.1051/ 0004-6361:20053427 27. P. Forteza, R. Oliver, J. Ballester, Astron. Astrophys. 492, 223 (2008). DOI 10.1051/ 0004-6361:200810370 28. R.Soler,R.Oliver,J.Ballester,Astron.Astrophys.512,A28(2010).DOI10.1051/0004-6361/ 200913478 29. P.Gouttebroze,N.Labrosse,Astron.Astrophys.503,663(2009). DOI10.1051/0004-6361/ 200811483 30. R.Soler,R.Oliver,J.Ballester,Astrophys.J.699,1553(2009). DOI10.1088/0004-637X/ 699/2/1553 31. R.Soler,R.Oliver,J.Ballester,Astrophys.J.707,662(2009). DOI10.1088/0004-637X/707/ 1/662 32. R.Soler,R.Oliver,J.Ballester,Astrophys.J.726(2011).DOI10.1088/0004-637X/726/2/102 33. P.Edwin,B.Roberts,SolarPhys.88,179(1983). DOI10.1007/BF00196186 34. M. Goossens, J. Terradas, J. Andries, I. Arregui, J. Ballester, Astron. Astrophys. 503, 213 (2009). DOI10.1051/0004-6361/200912399 35. I. Arregui, J. Terradas, R. Oliver, J. Ballester, Astrophys. J. Lett. 682, L141 (2008). DOI 10.1086/591081 36. R. Soler, R. Oliver, J. Ballester, M. Goossens, Astrophys. J. Lett. 695, L166 (2009). DOI 10.1088/0004-637X/695/2/L166 37. R.Soler,J.Andries,M.Goossens,Astron.Astrophys.537,A84(2012) 38. R.Soler, I.Arregui, R.Oliver, J.Ballester, Astrophys. J.722, 1778(2010). DOI10.1088/ 0004-637X/722/2/1778 39. J.Ballester,E.Priest,Astron.Astrophys.225,213(1989) 40. M.Rempel,D.Schmitt,W.Glatzel,Astron.Astrophys.343,615(1999) 41. A.D´ıaz,R.Oliver,J.Ballester,Astrophys.J.580,550(2002). DOI10.1086/343039 42. J. Terradas, I. Arregui, R. Oliver, J. Ballester, Astrophys. J. Lett. 678, L153 (2008). DOI 10.1086/588728 43. R.Soler,M.Goossens,Astron.Astrophys.531(2011). DOI10.1051/0004-6361/201116536 44. I.Arregui, R.Soler,J.L.Ballester,A.N.Wright,Astron.Astrophys.533, A60(2011). DOI 10.1051/0004-6361/201117477