Dissertations and Theses 5-2016 MMaaggnneettoo--RRhheeoollooggiiccaall FFlluuiidd DDeevviiccee aass AArrttiifificciiaall FFeeeell FFoorrccee SSyysstteemm oonn AAiirrccrraafftt CCoonnttrrooll SSttiicckk Vignesh Manoharan Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons SScchhoollaarrllyy CCoommmmoonnss CCiittaattiioonn Manoharan, Vignesh, "Magneto-Rheological Fluid Device as Artificial Feel Force System on Aircraft Control Stick" (2016). Dissertations and Theses. 225. https://commons.erau.edu/edt/225 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. MAGNETO-RHEOLOGICAL FLUID DEVICE AS ARTIFICIAL FEEL FORCE SYSTEM ON AIRCRAFT CONTROL STICK A Thesis Submitted to the Faculty of Embry-Riddle Aeronautical University by Vignesh Manoharan In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering May 2016 Embry-Riddle Aeronautical University Daytona Beach, Florida iii ACKNOWLEDGMENTS I would like to thank Embry-Riddle Aeronautical University and my thesis advisors Dr. Daewon Kim and Dr. Dongeun Seo for providing the resources and their endless support in sharing their expertise to conduct this research. In addition, I want to especially acknowledge Dr. Yongho Lee for his support in the smart fluid modeling and I thank Dr. David J. Sypeck for helping in selection of materials. I also acknowledge Mr. Mike Potash for his endorsement in sensor selection and Mr. Bill Russo for his help in the manufacturing of this device. Finally, thanks to my colleague Edmund Charlton for his aid in development of the concept presented, and my friends and family for their immense moral support. iv TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii SYMBOLS .......................................................................................................................... x ABBREVIATIONS ........................................................................................................... xi ABSTRACT .................................................................................................................... xiiii 1. Introduction ................................................................................................................ 1 1.1. Artificial Feel Force System ..................................................................................... 1 1.1.1. Prior Arts ........................................................................................................... 2 1.2. Magneto-Rheological Fluid ...................................................................................... 4 1.2.1. MR Fluid Principles of Operation ..................................................................... 5 1.2.2. Magneto-Rheological Device ............................................................................ 6 2. Objective and Approaches ...................................................................................... 20 3. Mathematical Modeling .......................................................................................... 22 3.1 Kinetic Theory Model ..............................................................................................22 3.2 Bouc-Wen Hysteresis Model ...................................................................................25 3.3 Herschel-Buckley Model ..........................................................................................27 3.4. Bingham Plastic Model ...........................................................................................28 3.5. Electrical Equation and Yield Stress .......................................................................29 4. MR Damper Design ................................................................................................. 32 4.1. Fabrication of MR Device ...................................................................................... 36 4.2. Selection of Poly-Urethane Foam .......................................................................... 39 5. Magnetostatic Analysis ........................................................................................... 45 6. MR Damper Testing ............................................................................................... 48 6.1. NImyDAQ .............................................................................................................. 50 6.2. Experiment ..............................................................................................................51 6.3. Experimental Result ................................................................................................51 7. MR Device Model Simulation ................................................................................ 54 7.1. Simulation Result ....................................................................................................55 8. System Development and Testing .......................................................................... 58 8.1. Real Time Data Acquisition ....................................................................................59 v 8.2. Force Feedback Control ..........................................................................................59 9. Conclusions and Future Work .................................................................................63 REFERENCES ................................................................................................................. 64 A. LabVIEW code for the MR damper experiment ..................................................... 68 B. Experimental Force VS Displacement Plot ............................................................. 71 vi LIST OF TABLES Table 4.1 Preliminary MR damper with dimensions ........................................................ 38 Table 4.2 Final MR damper with dimensions ....................................................................38 Table 4.3 Weights of PU foam at different time ............................................................... 42 Table 5.1 Area dimensions of MR damper developed in ANSYS ................................... 45 Table 5.2 BH curve data points..........................................................................................46 vii LIST OF FIGURES Figure 1.1 Conventional spring type feel system used in Airbus 320/340/360 .................. 2 Figure 1.2 Schematic of artificial feel system operating using servo mechanism .............. 3 Figure 1.3 MR fluid behaviour with and without magnetic field ....................................... 5 Figure 1.4 Three operational modes of MR fluid ............................................................... 6 Figure 1.5 The picture of robotic surgery using MR dampers as force feedback device ... 7 Figure 1.6 MR damper being used in cables of suspension bridges ................................... 8 Figure 1.7 MR fluid operated clutch with permanent magnet ............................................ 9 Figure 1.8 MR fluid muscle rehabilitant device ............................................................... 10 Figure 1.9 MR fluid joystick for haptic force applications ............................................... 11 Figure 1.10 MR damper for vibration isolation in rotary shafts ....................................... 12 Figure 1.11 MR damper for automobile suspension mounted in the UTM ...................... 13 Figure 1.12 Components present in a MR fluid damper ................................................... 15 Figure 1.13 The magnetic field direction in MR fluid valve ............................................ 16 Figure 1.14 Magnetic field direction of MRF orifice ....................................................... 17 Figure 1.15 MRE experimental setup ............................................................................... 17 Figure 1.16 Two modes of MR fluid device operation (a) external (b) internal .............. 18 Figure 1.17 The experimental setup for gun recoil damping ............................................ 19 Figure 2.1 The research flow chart with different forecasted stages in research .............. 21 Figure 3.1 Kinetic theory model with MR particles as dumbbell constants ..................... 24 Figure 3.2 Kinetic theory data compared with the experimental shear stress data ........... 25 Figure 3.3 Mechanical model of Bouc-Wen hysteresis model ......................................... 26 Figure 3.4 Improved Bouc-Wen model with hysteresis parameter .................................. 26 Figure 3.5 Mechanical Bingham model ............................................................................ 28 Figure 3.6 Schematic of cross section of the MR device with MR fluid gap ................... 29 Figure 4.1 Cross section view of monotube MR damper with accumulator .................... 32 Figure 4.2 Cross-sectional view of MR damper with sponge design ............................... 34 Figure 4.3 Preliminary MR damper with sponge design with coil winding gap .............. 35 Figure 4.4 Piston with MR fluid sponge and electromagnet ............................................ 36 Figure 4.5 Gauss meter with probe for magnetic field detection ...................................... 37 Figure 4.6 MR damper piston with electromagnet and sponge ........................................ 37 Figure 4.7 Front view of MR damper with piston inside the cylinder .............................. 38 viii Figure 4.8 Closed cell PU foam sample............................................................................ 39 Figure 4.9 Open cell PU foam sample .............................................................................. 40 Figure 4.10 Closed cell PU foam without MR fluid ......................................................... 41 Figure 4.11 Weight of open cell PU foam with MR fluid ................................................ 41 Figure 4.12 Weight of closed cell PU foam ...................................................................... 42 Figure 5.1 Axisymmetric model of MR damper created in ANSYS ................................ 44 Figure 5.2 Mesh model created for MR damper with 4 different regions ........................ 46 Figure 5.3 BH curve generated in ANSYS APDL ........................................................... 47 Figure 5.4 Magnetic vector lines with magnetic field intensity ........................................ 47 Figure 6.1 MTS machine with MR damper mounted on the clamps ................................ 49 Figure 6.2 LabVIEW code with velocity input ................................................................. 49 Figure 6.3 LabVIEW code with displacement input ........................................................ 50 Figure 6.4 NImyDAQ with wires connected to the output terminal................................. 50 Figure 6.5 MR damper connected with external power supply and DAQ system ........... 51 Figure 6.6 Experimental force VS displacement graph of MR damper ........................... 53 Figure 6.7 Experimental force VS velocity graph of MR damper .................................... 53 Figure 7.1 Simulation loop created in LabVIEW with transfer function blocks .............. 55 Figure 7.2 Transfer function equation with function blocks in LabVIEW ........................55 Figure 7.3 Comparison of Force VS velocity plot of experiment and simulation .............57 Figure 8.1 Functional flow diagram of joystick integration with LabVIEW ....................58 Figure 8.2 PID control loop block diagram for feel system ..............................................59 Figure 8.3 PID block diagram for temperature control system .........................................61 Figure 8.4 Laboratory setup of feel system with MR device and sensors interfaced ........62 Figure 10.1 Force vs velocity plot for 1.53 V ....................................................................68 Figure 10.2 Force vs velocity plot for 1.3 V ......................................................................68 Figure 10.3 Force vs velocity plot for 1 V .........................................................................69 Figure 10.4 Force vs velocity plot for 0.7 V ......................................................................69 Figure 10.5 Force vs velocity plot for 0.5 V ......................................................................70 Figure 10.6 Force vs velocity plot for 0 V .........................................................................70 Figure 10.7 Force vs displacement plot for 1.5 V ..............................................................71 Figure 10.8 Force vs displacement plot for 1.2 V ..............................................................71 Figure 10.9 Force vs displacement plot for 1 V .................................................................72 ix Figure 10.10 Force vs displacement plot for 0.7 V ............................................................72 Figure 10.11 Force vs displacement plot for 0.5 V ............................................................73
Description: