Magnetism and Superconductivity in Iron-based Superconductors as Probed by Nuclear Magnetic Resonance Franziska Hammerath Magnetism and Super- conductivity in Iron- based Superconductors as Probed by Nuclear Magnetic Resonance Foreword by Prof. Dr. Bernd Büchner RESEARCH Franziska Hammerath Dresden, Germany Vollständiger Abdruck der von der Fakultät für Mathematik und Naturwissenschaft en der Technischen Universität Dresden zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaft en (Dr. rer. nat.) genehmigten Dissertation. ISBN 978-3-8348-2422-6 ISBN 978-3-8348-2423-3 (eBook) DOI 10.1007/978-3-8348-2423-3 The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Springer Spektrum © Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or schol- arly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this pub- lication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal r esponsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Cover design: KünkelLopka GmbH, Heidelberg Printed on acid-free paper Springer Spektrum is a brand of Springer DE. Springer DE is part of Springer Science+Business Media. www.springer-spektrum.de Fu¨rMadeleine Foreword Sinceironanditscompoundsareoftenferromagnets-anotationthatoriginatesfromthe latin word“ferrum” foriron-superconductivity is notthefirst property tocheck forin aniron-basedcompound. Itwasthereforeevenmoresurprisingthatthesuperconducting transitiontemperaturecouldberaisedupto55KshortlyafterKamiharaandco-workers reported the discovery of superconductivity in the so-called iron pnictides in 2008. In fact,thisisthehighesttransitiontemperatureever,secondedonlybythecuprates,which werefoundin1986. Similartothese, theobservationofanotherfamilyofhightemperaturesuperconductors led to an enormous activity within the research community, resulting in thousands of papers presenting surprising and also promising new results. For example, high critical currentdensitiesandhighcriticalfieldsraisethehopethatthesematerialscouldbewell usedforapplications. Ontheotherhand,themechanismofsuperconductivityisstillnot clear. Whileasimplephonon-mediatedCooperpairingseemstobeexcludedbythehigh transition temperatures, it is not yet established if antiferromagnetic spin fluctuations can indeed mediate the pairing, or if they are just a remnant of a nearby spin density phase. Also, the symmetry of the order parameter seems to change from compound to compound. While most of the experimental results are in line with the theoretically proposed s+−-symmetry, there is substantial evidence for d-wave symmetry from other experiments. Even the possibility of p-wave superconductivity has been proposed, but withcontradictoryresultsontheexperimentalside. All these intriguing questions are addressed in the PhD thesis at hand. In this thesis, FranziskaHammerathhasusedtheexperimentaltechniqueNuclearMagneticResonance (NMR)inordertoinvestigateseveraldifferentcompoundsofsuperconductingironpnic- tides. NMR has been invented already 60 years ago, and contributed to the field of superconductivityfromthebeginningon. Tonamebutafewexamples,thepeculiartem- perature dependence of the spin-lattice relaxation rate observed by Hebel and Slichter inthesuperconducting stateofaluminum supportedthetheoryofsuperconductivity by Bardeen, Cooper and Schrieffer, and the constant Knight shift in Sr RuO in the su- 2 4 perconducting state provided evidence for triplet superconductivity in this compound. Furthermore,itslocalcharacterandthesensitivitytolowfrequencymagneticexcitations renderitaperfecttooltoinvestigatealsothenormalstatepropertiesofanewsupercon- ductingfamily,suchastheironpnictides. viii Foreword This thesis comprises a coherent summary of the basics of NMR as well as a brief de- scription of the fundamental properties of the iron pnictides. With this at hand, the interested reader can immerse into the enlightening results of Nuclear Magnetic Reso- nanceoniron-basedsuperconductors,gainingadeeperinsightalsointothedetailsofthis powerful experimental tool as well as a better understanding of the iron pnictides as a newbearerofhopeintheresearchofhightemperaturesuperconductivity. Prof. Dr. BerndBu¨chner DirectoroftheInstituteofSolidStateResearch IFWDresden Contents Foreword vii List ofFigures xiii List ofTables xv 1 Introduction 1 2 Basic Principles of NMR 3 2.1 IsolatedNuclearSpinsinaMagneticField . . . . . . . . . . . . . . . . . . 4 2.1.1 ASingleNuclearSpin . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 ManyNuclearSpins . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 MakingLifeInteresting: Interactions . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 InteractionsBetweenNuclearSpins-LineShapeI. . . . . . . . . . 7 2.2.2 MagneticHyperfineInteractions . . . . . . . . . . . . . . . . . . . . 8 2.2.3 ElectricQuadrupoleInteractions . . . . . . . . . . . . . . . . . . . 11 2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 DynamicProcesses: Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 HowtoMeasureNuclearMagnetism? . . . . . . . . . . . . . . . . . 20 2.3.2 Spin-LatticeRelaxation . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2.1 SourcesofSpin-LatticeRelaxation . . . . . . . . . . . . . 22 2.3.2.2 InversionRecoveryMethodtoMeasureT−1 . . . . . . . . 24 1 2.3.2.3 Spin-LatticeRelaxationFunctions . . . . . . . . . . . . . 24 2.3.2.4 KorringaRelation . . . . . . . . . . . . . . . . . . . . . . 26 2.3.3 Spin-SpinRelaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 LineShapeII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 NMR in the Superconducting State 31 3.1 KnightShift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 SpinShift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 OrbitalShiftandSpin-OrbitScattering . . . . . . . . . . . . . . . . 32 3.1.3 DiamagneticShielding . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Spin-LatticeRelaxationRate . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 BCSCoherenceFactors. . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 BCSSpin-LatticeRelaxationRate . . . . . . . . . . . . . . . . . . 35 3.2.2.1 ComparisontoUltrasonicAttenuation . . . . . . . . . . . 37 3.2.3 AbsenceoftheHebel-SlichterPeak . . . . . . . . . . . . . . . . . . 38 3.2.4 WhattoExpectforPnictides?. . . . . . . . . . . . . . . . . . . . . 39 x Contents 4 Iron-based Superconductors 41 4.1 GeneralOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 CrystalStructureandElectronicStructure . . . . . . . . . . . . . . 41 4.1.2 GroundStatesandPhaseDiagrams . . . . . . . . . . . . . . . . . . 42 4.1.3 SymmetryoftheSuperconductingOrderParameter . . . . . . . . . 44 4.2 BasicpropertiesofLaO1−xFxFeAs. . . . . . . . . . . . . . . . . . . . . . . 47 4.3 BasicpropertiesofLiFeAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Experimental Setup 53 5.1 MagnetsandCryogenics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 ElectronicMeasurementEquipment . . . . . . . . . . . . . . . . . . . . . . 54 5.2.1 Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.2 MainElementsoftheElectronics . . . . . . . . . . . . . . . . . . . 55 5.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.1 LaO1−xFxFeAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.2 LiFeAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.4 ProblemsandImprovements . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4.1 TemperatureControl . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4.2 SampleProbeforthe16TFieldSweepMagnet . . . . . . . . . . . 62 5.4.3 SampleHeating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6 NMR on LaO1−xFxFeAs in the Normal State 67 6.1 KnightShift-StaticSusceptibility . . . . . . . . . . . . . . . . . . . . . . 67 6.1.1 Optimally-DopedLaO F FeAs . . . . . . . . . . . . . . . . . . . 67 0.9 0.1 6.1.2 LaO F FeAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 0.95 0.05 6.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2 Spin-LatticeRelaxationRate-Dynamics . . . . . . . . . . . . . . . . . . . 76 6.2.1 Optimally-DopedLaO F FeAs . . . . . . . . . . . . . . . . . . . 77 0.9 0.1 6.2.2 UnderdopedLaO F FeAs . . . . . . . . . . . . . . . . . . . . . 81 0.95 0.05 6.2.3 OverallDopingDependence-RoleofSpinFluctuations . . . . . . . 82 6.2.3.1 QualitativeDiscussion . . . . . . . . . . . . . . . . . . . . 82 6.2.3.2 QuantitativeDiscussion . . . . . . . . . . . . . . . . . . . 85 6.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3 KorringaRelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7 NMR and NQR on LaO1−xFxFeAs in the Superconducting State 97 7.1 Spin-LatticeRelaxationRateforx≥0.05 . . . . . . . . . . . . . . . . . . 97 7.2 TheEffectof’Smart’Deficiencies: LaO0.9F0.1FeAs1−δ . . . . . . . . . . . . 102 7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Contents xi 8 NMR and NQR on LiFeAs 111 8.1 75As-NQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.2 75As-NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2.1 StaticNMRProperties-LinewidthandKnightShift . . . . . . . . 115 8.2.2 DynamicProperties-Spin-LatticeRelaxationRate . . . . . . . . . 120 8.3 Summaryof75AsNQRandNMRResults . . . . . . . . . . . . . . . . . . 124 8.4 7Li-NMR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5 Summaryof7LiNMRResults . . . . . . . . . . . . . . . . . . . . . . . . . 130 9 Conclusions 131 A Appendix 135 A.1 NMRPowderSpectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 A.2 CalculationofSpin-LatticeRelaxationFunctions . . . . . . . . . . . . . . 139 A.3 StretchedExponentialRelaxationFunction . . . . . . . . . . . . . . . . . . 143 A.4 SpinDiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Bibliography 151 Acknowledgement 171 List of Figures 2.1 Levelsplittingduetoquadrupoleeffectsinzerofield. . . . . . . . . . . . . 14 2.2 Level splitting due to first-order quadrupole effects in a strong magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 SummaryofallpossibleinteractionsandtheresultingNMRspectra . . . . 17 2.4 Effectivefieldintherotatingframe(non-resonantcase) . . . . . . . . . . . 19 2.5 Effectivefieldintherotatingframeatresonance . . . . . . . . . . . . . . . 19 2.6 Relaxationandprecessionofthenuclearmagnetization . . . . . . . . . . . 20 2.7 Fouriertransformationofarectangularpulse . . . . . . . . . . . . . . . . . 21 2.8 Hahnspinechopulsesequence . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 Inversionrecoverymethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.10 Relaxationratesasfunctionofthecorrelationtimeτ . . . . . . . . . . . . 29 c 4.1 Crystalstructureofiron-basedsuperconductors . . . . . . . . . . . . . . . 42 4.2 ElectronicstructureofLaOFeAs . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Phasediagramsofcupratesandpnictides . . . . . . . . . . . . . . . . . . . 45 4.4 EarlyNMRresultsinthesuperconductingstateofpnictides . . . . . . . . 46 4.5 Momentum-dependent superconductinggapinBa1−xKxFe2As2 . . . . . . . 46 4.6 PhasediagramofLaO1−xFxFeAs . . . . . . . . . . . . . . . . . . . . . . . 48 4.7 SusceptibilityofLaOFeAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 ARPESresultsonLaOFeAs . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.9 ARPESresultsonLiFeAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.1 Resonantcircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Experimentalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 FieldsweepspectraofalignedandmisalignedLaO F FeAspowder 0.9 0.1 samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4 75AsNQRresonancelineofLiFeAsatroomtemperature . . . . . . . . . . 59 5.5 7LiNMRspectraat200KinH =4.4994T. . . . . . . . . . . . . . . . . . 60 5.6 75(T T)−1 ofLaOFeAsuponcoolingwithnitrogenandhelium . . . . . . . 61 1 5.7 16Tsampleprobebeforeandafterimprovements . . . . . . . . . . . . . . 63 5.8 Effectofsampleheatingonthe75AsNQRfrequencyofLiFeAs . . . . . . . 65 6.1 75As-NMRresonancelineofab-alignedLaO F FeAs . . . . . . . . . . . 68 0.9 0.1 6.2 KnightshiftvsmacroscopicsusceptibilityinLaO F FeAs . . . . . . . . 69 0.9 0.1 6.3 Pseudogapfiton75K forLaO F FeAs . . . . . . . . . . . . . . . . . . 70 ab 0.9 0.1 6.4 HyperfinecouplingconstantsforLaO F FeAs . . . . . . . . . . . . . . . 71 0.9 0.1 6.5 75AsKnightshiftofLaO F FeAs . . . . . . . . . . . . . . . . . . . . . 74 0.95 0.05 6.6 Scalingof75K andχ(T)forLaO F FeAs. . . . . . . . . . . . . . . . 75 ab 0.95 0.05 6.7 75As(T T)−1 ofLaO F FeAs . . . . . . . . . . . . . . . . . . . . . . . . 78 1 0.9 0.1