ebook img

Magnetically-Forced Axisymmetric Zonal Accelerations in Earth's Outer Core Colin More Doctor of ... PDF

165 Pages·2017·3.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetically-Forced Axisymmetric Zonal Accelerations in Earth's Outer Core Colin More Doctor of ...

Magnetically-Forced Axisymmetric Zonal Accelerations in Earth’s Outer Core by Colin More A thesis submitted in partial ful(cid:12)llment of the requirements for the degree of Doctor of Philosophy in geophysics Department of Physics University of Alberta (cid:13)c Colin More, 2017 Abstract Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been in- ferred to exist in Earth’s (cid:13)uid core on the basis of magnetic (cid:12)eld observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling argu- ments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal (cid:13)uctuations in the magnetic (cid:12)eld inside the core, driven by convective (cid:13)ows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. This hypothesis is tested by constructing a quasi-geostrophic model of magnetoconvection, with thermally-driven (cid:13)ows perturbing a steady, imposed background magnetic (cid:12)eld. It is found that when the Alfv(cid:19)en number is similar to that estimated for Earth’s (cid:13)uid core, temporal (cid:13)uctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. The model reproduces both fast, free Alfv(cid:19)en waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth’s core. The temporal changes in the magnetic (cid:12)eld which drive the time-varying Lorentz torque are produced by the under- lying convective (cid:13)ows, which shear and advect the magnetic (cid:12)eld on timescales associated with convective eddies. These results support the hypothesis that temporal changes in the magnetic (cid:12)eld deep inside Earth’s (cid:13)uid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque. ii Physics is the science of what you can throw away. - Keith Cu(cid:11) iii Acknowledgements The successful completion of a PhD project is not due to the brilliance of a single person, but to that of the medium-sized army of friends, colleagues, acquaintances, teachers, professors, mentors, and family members which helped along the way. I have been extraordinarily lucky to have been surrounded by one of the (cid:12)nest such armies throughout my academic career. The successes of the project rightly belong to all of them, while its weaknesses lie wholely with myself. I would particularly like to thank my PhD supervisor, Mathieu Dumberry, for the remark- able amount of patience, support, and intelligence he has displayed over the course of the six and a half years it took to produce this thesis. I am sure better supervisors exist, but I have trouble imagining how. I would also like to thank my committee members, Moritz Heimpel and Bruce Sutherland, for their own commitment to the project. Bruce in particu- lar displayed a remarkable capacity for punishment by signing up for a second tour, having also supervised my master’s thesis! This being a terminal degree, now seems to be an ideal time to look back on all the teachers who have contributed to getting me here. A good teacher is, in the truest sense of the word, priceless, and I have had many. A non-exhaustive list would include Mrs. Bullock and Ms. Smith, Mr. Fowler and Mr. Dencer, Tim Cooper, George McGuire, Derek Harnett, Rob Woodside, and Je(cid:11) Chizma. An exhaustive list would be signi(cid:12)cantly longer (compared to iv what, you ask, Tim? Why, the non-exhaustive list, of course!). Thank you all. I have been very fortunate to have had the support of NSERC post-graduate scholarships at several points in my graduate school career. I certainly appreciated them when I won them, and I appreciated them even more after they ran out! I have been even more fortunate with the o(cid:14)cemates I’ve had over the course of this degree, and with the friends I’ve made. Life really is largely about the people you’re surrounded with on a daily basis, and my surroundings have been wonderful. Thanks in particular to Ben, Dan, Daniel, Drew, Kathrin, Keith, Olivia, and the Sarahs. That was a good time! The trials of the past several years were eased tremendously by my girlfriend, Julie. While many people truly cared for me and o(cid:11)ered their support, she did so while having to actually live with me! It certainly wasn’t great fun for her much of the time, but she never com- plained, and whenever I thought her patience was at an end she instead managed to give me even more. It was also pretty great having food appear while I was in the depths of writing. I love you. Like the Matrix, nobody can be told what it’s like to be in graduate school. Happily, my dearest sister, Heather, has always been a year or three ahead of me. It’s meant so much to have someone who knows exactly what is going on, while also knowing exactly what I need. Such as musical suggestions at strange hours of the night, or encouragement to outside for a change. Thanks, from your favourite brother who is really really happy to be done! Finally, my parents. You have been constant sources of encouragement, support, and love throughout this journey and throughout my life. None of this could have happened without you. Thank you. v Contents List of Tables ix List of Figures x 1 Introduction 1 1.1 Geomagnetic Inversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Geostrophy and Angular Momentum . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Length-of-Day Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Agreement of Observation and Prediction . . . . . . . . . . . . . . . . . . . . 15 1.5 Unexplained Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.7 Scienti(cid:12)c Advancements Contained in this Thesis . . . . . . . . . . . . . . . 21 2 Theory 23 2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Axial Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Axial Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 Geostrophic Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 The Quasi-Geostrophic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Representation of Fields . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.5 Transformation to QG . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Summary of Quasi-Geostrophic Equations . . . . . . . . . . . . . . . . . . . 37 3 Implementation 39 3.1 Solution Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Velocity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Magnetic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.3 Temperature Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Axisymmetric Nonlinear Averages . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Maintaining Model Validity . . . . . . . . . . . . . . . . . . . . . . . 46 vi 3.4.2 Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.3 Earth-Like Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.4 Selection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Results 54 4.1 The Non-Axisymmetric Lorentz Torque . . . . . . . . . . . . . . . . . . . . . 54 4.2 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.1 Model Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.2 Exploration of Parameter Space . . . . . . . . . . . . . . . . . . . . . 57 4.3 General features of Experiment #52 . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Time-averaged axisymmetric torque balance . . . . . . . . . . . . . . . . . . 67 4.5 Zonal accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.6 Taylorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Discussion 76 5.1 Slow Zonal Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Free Alfv(cid:19)en waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Taylorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 Conclusion 81 6.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Bibliography 86 Appendix A Useful Mathematical Relations 99 A.1 Gradient Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 A.2 Cylindrically Radial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 101 A.3 Azimuthal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 A.4 Axial Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 A.4.1 First Radial Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 103 A.5 Azimuthal Average of Two Real-Valued Functions . . . . . . . . . . . . . . . 109 Appendix B Dimensional Governing Equations 112 B.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 B.2 Buoyancy Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 B.3 Magnetic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 B.4 Summary of Dimensional Equations . . . . . . . . . . . . . . . . . . . . . . . 115 Appendix C Nondimensionalization 116 C.1 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 C.2 Temperature Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 C.3 Induction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 C.4 Auxiliary Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 C.5 Summary of Nondimensional Equations . . . . . . . . . . . . . . . . . . . . . 119 vii Appendix D Constructing a QG Model 120 D.1 Axial Vorticity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 D.1.1 Simpli(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 D.1.2 Axial Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 D.2 Zonal Flow Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 D.2.1 Simpli(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 D.2.2 Axial Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 D.3 Temperature Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 D.3.1 Background Pro(cid:12)le . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 D.3.2 Axial Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 D.4 Induction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 D.5 Zonal Induction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Appendix E Axisymmetric Multiplication in Fourier Space 144 E.1 (cid:0) - Reynolds Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 R E.2 (cid:0) - Maxwell Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 L2 E.3 Zonal Induction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Appendix F Conservation of Axial Angular Momentum 153 viii List of Tables 2.1 Physical parameters in the outer core . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Scales for nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Nondimensional parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 Summary of models run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ix List of Figures 1.1 Evolution of the radial magnetic (cid:12)eld at the CMB . . . . . . . . . . . . . . . 5 1.2 Spatial power spectrum of the geomagnetic (cid:12)eld . . . . . . . . . . . . . . . . 8 1.3 Core (cid:13)ow at the CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Geostrophic cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Time variability of the zonal (cid:13)ow . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Observed and predicted LOD variations . . . . . . . . . . . . . . . . . . . . . 15 1.7 Mechanism of free Alfv(cid:19)en waves . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Model geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 Snapshots of unrealistic velocity and magnetic (cid:12)eld structure . . . . . . . . . 55 4.2 Zonal accelerations when including the non-axisymmetric Lorentz torque . . 56 4.3 Family tree of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4 Mechanical energy vs. time . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 Thermal energy vs. time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.6 Zonal energy vs. time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.7 Snapshots of vorticity and current structures . . . . . . . . . . . . . . . . . . 65 4.8 Snapshots of velocity structures . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.9 Snapshots of magnetic perturbation structures . . . . . . . . . . . . . . . . . 66 4.10 Time-averaged axisymmetric torque balance . . . . . . . . . . . . . . . . . . 67 4.11 Time-averaged axisymmetric magnetic torque balance . . . . . . . . . . . . . 69 4.12 Time-dependent axisymmetric torque balance . . . . . . . . . . . . . . . . . 70 4.13 Characteristic length and time scales . . . . . . . . . . . . . . . . . . . . . . 71 4.14 Filtered time-dependent axisymmetric torque balance . . . . . . . . . . . . . 73 4.15 Time-dependent Taylorization factor . . . . . . . . . . . . . . . . . . . . . . 75 x

Description:
magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations .. Appendix E Axisymmetric Multiplication in Fourier Space. 144 List of Figures. 1.1 Evolution of the radial magnetic field at the CMB . 5. 1.2 Spatial power spectrum of the geomagnetic field .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.