ebook img

Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of short gamma-ray bursts PDF

5.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of short gamma-ray bursts

DRAFTVERSIONAPRIL11,2014 PreprinttypesetusingLATEXstyleemulateapjv.08/22/09 MAGNETICALLYDRIVENWINDSFROMDIFFERENTIALLYROTATINGNEUTRONSTARS ANDX-RAYAFTERGLOWSOFSHORTGAMMA-RAYBURSTS DANIELM.SIEGEL1,RICCARDOCIOLFI1,ANDLUCIANOREZZOLLA1,2 DraftversionApril11,2014 ABSTRACT Besidesbeingamongthemostpromisingsourcesofgravitationalwaves,mergingneutronstarbinariesalso representaleadingscenariotoexplainthephenomenologyofshortgamma-raybursts(SGRBs). Recentobser- vations have revealed a large subclass of SGRBs with roughly constant luminosity in their X-ray afterglows, 4 lasting 10 104s. These features are generally taken as evidence of a long-lived central engine powered by 1 − themagneticspin-downofauniformlyrotating,magnetizedobject. Weproposeadifferentscenarioinwhich 0 2 thecentralenginepoweringtheX-rayemissionisadifferentiallyrotatinghypermassiveneutronstar(HMNS) thatlaunchesaquasi-isotropicandbaryon-loadedwinddrivenbythemagneticfield,whichisbuilt-upthrough r differential rotation. Our model is supported by long-term, three-dimensional, general-relativistic, and ideal p A magnetohydrodynamicsimulations, showingthatthisisotropicemissionisaveryrobustfeature. Foragiven HMNS, the presence of a collimated component depends sensitively on the initial magnetic field geometry, 0 while the stationary electromagnetic luminosity depends only on the magnetic energy initially stored in the 1 system. Weshowthatourmodeliscompatiblewiththeobservedtimescalesandluminositiesandexpressthe latterintermsofasimplescalingrelation. ] Subjectheadings:gamma-rayburst: general–magnetohydrodynamics(MHD)–methods: numerical–stars: E magneticfield–stars: neutron H . h 1. INTRODUCTION livedcentralengineasproposedinZhang&Me´sza´ros(2001), p where such emission is assumed to be powered by the mag- - Binaryneutronstar(BNS)mergersrepresentaleadingsce- o nario to generate the physical conditions necessary for the netic spin-down of a uniformly rotating object formed in a r BNS merger. In general, depending on the total mass and launchofshortgamma-raybursts(SGRBs;see,e.g.,Paczyn- st ski1986;Eichleretal.1989;Narayanetal.1992;Barthelmy mass ratio of the binary, the binary-merger product (BMP) a can either be a stable neutron star, a supramassive neutron etal.2005;Foxetal.2005;Gehrelsetal.2005;Rezzollaetal. [ star(SMNS,i.e.,astarwithmassabovethemaximummass 2011;Bergeretal.2013;Tanviretal.2013).Additionally,the for nonrotating configurations M , but below the maxi- 3 inspiralsandmergersofBNSsarepromisingsourcesforthe TOV mummassforuniformlyrotatingconfigurationsM ,with v detection of gravitational waves (GWs) with advanced inter- max 4 ferometerssuchasLIGOandVirgo(Harryetal.2010;Acca- Mmax (cid:39) (1.15−1.20)MTOV, Lasota et al. 1996), a hyper- 4 diaetal.2011)thathaveapredictedrateof40yr−1 (Abadie massiveneutronstar(HMNS,i.e.,astarmoremassivethana 5 etal.2010).Coincidentelectromagnetic(EM)andGWobser- SMNS),orablackhole.3 4 vationsareneededtoconfirmtheassociationofSGRBswith InthisLetter,weproposeadifferentscenariotoexplainthe 1. BNSmergersandtounravelthephysicalprocessesinvolved. X-ray emission soon after the merger, in which the central engineisalong-liveddifferentiallyrotatingBMPand,inpar- 0 Despite observational evidence in some cases (e.g., Burrows ticular, anHMNS.Recentobservationsofneutronstarswith 4 etal.2006;Soderbergetal.2006;Berger2013)andarequire- massesaslargeas 2M (Demorestetal.2010;Antoniadis 1 mentcomingfrommodelingmergerrates(Metzger&Berger (cid:39) (cid:12) etal.2013)indicatearatherstiffequationofstate,whilethe : 2012), itisnotknownwhetherthepromptgamma-rayemis- v massdistributioninBNSsispeakedaround1.3 1.4M (Bel- sionofanSGRBisalwayscollimatedinarelativisticjet. Ifit (cid:12) i czynskietal.2008).Thiscombinedevidencesu−ggeststhatthe X was, a large fraction of SGRB events would be missed, as BMPisalmostcertainlyanSMNSoranHMNS. their jets would be beamed away from us. Therefore, un- r On the basis of these considerations and using three- a derstanding the potential EM signatures from BNS mergers dimensional (3D) general-relativistic ideal magnetohydrody- and,inparticular,thenon-collimatedemission(e.g.,Yuetal. namic (MHD) simulations, we investigate the EM emission 2013),isessential. of an initially axisymmetric HMNS endowed with different The Swift satellite (Gehrels et al. 2004) has recently re- initial magnetic fields spanning the range of reasonable con- vealedalargesubclassofSGRBsthatshowphasesofroughly figurations. In all cases, we find a very luminous, quasi- constant luminosity in their X-ray afterglow lightcurves, stationaryEMemissionfromtheHMNS,whichisassociated referred to as “extended emission” and “X-ray plateaus” withabaryon-loadedoutflow,drivenbymagneticwindingin (e.g., Rowlinson et al. 2013; Gompertz et al. 2014). The as- sociatedX-rayemissioncanlastfrom10to104sandtheflu- the stellar interior. The emission, which is compatible with the observed X-ray afterglows, is almost isotropic, though ence can be comparable to or larger than that of the prompt a collimated, mildly relativistic flow can be produced if the emission. These features are taken as a signature of a long- magnetic field is mainly oriented along the spin axis. The 1MaxPlanckInstituteforGravitationalPhysics(AlbertEinsteinInstitute), isotropicemissionispresenteveninrandom-field,initialcon- AmMu¨hlenberg1,D-14476Potsdam-Golm,Germany 2Institutfu¨rTheoretischePhysik,Max-von-Laue-Str. 1,D-60438Frank- 3 SMNSs or HMNSs will eventually collapse to a black hole, but on furtamMain,Germany timescalesthatcanbemuchlargerthanthedynamicalone. 2 D.M.Siegel,R.Ciolfi,L.Rezzolla figurations, making it a robust feature of a BNS merger and (530, 1.5, 5.1) 1044erg formodelsdip-60, dip-6and × animportantEMcounterparttotheGWsignatures. rand,respectively. Thetimeevolutionoftheseinitialdataisperformedusing 2. PHYSICALSYSTEMANDNUMERICALSETUP thepubliclyavailableEinsteinToolkitwiththeMcLachlan spacetime-evolutioncode(Lo¨ffleretal.2012),combinedwith AsatypicalHMNS,resultingfromaBNSmerger,wecon- the fully general-relativistic ideal-MHD code WhiskyMHD sideranaxisymmetricinitialmodelconstructedusingtheRNS (Giacomazzo & Rezzolla 2007). The ideal-fluid equation code (Stergioulas & Friedman 1995), assuming a polytropic of state p = ρ(cid:15)(Γ 1) is used for the evolution, where (cid:15) equationofstatep=KρΓ,wherepisthepressure,ρtherest- − is the specific internal energy and Γ = 2. The star is ini- massdensity,Γ=2,andK =2.124 105cm5g−1s−2. The corresponding maximum gravitationa×l mass for a uniformly t6iall1y0s−u9rρrou,nwdheedrebρy a lo1w.0-den1s0i1ty5gatcmmo−sp3hiesrtehewciethntρraaltmres(cid:39)t- rotating(nonrotating)modelis≈2.27(1.97)M(cid:12). Ourinitial m×ass denscity. We ccar(cid:39)ry out×the MHD computations within HMNS has a mass of M = 2.43M , an equatorial radius (cid:12) themodifiedLorenzgaugeapproach(Farrisetal.2012;Gia- of R = 11.2km, and it is differentially rotating according e comazzo&Perna2013),withdampingparameterξ = 2/M. to a “j-constant” law (Komatsu et al. 1989), with the differ- Thecomputationalgridconsistsofahierarchyofsevennested ential rotation parameter A/R = 1.112 and central period e boxes, extending to 105R 1180km in the x- and Pc =0.47ms. y-directions and to ≈72R e ≈817km in the z-direction. Tostudytheinfluenceofthemagneticfieldgeometryonthe ≈ e ≈ Thefinestrefinementlevelcorrespondstoaspatialdomainof EM emission, we endow this model in hydrodynamic equi- [0,18.4] [0,18.4] [0,12.8]km and covers the HMNS at libriumwiththreedifferentinitialmagneticfieldgeometries, × × all times. The highest spatial resolution is h 140m, but which are shown in the left panels of Figures 1–3. The first (cid:39) lower-resolution simulations have been performed to check model (hereafter dip-60) employs a dipolar configuration convergence. Tomaketheselong-termsimulationscomputa- very similar to the one in Shibata et al. (2011) and Kiuchi tionallyaffordablein3Dandathighresolution,aπ/2rotation etal.(2012),specifiedbytheazimuthalcomponentofthevec- symmetryaroundthez-axisandareflectionsymmetryacross torpotentialA =A (cid:36)2/(r2+(cid:36)2 /2)3/2,where(cid:36)isthe φ 0,d 0,d thez =0planehavebeenemployed. cylindricalradius,r2 (cid:36)2+z2,A tunestheoverallfield 0,d strength,and(cid:36) ≡5.3R 60kmindicatestheradiallo- 3. RESULTS 0,d e (cid:39) (cid:39) cation of the magnetic neutral point on the equatorial plane. Figures 1–3 show snapshots of the norm of the magnetic The second model (henceforth dip-6) is endowed with the fieldandrest-massdensitycontoursinthe(x,z)planeforthe same field geometry, but with (cid:36) 0.53R 6km. In three models discussed above at representative times during 0,d e (cid:39) (cid:39) contrast to model dip-60, where the star is threaded by the evolution. Due to the differential rotation in the HMNS, a magnetic field that is artificially uniform on lengthscales strongtoroidalfieldsaregeneratedviamagneticwinding(lin- (cid:38) R (cf. inset in Figure 1), for model dip-6, the neutral early growing at the beginning). Within a few rotational pe- e pointandmaximummagneticfieldarelocatedintheinterior riods, the build-up of magnetic pressure (mostly associated of the star, corresponding to a more realistic distribution of withsteeptoroidal-fieldradialgradients)issufficienttoover- currents. Finally, the third model (henceforth rand) repre- comethegravitationalbindinginthevicinityofthestellarsur- sents a “random” magnetic field, which we compute from a face, powering an outflow of highly magnetized low-density vectorpotentialbuiltasthelinearsuperpositionof 6 104 matterwithmildlyrelativisticvelocities(cf. alsoFigure4). ∼ × modeswithrandomamplitudesandphases For model dip-60, since the initial magnetic field is ori- entedalongtherotationaxisonlengthscales(cid:38) R (cf.Fig- e A0,r√γ (cid:88)nk ure 1, left panel), the outflow is efficiently channeled along A = a cos(x k +2πb ) ijk (r2+(cid:36)2 )3/2 (cid:96)mn ijk· (cid:96)mn (cid:96)mn thisaxisandthussignificantlycollimated,thoughthisismore 0,r (cid:96)mn=0 the result of the ordered initial magnetic field configuration +c sin(x k +2πd ) . (1) than of genuine self-confining processes. During the evolu- (cid:96)mn ijk (cid:96)mn (cid:96)mn · tion,thenon-collimatedpartoftheoutflowatlowerlatitudes Here, i,j,k label the points on the computational grid, tendstopushthecollimatedparttowardtheaxis, effectively xijk denotes the associated position vectors, and (cid:96), m, n shrinking the inner opening angle of this jet-like structure refer to a grid in wave vector k space, defined by (cf. Figure 1). This triggers irregularities in the collimated k(cid:96)mn [0,2π/λmin,2π/(λmin +∆λ),...,2π/(λmin + outflowthatmanifestthemselvesassmallbubblesofmaterial {(nk }1)∆≡λ)]3, wherenk = 30, λmin 3kmisthesmall- withlowdensityandmagnetizationbeingreleasedalongthe − ≈ est wavelength employed, and ∆λ 2.2km. Furthermore, vertical axis, possibly pointing to a kink instability (Kiuchi a(cid:96)mn,...,d(cid:96)mn are random numbe≈rs between 0 and 1. The etal.2012). constantA0,r setsthemaximumfieldstrength,thefactor√γ, Theinitialmagneticfieldgeometryofdip-6hasamuch withγ asthedeterminantofthespatialmetric,helpstocon- smaller curvature scale and is less effective at funneling centrate stronger magnetic fields in regions of larger space– the outflow; the resulting collimation is thus much less time curvature, while the denominator scales the magnetic pronounced than for dip-60. Furthermore, while model field as r−3 for r > (cid:36)0,r 2Re. We built the random- dip-60showsacleardistinctionbetweenthecollimatedand ∼ ≈ field model to resemble the actual magnetic field configura- the non-collimated part of the outflow, this is no longer the tion resulting from a BNS merger (cf. Rezzolla et al. 2011). case for model dip-6 (cf. Figures 1 and 2). Finally, the In all the above cases, A0,d and A0,r are adjusted to yield model with the most realistic magnetic field configuration, maximum initial field strengths of B = 2 1014G, with i.e.,modelrand,ischaracterizedbyanalmostisotropicout- 0 themagnetic-to-fluidpressureratiobeing ×10−5 insidethe flow (cf. Figure 3), though we cannot exclude the fact that (cid:28) star (cf. Figure 4). The resulting initial magnetic energy some form of collimation could emerge at later times. This E differs with the magnetic field geometry, being E representsanimportantresultofoursimulations: theamount M M (cid:39) MagneticallydrivenwindsandX-rayafterglowsofSGRBs 3 250 250 60 15.0 50 200 200 14.5 40 m] 150 40 80 120 150 40 80 120 k 5 10 15 14.0 [ 30 z 100 100 20 13.5 50 50 10 0ms 30ms 60ms 13.0 0 0 0 0 10 20 30 40 50 60 0 50 100 150 200 250 0 50 100 150 200 250 x[km] x[km] x[km] Figure1. Snapshotsofthemagneticfieldstrength(color-codedinlogarithmicscaleandGauss)andrest-massdensitycontoursinthe(x,z)planeatrepresentative timesformodeldip-60.Magneticfieldlinesaredrawninredintheleftpanel.TheleftmostinsetshowsamagnificationoftheHMNS,theotheronesshowa horizontalcutatz=120km. 250 250 60 14.0 50 200 200 13.5 40 m] 150 40 80 120 150 40 80 120 k 5 10 15 13.0 [ 30 z 100 100 20 12.5 50 50 10 0ms 40ms 60ms 12.0 0 0 0 0 10 20 30 40 50 60 0 50 100 150 200 250 0 50 100 150 200 250 x[km] x[km] x[km] Figure2. SameasFigure1,butformodeldip-6. 250 250 60 14.0 50 200 200 13.5 40 m] 150 40 80 120 150 40 80 120 k 5 10 15 13.0 [ 30 z 100 100 20 12.5 50 50 10 0ms 45ms 60ms 12.0 0 0 0 0 10 20 30 40 50 60 0 50 100 150 200 250 0 50 100 150 200 250 x[km] x[km] x[km] Figure3. SameasFigure1,butformodelrand. ofcollimationinthemagnetic-drivenwindfromtheBMPwill Definingtheisotropicluminosityas dependsensitivelyonthemagneticfieldgeometryandcould (cid:73) beabsentifthefieldisrandomlydistributed. L dΩ√ g(TEM)r , (2) In all of the configurations considered, the magnetized EM ≡− − t baryon-loaded outflow has rest-mass densities 108 r=Rd 109gcm−3andisejectedfromthestarwithveloci∼tiesv/c−(cid:46) where dΩ is the solid-angle element, g is the determinant of 0.1, in the isotropic part, and v/c (cid:46) 0.3, in the collimated thespacetimemetric,andTEM istheEMpartoftheenergy- part. µν momentum tensor, all of the different initial magnetic field geometriesyieldhigh,stationaryEMluminositiesassociated 4 D.M.Siegel,R.Ciolfi,L.Rezzolla 20 20 20 0 0ms 0ms 0ms 2 15 15 15 − 4 m] 4 8 12 4 8 12 4 8 12 − k 10 10 10 [ z 6 − 5 5 5 8 − 60ms 60ms 60ms 0 0 0 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 x[km] x[km] x[km] Figure4. Logarithmicmagnetic-to-fluidpressureratioandrest-massdensitycontoursformodeldip-60(left),dip-6(middle),andrand(right). withtheoutflowofL 1048 1050ergs−1 (cf.Figure5, need for a fudge factor, χ, that is 1 for the more realistic EM ∼ − ∼ upperleftpanel).Modeldip-60hasaluminositythatistwo magnetic field configurations rand and dip-6, and 100 ∼ ordersofmagnitudelargerthanthoseofmodelsdip-6and for dip-60, showing that initial models with the same B 0 rand, which have surprisingly similar luminosities. These but different field geometries lead to luminosities that differ differences can be understood in terms of the different mag- byordersofmagnitude(cf.upperleftpanelofFigure5). The neticenergiesassociatedwiththethreemodels(seebelow). role of the equatorial radius, R , is to define the volume in e We have also verified that when computed at sufficiently whichtheconversionofrotationalenergyintoEMenergyoc- large distances, the luminosity depends only weakly on the curs, while the period, P, sets the timescale of such conver- radius R , chosen to compute the integral in Equation (2) sion. d (seeFigure5,lowerleftpanel). Theremainingdiscrepancies Equation (3) still holds if expressed in terms of quan- among different R choices are due to the bulk of the non- tities referring to the stage when the outflow has become d collimatedpartoftheoutflowhavingnotyetcrossedtheouter roughly stationary, by substituting χ(B /1014G)2 with 0 detection spheres at t = 60 ms. The effective bulk speed of (B¯/1015G)2,whereB¯ isthemagneticfieldstrengthreached theoutflowatlargerdistances(asinferredfromthetimedelay in the outer layers of the star (R and P are essentially un- e itnionthsepoenesdeotfo(cid:46)fL0E.M1ca,tdduieffteoreanntoRndz)eriossamtmaollseprhtehraenrtehset-mejaescs- cahsathnigsendefwromexptr=ess0i)o.nTdhoeefsundogtedfaecpteonrdisonnothloenmgeargnneectiecssfiaerlyd, densityfloor. Thiseffectisillustratedinthelowerrightpanel geometry. of Figure 5, where a lower floor yields a higher bulk speed Two remarks should be made. First, scalings similar to (cf. black and red lines). Note, however, that the stationary Equation (3) have already been reported in the literature luminosityisnotaffectedbytheatmospherelevelevenwhen (e.g., Meier 1999; Shibata et al. 2011), where, however, no thelatterischangedbyoneorderofmagnitude. Furthermore, discussion was made on the dependence of the luminosity the lower right panel of Figure 5 reports the luminosity for on the initial magnetic field geometry and thus on the im- threedifferentresolutions, showingthattheoutflowspeedis portance of the factor χ. Ignoring this dependence can eas- affectedbutthestationarylevelsareinreasonablygoodagree- ily lead to over/underestimates of the luminosity by orders ment. of magnitude. Second, the scaling with radius and period in Anotherimportantconclusiontobedrawnfromoursimu- Equation(3)areverydifferentfromthoseresultingfromthe lationsisthat,keepingthebackgroundfluidmodelfixed,the magneticdipolespin-downemissionconsideredinthemodel EMluminosityessentiallydependsontheinitialmagneticen- of Zhang & Me´sza´ros (2001), where the luminosity is given ergy ofthe system. Inthis way, the difference oftwo orders byL B2R6P−4. Thesedifferencesinscalingmaybe ofmagnitudebetweentheluminositiesofmodeldip-60and usedEtoMd∝iscrimineatebetweenthescenarioproposedhereand those of models dip-6 and rand (cf. upper left panel of thatbyZhang&Me´sza´ros(2001). Figure 5) is simply due to the corresponding difference in E .ThisisdemonstratedintheupperrightpanelofFigure5, 4. MAGNETIC-DRIVENWINDSANDX-RAYEMISSION M where we show the luminosity of a model dip-60 with an Defining the conversion efficiency of EM luminosity into initialmagneticfieldstrengththatisrescaledtomatchtheini- observed X-ray luminosity as η Lobs/L , we can use tialmagneticenergyofmodeldip-6. Oncetheinitialmag- ≡ EM EM theresultsofoursimulationsforcharacteristicradiiandperi- netic energies coincide, the resulting stationary luminosities ods(R 106cmandP 10−4s)todeducethatmagnetic arethesameandthereforeindependentofthemagneticfield field stere∼ngths in the range∼B¯ η−1/2 1014 1016G are geometryanddegreeofcollimation. needed to produce luminosities∼Lobs ×1046 1−051ergs−1, OurresultsleadtoasimpleexpressionfortheEMluminos- EM ∼ − whichcharacterizetheextendedemissionandX-rayplateaus ityfromtheBMP, ofSGRBs(e.g.,Rowlinsonetal.2013;Gompertzetal.2014). (cid:18) B (cid:19)2(cid:18) R (cid:19)3(cid:18) P (cid:19)−1 Assuming an efficiency of, e.g., η 0.01 0.1 yields mag- L 1048χ 0 e ergs−1, (3) netic field strengths B¯ 1014 ∼1017G.−These strengths EM(cid:39) 1014G 106cm 10−4s ∼ − are not reached in the progenitor neutron stars, but they can whereP denotesthe(central)spinperiodandB denotesthe be built from much weaker initial magnetic fields in a num- 0 initial maximum magnetic field. Our simulations reveal the ber of ways: the compression of stellar cores (Giacomazzo MagneticallydrivenwindsandX-rayafterglowsofSGRBs 5 49 50 s] s]48 / / erg48 erg47 [ [ ) ) M M E46 E46 L L g( dip-60 g( lo44 dip-6 lo45 dip-6 rand dip-60rescaled 44 51 50 s]50 s]48 / / g g er49 er )[ 80km )[46 M M E48 100km E Log(47 112500kkmm Log(44 ddiipp--66,1.2h l 200km l dip-6,1.5h 46 250km 42 dip-6,atm5 0 10 20 30 40 50 60 0 5 10 15 20 25 30 35 40 time[ms] time[ms] Figure5. Topleft:EMluminositiesforthedifferentsimulations. Topright:luminositycomparisonbetweenmodeldip-6andmodeldip-60withrescaled initialmagneticfieldtomatchtheinitialmagneticenergyofmodeldip-6. Bottomleft: luminositiesextractedatdifferentradiiformodeldip-60. Bottom right:impactofresolutionandafactorof10loweratmospherethresholdonsimulationsofmodeldip-6. etal.2011),theKelvin–Helmholtzinstabilitydevelopingdur- power the EM emission (Zhang & Me´sza´ros 2001; Gao & ing the merger (Price & Rosswog 2006; Baiotti et al. 2008; Fan 2006). Note that a similar evolution also applies if the Andersonetal.2008;Giacomazzoetal.2011;Zrake&Mac- differentiallyrotatingBMPisanSMNSatbirth. Fadyen 2013), magnetic winding and the magnetorotational Considering a reference luminosity of L instability (MRI; Siegel et al. 2013). In particular, the MRI 1048ergs−1, the timescale needed to exhaust thEeM rese∼r- might enhance the EM emission, though its saturation level voir of rotational energy T 5 1052erg of our BMP is is unknown and its role in determining luminosity levels re- readilygivenbyτ (cid:46) T/L∼ ×5 104s. Throughfitting mainsunclear.Unfortunately,resolvingtheMRIinlong-term the data reportedEiMn Table 3EoMf∼Row×linson et al. (2013) we global simulations is out of reach. In our simulations only findapower-lawcorrelationbetweentheobservedplateaulu- magneticwindingisatplay,yetmagneticfieldsareamplified minositiesanddurations: Lobs[ergs−1] 1052(τ [s])−a, byatleastoneorderofmagnitude. where a = 1.36 0.E1M1. Given∼a luminEMosity of Thetimescaleforthepersistenceofdifferentialrotationand L = Lobs/η 1±048ergs−1, the fit gives a duration the survival time of the BMP is still very much uncertain EM EM ∼ of the plateau emission τ (104/η)1/as 5 103s (Lasky et al. 2014) and it is hard to estimate the timescale EM ∼ ∼ × for η 0.1. It is reassuring that even these crude estimates τ over which these luminosities can be sustained. Sim- ∼ EM provide emission timescales that are well below the upper ulations show that the timescale for the extraction of angu- lar momentum via GWs from a bar-deformed BMP is (cid:46) 1s limitofT/LEM ∼ 5×104s,thusshowingthecompatibility withtheobservations. (Baiotti et al. 2008; Bernuzzi et al. 2013; but see also Fan Wealsonotethattheestimatesmadeabovearebasedonthe etal.2013). Hence,iftheBMPsurvivesformorethan 1s, ∼ assumptionthattheobservedemissionisessentiallyisotropic. itmusthavebeendriventowardanalmostaxisymmetricequi- IfthereiscollimationwithinasolidangleΩ ,theduration libriumbyGWemission. Abackoftheenvelopeestimateof coll τ estimated from the fit would be reduced by a factor of magnetic braking leads to a timescale of 1 10 s for the EM magneticfieldsconsideredhere(Shapiro2∼000)−. Thisiscon- (Ωcoll/4π)1/a. ∼ firmed by the evolution of the angular velocity in our simu- lations, which shows that Ω/Ω˙ 10 s in the stellar interior. 5. CONCLUSIONS ∼ Bothofthesetimescalesshouldbemeantaslowerlimitsand UsingidealMHDsimulationswehaveinvestigatedtheEM differentialrotationwillberemovedontimescalesthatcould emission of an initially axisymmetric HMNS endowed with be 10 times larger. However, even 100 s are not sufficient different initial magnetic field configurations, spanning the to explain X-ray luminosities lasting 103 104 s. A viable range of geometries expected from BNS mergers. Despite − scenario is one in which the BMP is an HMNS at birth, but thedifferentinitialconfigurations, wehavefoundthat, inall evolves into an SMNS while differential rotation is removed cases, differential rotation in the HMNS generates a strong via magnetic braking and rest mass is lost via the wind (our toroidal magnetic field and a consequent baryon-loaded out- simulationsshowmass-lossratesof 10−3 10−2M(cid:12)s−1). flow with bulk velocities (cid:46) 0.1c. This emission is almost ∼ − Inthiscase,theBMPcansurviveonmuchlongertimescales isotropic, thoughanadditionalcollimated, mildlyrelativistic as it needs less angular momentum to prevent gravitational flow is produced if the initial magnetic field has a dominant collapse. Once differential rotation has been removed (or is dipolecomponentalongthespinaxis. very small), the spin-down via dipolar emission through the Sincetheemissionweobserveemergesasarobustfeature global magnetic field produced over these timescales would ofaBNSmergerandgiventheconsistencyoftheluminosity 6 D.M.Siegel,R.Ciolfi,L.Rezzolla levels and duration with the observations, we conclude that Farris,B.D.,Gold,R.,Paschalidis,V.,Etienne,Z.B.,&Shapiro,S.L. the proposed physical mechanism represents a viable expla- 2012,PhRvL,109,221102 nationfortheX-rayafterglowsofSGRBs. Fox,D.B.,Frail,D.A.,Price,P.A.,etal.2005,Natur,437,845 Gao,W.-H.,&Fan,Y.-Z.2006,ChJAA,6,513 Gehrels,N.,Chincarini,G.,Giommi,P.,etal.2004,ApJ,611,1005 We thank F. Pannarale and F. Galeazzi for discussions, Gehrels,N.,Sarazin,C.L.,O’Brien,P.T.,etal.2005,Natur,437,851 W. Kastaun for help with the visualizations, and the ref- Giacomazzo,B.,&Perna,R.2013,ApJL,771,L26 eree for valuable comments. R.C. is supported by the Hum- Giacomazzo,B.,&Rezzolla,L.2007,CQGra,24,S235 Giacomazzo,B.,Rezzolla,L.,&Baiotti,L.2011,PhRvD,83,044014 boldt Foundation. Additional support comes from the DFG Gompertz,B.P.,O’Brien,P.T.,&Wynn,G.A.2014,MNRAS,438,240 Grant SFB/Transregio 7, from “NewCompStar”, COST Ac- Harry,G.M.2010,CQGra,27,084006 tionMP1304,andfromHICforFAIR.Thesimulationshave Kiuchi,K.,Kyutoku,K.,&Shibata,M.2012,PhRvD,86,064008 been performed on SuperMUC at LRZ Garching and on Komatsu,H.,Eriguchi,Y.,&Hachisu,I.1989,MNRAS,237,355 DaturaattheAEI. Lasky,P.D.,Haskell,B.,Ravi,V.,Howell,E.J.,&Coward,D.M.2014, PhRvD,89,084006 Lasota,J.-P.,Haensel,P.,&Abramowicz,M.A.1996,ApJ,456,300 REFERENCES Lo¨ffler,F.,Faber,J.,Bentivegna,E.,etal.2012,CQGra,29,115001 Meier,D.L.1999,ApJ,522,753 Metzger,B.D.,&Berger,E.2012,ApJ,746,48 Abadie,J.,Abbott,B.P.,Abbott,R.,etal.2010,CQGra,27,173001 Narayan,R.,Paczynski,B.,&Piran,T.1992,ApJL,395,L83 Accadia,T.,Acernese,F.,Antonucci,F.,etal.2011,CQGra,28,114002 Paczynski,B.1986,ApJL,308,L43 Anderson,M.,Hirschmann,E.W.,Lehner,L.,etal.2008,PhRvL,100, Price,R.H.,&Rosswog,S.2006,Sci,312,719 191101 Rezzolla,L.,Giacomazzo,B.,Baiotti,L.,etal.2011,ApJL,732,L6 Antoniadis,J.,Freire,P.C.C.,Wex,N.,etal.2013,Sci,340,1233232 Rowlinson,A.,O’Brien,P.T.,Metzger,B.D.,Tanvir,N.R.,&Levan,A.J. Baiotti,L.,Giacomazzo,B.,&Rezzolla,L.2008,PhRvD,78,084033 2013,MNRAS,430,1061 Barthelmy,S.D.,Chincarini,G.,Burrows,D.N.,etal.2005,Natur,438, Shapiro,S.L.2000,ApJ,544,397 994 Shibata,M.,Suwa,Y.,Kiuchi,K.,&Ioka,K.2011,ApJL,734,L36 Belczynski,K.,O’Shaughnessy,R.,Kalogera,V.,etal.2008,ApJL,680, Siegel,D.M.,Ciolfi,R.,Harte,A.I.,&Rezzolla,L.2013,PhRvD,87, L129 121302 Berger,E.2013,arXiv:1311.2603 Soderberg,A.M.,Berger,E.,Kasliwal,M.,etal.2006,ApJ,650,261 Berger,E.,Fong,W.,&Chornock,R.2013,ApJL,774,L23 Stergioulas,N.,&Friedman,J.L.1995,ApJ,444,306 Bernuzzi,S.,Dietrich,T.,Tichy,W.,&Bruegmann,B.2013, Tanvir,N.R.,Levan,A.J.,Fruchter,A.S.,etal.2013,Natur,500,547 arXiv:1311.4443 Yu,Y.-W.,Zhang,B.,&Gao,H.2013,ApJL,776,L40 Burrows,D.N.,Grupe,D.,Capalbi,M.,etal.2006,ApJ,653,468 Zhang,B.,&Me´sza´ros,P.2001,ApJL,552,L35 Demorest,P.B.,Pennucci,T.,Ransom,S.M.,Roberts,M.S.E.,&Hessels, Zrake,J.,&MacFadyen,A.I.2013,ApJL,769,L29 J.W.T.2010,Natur,467,1081 Eichler,D.,Livio,M.,Piran,T.,&Schramm,D.N.1989,Natur,340,126 Fan,Y.-Z.,Yu,Y.-W.,Xu,D.,etal.2013,ApJL,779,L25

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.