Magnetically-drivencolossalsupercurrentenhancementinInAsnanowireJosephsonjunctions J. Paajaste,1 E. Strambini,1,∗ M. Amado,1,2 S. Roddaro,1 P. San-Jose,3 R. Aguado,3 F. S. Bergeret,4,5 D. Ercolani,1 L. Sorba,1 and F. Giazotto1,† 1NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy 2Materials Science and Metallurgy, University of Cambridge CB3 OFS, United Kingdom 3Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cient´ıficas (ICMM-CSIC), Sor Juana Ine´s de la Cruz 3, 28049 Madrid, Spain 4CentrodeFisicadeMateriales(CFM-MPC),CentroMixtoCSIC-UPV/EHU,E-20018SanSebastian,Spain 5Donostia International Physics Center (DIPC), E-20018 San Sebastian, Spain 6 TheJosephsoneffectisafundamentalquantumphenomenonconsistingintheappearanceofadissipa- 1 tionlesssupercurrentinaweaklinkbetweentwosuperconducting(S)electrodes. Whilethemechanism 0 leading to the Josephson effect is quite general, i.e., Andreev reflections at the interface between the S 2 electrodesandtheweaklink,theprecisephysicaldetailsandtopologyofthejunctiondrasticallymodify thepropertiesofthesupercurrent. Specifically,astrongenhancementofthecriticalsupercurrentI is n C a expectedtooccurwhenthetopologyofthejunctionallowstheemergenceofMajoranaboundstates.Here J wereportchargetransportmeasurementsinmesoscopicJosephsonjunctionsformedbyInAsnanowires andTi/Alsuperconductingleads. Ourmainobservationisacolossalenhancementofthecriticalsuper- 2 1 currentinducedbyanexternalmagneticfieldappliedperpendiculartothesubstrate. Thisstrikingand anomaloussupercurrentenhancementcannotbeascribedtoanyknownconventionalphenomenonex- ] istinginJosephson junctionsincluding, forinstance, Fraunhofer-like diffractionoraπ-statebehavior. l WealsoinvestigateanunconventionalmodelrelatedtoinhomogenousZeemanfieldcausedbymagnetic l a focusing,andnotethatitcannotaccountfortheobservedbehaviour. Finally,weconsidertheseresults h inthecontextoftopologicalsuperconductivity,andshowthattheobservedI enhancementiscompatible C - withamagneticfield-inducedtopologicaltransitionofthejunction. s e m Couplingaconventionals-wavesuperconductortomateri- spect to the junctions substrate and the NW. This is in stark . t als based on helical electrons such as topological insulators contrast with what has been observed so far in conventional a m orsemiconductorswithstrongspin-orbit(SO)interactionlike weaklinks,wheretheJosephsoncouplingturnsouttobesup- InAs or InSb nanowires (NWs) leads to an unconventional pressed by any applied magnetic field. Notably, this abrupt - d p-wave superconductor. The latter may undergo a topologi- switchingofIC alwaysoccursaroundthesamemagneticfield n caltransition,andbecomeatopologicalsuperconductor(TS) (B )injunctionsmadeofnominallyidenticalNWsbutchar- sw o hostingexoticedgestateswithMajorana-likecharacter[1,2]. acterizedbydifferentlengthsofthenormal(N)region,there- c Most of the early experimental efforts to demonstrate these foresuggestingthattheoriginoftheobservedcriticalcurrent [ modes have been focused on normal metal-superconductor enhancement is intrinsic, i.e., it is not related to geometrical 1 junctions realized with strong-SO NWs [3–5] with the aim resonances existing in the junction or linked to the Thouless v todetectsignaturesofMajoranaboundstates(MBSs)emerg- energy of the system [21]. In addition, the temperature de- 5 ingforincreasingZeemanfields. Soonafter,experimentson pendenceofB followsaBCS-likebehaviorthusindicating sw 5 Josephsonjunctionsbasedonhelicalmaterialshavebeenper- astronglinktotheproximityeffectpresentinthejunction. 9 2 formed as well to detect peculiar hallmarks of MBSs in the Our results are discussed on the basis of the most com- 0 phaseevolutionoftheJosephsoneffect,bothinthecontextof mon and understood phenomena that may affect the Joseph- . topologicalinsulators[6–10]andNWs[11].Yet,aconclusive son supercurrent of the junction. Although no final conclu- 1 evidence of MBSs emerging from these hybrid systems still sions can be drawn from such an analysis we stress that a 0 6 remainsanoutstandingexperimentalgoal.Thisisparticularly topological transition developing at Bsw appears to be fully 1 trueforNW-basedJosephsonweaklinkswherenosignatures compatiblefromaqualitativepointofviewwiththeobserved : ofTShavebeenreportedinthesupercurrent[12–19]. phenomenology: our proposed physical scenario consists of v In this work, we investigate the Josephson coupling in amagnetically-drivenzero-energyparitycrossingofAndreev i X Al/InAs-NW/Alhybridjunctionsinthepresenceofanexter- levelsinthejunction[20]whichisexpectedtooccurformag- r nalmagneticfield. Inparticular,wefocusontheamplitudeof netic fields applied perpendicularly to the wire SO axis, ex- a theJosephsoncriticalcurrentIC whichisexpectedtostrongly actlyasobservedintheexperiment. increasewhenthetopologyofthejunctionenablestheemer- gence of MBSs [20]. Our key result is the observation of a colossal enhancement of I manifesting just above a thresh- Experimental results Figure 1a shows a scanning elec- C oldmagneticfieldappliedinperpendiculardirectionwithre- tron micrograph of a typical n-InAs-NW-based Josephson junction. Thejunction’sinterelectrodespacingLrangesfrom ∼40 nm to ∼113 nm. The growth and physical details of the n-doped InAs NWs are reported in the Methods section. ∗[email protected] ForeachjunctionaneighbouringTi/Alsuperconductingpair †[email protected] is used for transport measurements. The current vs voltage 2 a c 800 mK. Furthermore, for temperatures below 250 mK a remarkable hysteretic behaviour between the switching (I ) L C InAs I and retrapping (I ) critical currents is observed, as shown Cr b in Fig.1d,e. This hysteresis stems from quasiparticle heating Ti/Al 150 nm within the NW region whilst switching from the resistive to 200 nm V Ti/TAi/lAl the dissipationless regime [22], and has been often observed + - SiOSxiOx inhybridJosephsonjunctionsindependentlyofthegeometry Si n++ Si n++ orcompositionoftheweaklink[17,23–27]. 15 mK 800 mK ThemonotonicdecayofI (T)andthesaturationofI (T) d e C Cr T(mK) = 15 Ballistic at low T is displayed in Fig. 1(e) [28] together with the two 200 I Diffusive 150 best fits for IC(T) obtained by modelling the junction as an C ideal diffusive or ballistic NW (red and blue dashed line, re- 400 150 spectively). The details of the theoretical model for each fit 600 aredescribedintheMethodssection. Noneofthetwofitting A) 800 A) curvescanaccuratelydescribethemonotonicdecayofIC(T) I (n 0 I (nC wdihaitcehreisgicmoensbisettewnetewnitthheatjwuoncatiboonvebelliomnigtsin[g18to],ain.e.i,ntLer∼mel- e I 75 where l ∼60 nm is the electron mean free path estimated Cr e in our InAs-NWs [19, 29]. Moreover, the diffusive fit sug- 700 gests an effective junction length of the order of ∼300 nm -150 500 which largely exceeds the interelectrode spacing. The actual 300 geometry of the junction supports this observation since the 100 superconducting electrodes cover a considerable portion of 100 V the NW. In addition, the same fit yieds an estimate for the 0 0 400 800 junction Thouless energy Eth =h¯D/L2 ≈160µeV (D is the V(V) T (mK) diffusion constant in the InAs NW), and for the induced su- perconductingminigap[30]intheNW,∆(cid:39)80µeV. FIG. 1. | Sample layout and zero magnetic field characteri- As long as the external magnetic field is absent, the be- zation. a, Pseudo-color scanning electron micrograph of a typical havior of our NW-based Josephson junctions is fully consis- n-InAs nanowire-based Josephson junction along with a sketch of tentwithwhathasbeenobservedforsimilarAl/InAs-NW/Al the four-wire measurement setup. The Josephson junction is cur- weak links [15, 16, 18, 19]. A strikingly different and un- rentbiased(I)whereasthevoltagedrop(V)ismeasuredthrougha expected phenomenology develops when the magnetic field room-temperature differential preamplifier. The junction length is is applied perpendicular to the substrate (B ): the amplitude denotedwithL,andthewidthoftheTi/Alelectrodesis∼150nm. ⊥ of I drastically changes in a way that has never been ob- b,Sideviewofthejunctionshowingthedifferentmaterialsforming C thestructure.c,Colored45◦tiltedscanningelectronmicrographofa served so far in similar devices [15, 18] and, to the best of typicaldistributionofInAsnanowiresaftertheirgrowth.d,Backand our knowledge, in any other kind of Josephson weak links. forth current vs voltage characteristics of an Ti/Al-InAs Josephson As shown in Fig. 2a, where the IV characteristics of one of junctionwithL=100nmmeasuredatdifferentbathtemperaturesT. thejunctionswithL=100nmisdisplayedfordifferentval- Thecurvesarehorizontallyoffsetforclarity. e,Switching(IC,dots) uesofB⊥,thecriticalcurrentICremainsalmostconstantupto and retrapping (ICr, triangles) supercurrents vs temperature. Two ∼15mT,thenquicklydoublesitsamplitudeata“switching” distincttheoreticalmodelsforthecriticalcurrentICholdingeitherin fieldBsw(cid:39)23mT,anddecaysatlargermagneticfields. Fur- theballistic(dash-dottedline)ordiffusive(dashedline)regimeare themore,for|B |>B ,theIV characteristicsdevelopadis- ⊥ sw shown. sipativebehavior(i.e.,theyshowafiniteslopearoundV ≈0, seeFig.2b)whichcorrespondstoaresistanceof∼60Ω. The colossalenhancementofI (whichexceeds100%)isveryro- C (IV)characteristicsoftheJosephsonweaklinksareobtained bustandreproducibleoverdifferentcoolingcycles,andmea- byapplyingabiascurrentI,andmeasuringtheresultingvolt- suredjunctions. age drop across the NW via a room-temperature differential Figure 2c shows the behavior of I (B ) for three junc- C ⊥ preamplifier,asshowninFig.1a.Ashematicsideviewshow- tions of different lengths. Apart from sample specific fluc- ingthematerialsformingthejunctionsaswellasa45◦ tilted tuationsofI (0),thesupercurrentenhancementoccursatthe C scanning electron micrograph of a typical distribution of n- same magnetic field for all the junctions. This suggests that InAs NWs after the growth are displayed in Fig. 1b and c, the origin of the effect is intrinsic to the materials combi- respectively. nation, and cannot be attributed to geometrical resonances Figure 1d shows the temperature dependence of the IV in the junction [21]. A nontrivial behaviour characterizes characteristics of a typical Josephson junction with L = alsothetemperatureevolutionoftherelativeI enhancement, C 100nm. AcriticalcurrentI exceeding∼150nAisobserved ∆I = max[I (B )]/I (0)−1, shown in Fig. 2d,e for two C C C ⊥ C atthebasetemperatureofadilutionrefrigerator(15mK)[18]. junctions with L=40 nm and 100 nm belonging to differ- Without any applied magnetic field I persists up to ∼ ent NWs. In contrast to the usual temperature-driven weak- C 3 a b c B (mT) 0 16 32 48 64 80 96 112 B (mT) L(nm) 100 100 40 27 100 A) 26 113 I (nC I (nA) 0 V (V) 24 50 22 21 -100 V 19 8 24 40 56 72 88 104 120 128 0 5 0 L = 100 nm V (V) 100 V -100 0 100 -100 -50 0 50 100 I (nA) B (mT) d L = 40 nm T(mK) e f 25 120 L = 100 nm B L = 100 nm 25 mK C 100 0.10 200 T) A) 300 %)80 B ( I (nC 400 I (C 0.05 500 700 mK 40 40 nm B 600 SW Stack 20 nA 700 -30 nA -50 -25 0 25 50 0 0.00 B (mT) 0 300 600 0 400 800 T (mK) T (mK) FIG.2. |Enhancementofthecriticalcurrentatfiniteout-of-planemagneticfield. a,BackandforthIV characteristicsofaJosephson junctionwithL=100nmmeasuredfordifferentvaluesoftheout-ofplanemagneticfield(B )at15mK.Thecurvesarehorizontallyoffsetfor ⊥ clarity.AstrongenhancementofI occursatB (cid:39)23mT.b,Blow-upofselectedIV characteristicsofthesamejunctionofpanelashowing C ⊥ the dissipative behaviour of the weak link after the transition to the enhanced I state. c, Comparison of the I vs B behavior for three C C ⊥ junctionsofdifferentlengthLat15mK.d,CriticalcurrentI vsB measuredatdifferentbathtemperaturesforajunctionwithL=40nm. C ⊥ Thecurvesareverticallyoffsetforclarity. EachdatapointrepresentsthecriticalcurrentobtainedfromasingleIV measurementatconstant magneticfieldandtemperature. e,Temperaturedependenceofthecriticalcurrentrelativeenhancement,∆IC=max[IC(B⊥)]/IC(0)−1,for twodifferentjunctionswithL=100nmandL=40nm. NotethatthejunctionwithL=100nmisdifferentfromtheoneshowninpanel c. f,TemperaturedependenceofthecriticalfieldBC forthedisappearanceoftheJosephsoneffect,andoftheswitchingfieldBswforIC fora junctionwithL=100nm. DottedlinesaretheBCSfittingofthetwodatasetsusingtheequationBx(T)=Bx(0)[1−(T/TC)2]obtainedfor thesamesuperconductingcriticaltemperatureT =900mK. C eningoftheJosephsoneffect,∆I showsanonmonotonicbe- thepossibleoriginsofthiseffect,isthestrongdependenceof C haviourwithamaximumatT ∼300mKforthejunctionwith I (B) on the orientation of the external magnetic field. This C L=100 nm whereas in the shorter junction (L=40 nm) the clearlyappearsinFig.3a,wherewecomparethecriticalcur- behaviour is almost monotonic, and simply decays with the rentsoftwojunctionswithdifferentlengths(L=40nmand temperature. Severalcharacterizationsperformedondifferent 113 nm) measured for three different orientations of B. The samples seem to indicate that the temperature behaviour of maximum I enhancement is observed when the field is ap- C ∆I is not related to the length of the junction but rather de- pliedperpendiculartothesubstrate(andthusalsototheNW C pendsonthespecificNW.Moreover,thebehaviorofB (T) axis) as shown in the left panel, and occurs at B (cid:39)23 mT. sw sw showninFig.2fforajunctionwithL=100nm,followsthe Differently,incantedfieldconfigurations(B30◦,centralpanel) sametemperaturedependenceofthecriticalfieldforthedis- B shifts to higher fields according to the amplitude of the sw appearance of the Josephson effect B (also displayed in the projection B . When B is applied in-plane (B , right panel) C ⊥ || same plot) therefore suggesting a common origin of the two theeffectisalmostabsentapartatinysupercurrentenhance- phenomena,i.e.,theproximityeffect. mentaround∼160mTwhichcanbeascribedtoasmallmis- alignment present in our setup as well as to an incomplete AcrucialfeatureobservedintheI enhancementofallthe magneticfieldscreeninginthejunctionregion,aswillbedis- C junctions,andwhichisessentialinordertodiscriminateover 4 a 2 B B L(nm) B 30° || )=0 113 B C( 40 /IC I 1 0 0 40 80 80 160 80 160 240 B (mT) B (mT) B (mT) b c 200 B B SO B ┴ B || ┴ 150 %) B (ext100 BSO /Beff 50 B || 0 0 50 100 150 200 0% 100% 200% Position (nm) FIG.3. |Angledependenceofthecriticalcurrentenhancement. a,ComparisonbetweentheI behaviourasafunctionofthemagnetic C fieldappliedinthreedifferentorientationsfortwodifferentjunctionlengths:out-ofplane(B ),30◦fromtheplane(B ),andin-plane(B ). ⊥ 30° || b,COMSOLfinite-elementsimulationofthenonuniformdistributionoftheamplitudeofBduetotheMeissnereffectinthesuperconducting leads, evaluatedforamagneticfieldappliedalongthethreemainorthogonalaxesofthejunction: out-ofplane(B , leftpannel), in-plane ⊥ orthogonaltotheNWandparalleltotheSOvector(B ,middlepannel),andalongtheNW(B ,rightpannel).Verticalgrayregionsindicate SO || thesuperconductingelectrodeswhereasthelight-greenhorizontalonestheNW.c, Amplitudeprofileoftheeffectivemagneticfield(B ) eff normalizedbytheappliedmagneticfield(Bext)alongtheportionoftheNWindicatedbythedashedlinesshowninb. Notethatwhileinthe out-of-planedirection(B⊥,redline)Beff isalmostuniformlydoubledwithrespecttoBext owingtothefocusingeffect,alongtheNW(B||, blueline)B itisdrasticallysuppressedbyMeissnerscreening,andreachesatmost∼25%oftheintensityoftheexternalfieldatthecenter eff ofthejunction.Inthein-planedirectionorthogonaltotheNW(BSO,blackline)Beff almostcoincideswithBext. cussedbelow. Notably, thein-planecomponentsofthemag- forourjunctionsgeometryforthethreerelevantdirectionsof netic field (see right panel) seem to have a marginal role in theexternalmagneticfield(B ). Theresultsaresummarized ext determiningtheactualvalueofB ,thisconclusionfollowing in Fig. 3b where the space distribution of B is calculated as- sw fromthesimilarbehaviordisplayedbythetwoaboveJoseph- suminganidealMeissnereffectinthesuperconductingleads. sonweaklinkswhichwerefabricatedwithNWshavingvery In particular, we obtain that when B is orthogonal to the ext differentorientationsinthesubstrateplane. substrate(B ,leftpanel)themagneticfieldB inthejunc- ⊥ eff tion region is strongly amplified, and its intensity is almost ThepeculiardependenceoftheI enhancementasafunc- C doubledwithrespecttotheexternalfieldduetomagneticfo- tion of magnetic field direction imposes an important con- cusing,asrecentlyreportedforPb-basedInAsNWJosephson straintoverpossiblemodelsthatcanexplaintheeffect. These junctions [17]. When B is applied in-plane along the SO observationsjoinedwiththein-planepinningofthespin-orbit ext vector (B , central panel) there is complete penetration of (SO) vector in InAs NWs laying on top of a SiO /Si sub- SO 2 themagneticfieldwithinthejunctionregion,i.e.,B ∼B . strate [3], seem to lead to the intriguing conclusion that the eff SO By contrast, when B is applied parallel to the NW axis (B , I enhancement requires the magnetic field to be perpendic- || C rightpanel)theweaklinkareaisalmostscreenedbythemag- ular to the SO vector. The lack of I enhancement observed C neticfieldthankstoMeissnerexpulsionintheleads,andB for field configurations orthogonal to the SO vector but par- eff obtains values up to ∼25% of the external field at the cen- alleltotheNWcanbeattributedtothestrongmagneticfield ter of the junction. Figure 3c summarizes the above results expulsionintheweaklinkregionduetotheMeissnerscreen- fortheamplitudeprofileofB alongtheportionoftheNW ing of the superconducting electrodes forming the junction. eff indicatedbythedashedlinesinpanelb. The magnitude of this effect has been numerically estimated 5 a c Theoretical interpretations The scenario drawn above bytheseexperimentalevidencesisclearbutitsinterpretation B B ispuzzlingduetothecomplexityofthesystemandthelarge S S S S S S amount of non-trivial phenomenologies possible for Joseph- S’ S’ S’ S’ S’ S’ W S’ VS VN VS S’ Z Z Z son junctions. In the first approximation it is known that a magnetic field destroys superconductivity via the orbital and b L LS d paramagneticeffect,andthereforeonewouldexpectamono- 2.0 tonic decay of the critical current by the application of an 0.03 V ZS/V ZN external field. An experimental exception to this behavior is 0.10 100 represented by field-enhanced superconductivity observed in TN = 0.2 0.00 5303 25 Josephson junctions made with metallic NWs covered with 0.08 20 magnetic impurities. In that case, the I (B) enhancement is -0.03 17 inducedbythefieldpolarizationoflocalCmoments,andbythe 1.5 1142 rirneitliaCetsoivoienpqeourueprnacNihrsWin[gs3,1o]af.nthdDeuoeewxcitnohgatnhtgeoeatchboesuepsnplcieencgoififwcmitmhagathngeenteeiltceiccimtfiropenulds- I ()eC00..0046 0.07 I /()e0C orientationleadingtotheI enhancementwecanexcludethis C pictureastheexplanationofourobservations. 1.0 0.02 Two further mechanisms are known that yield an I in- C crease as a function of field: Fraunofer-like diffraction [32], 0.009 0.0004 andtheπ-junctionbehaviour[33]. Theformerisexpectedto 0.00 0 2 4 6 0.0 0.3 0.6 0.9 occur whenever the magnetic flux enclosed by the junction, B/B V S (eV) crit Z Φ=LWB (W istheNWdiameter),equalsanintegermulti- ⊥ pleofthefluxquantum,Φ0=h/2e. Notethatneithertheab- FIG. 4. | Two possible models for the IC enhancement. a, A senceofanIC maximumaroundB⊥=0northeevidencethat sketch of the four Majorana bound states (red circles) formed in thecriticalcurrentenhancementisindependentofthejunction thetwoproximizedregionsS’ofa(ballistic)NWundertheaction lengthcanbeexplainedwithinthispicture.Ontheotherhand, of an out-of-plane magnetic field B . b, Theoretical critical cur- ⊥ aπ-junctionbehaviorinducedbytheexternalfieldistypically rent IC calculated for increasing magnetic field values in an InAs characterized by oscillations of I (B) with periodicity of the Josephsonjunctionsimilartotheonesinvestigatedintheexperiment C order∼gµ B/E ,i.e.,theratiobetweentheZeemanandthe (L=50 nm, LS =500 nm, andW =50 nm). The NW chemical B T potential µ is set to have six spinful subbands at half filling. Rest Thoulessenergyofthejunction,wheregistheNWgyromag- neticfactorandµ istheBohrmagneton.Suchoscillatorybe- of the parameters: spin-orbit coupling αSO=0.13eVA˚, gyromag- B netic factor g=15, and zero-temperature superconducting energy haviour,whencombinedwithSOcouplinganddisorder[33], gap∆=150µeV.Theredcurveisqualitativelyrepresentativeofthe might explain enhancement of the critical current for some IC enhancementobservedintheexperiment. TN denotesthecontact specificvaluesofthemagneticfield. However,neitherthees- transmissivity. Inset: correspondingAndreevlevelsε vsphasedif- timatedvaluefortheratiogµBBsw/ET ∼0.25northeabsence ferenceφ atB=6.2Bcrit,whichexhibitanavoidedcrossingatphase ofanydependenceonthejunctionlength(throughtheThou- differenceφ =π duetothehybridizationofinner(blue)andouter lessenergyET)canbeaccommodatedwithinthisexplanation. (red)MajoranaboundstatesacrossLS.c,Sketchofa(diffusive)NW Josephsonjunctioninthepresenceofaninhomogeneousmagnetic fieldduetothefocusingeffectinducedbythetwosuperconducting DespitebeingaratherrarephenomenoninJosephsonjunc- leads. ThelocalZeemanexchangeenergyinthesuperconductorsS’ tions we then consider two less obvious alternatives which andintheNWisdenotedbyVSandVN,respectively,withVS>VN. account, at least from a qualitative point of view, for the Z Z Z Z d, Theoreticalcritical current I calculated asa function ofVS for observed colossal critical current enhancement induced by a C Z differentdegreesofinhomogeneity(VS/VN). magneticfield. Toembracebothtransportregimeswhichare Z Z relevant for our junctions, we will present: (i) a first model basedontopologicaltransitionsintheballisticapproximation; (ii)asecondmodelbasedoninhomogeneousZeemanfieldin pling,liketheonesstudiedhere,canbestronglyenhancedrel- thediffusivelimit. ativetothetrivialphaseforsmalljunctiontransmissivity(T ). N (i) Ballistic scenario -Topological transition and MBSs- This happens by virtue of the additional supercurrent con- The enhancement of the critical current in a NW- tributedbyMajoranazeromodesinthejunctionastheexter- based superconductor-normal metal-superconductor Joseph- nalZeemanfieldexceedsacriticalvalue(Bcrit).Inaquasi-one sonjunctionwaspredictedtooccuraftertheproximizedsec- dimensional geometry, this topological transition occurs as a tionsofthenanowire(theS’regionsshownintheschemeof givensubbandnundergoesabandinversionatZeemanenergy Fig. 4a) are driven into a topologically non-trivial phase by V(n) = (cid:112)∆2+µ2, where µ is the Fermi energy measured Z n n anexternalZeemanfield. Inparticular,itwasshown[20]that fromthebottomofthesubband,and∆isthesuperconducting inthetopologicallynon-trivialphasesthecriticalsupercurrent minigapinducedintheNW.Afterthetransition,andforlong ofaJosephsonjunctionrealizedwithamultimodequasi-one enough proximized regions, i.e., for L (cid:29)ξ ≡h¯v /∆ where S F dimensionalsemiconductorNWwithSO(Rashba-type)cou- ξ istheMajoranastatelocalizationlength,eachS’sectionof 6 theNWbecomesatopologicalsuperconductorwithemergent region(VS(N))havetobeverydifferentinamplitude; specif- Z Majorana zero modes at its ends (the red circles in Fig. 4a). ically, itis requiredVS (cid:29)VN to achievethe observed I en- Z Z C The topological transition can be directly seen as a closing hancement.(iii)TheinterfacebetweentheSelectrodeandthe andreopeningoftheBoboliubov-DeGennes(BdG)spectrum Nwireshouldexhibitatunnel-liketransmissivity. Condition nearzeroenergy. Afterthetransition,theBdGspectrumcon- (i)isplausiblefortheregionsoftheNWclosetotheS/Ncon- tainsemergentMajoranazeromodeswithprotectedcrossings tacts,thereforeonecanidentifythestructureasaSF-I-N-I-SF, atasuperconductingphasedifferenceφ =π whichgiverise wherenowSFdenotesaBCSsuperconductorwithavariable toa4π-period√icJosephsoneffect,andtoanenhancedcritical spin-splittingproportionaltotheappliedmagneticfield. Con- current (IC ∼ TN) relative to that of conventional Andreev dition (ii), namely an inhomogeneously distributed Zeeman levels(IC∼TN)thereforeonlyobservableforreducedcontact field, is possible as well owing to the strong magnetic field transmissivity TN (cid:28)1. For shorter wires (with LS (cid:28)ξ) the focusing originating from the S electrodes (see Figs. 3b,c) Majoranamodesarealwaysstronglyoverlapping,andmerge so one can safely assume thatVS (cid:54)=VNS (see the scheme in Z Z intostandardfinite-energyAndreevlevels. Fig. 4c). Condition (iii), on the other hand, is more unlikely Figure.4billustratesthisphenomenondisplayingthecalcu- butstillpossiblebyconsideringlocaldefectsintheNW. latedspectrumofaNWJosephsonjunctionwithL =500nm S Having in mind these limitations, we have computed the correspondingtotheexperimentalsamples(notethatwetake critical current of a diffusive SF-I-N-I-SF junction with the intoaccountalltheSfingersoneachsideofthejunction). In help of the quasiclassical Green’s function formalism [36] this limit the junction should be always topologically trivial (seeMethodsformoredetails),andusingtheparametersob- since the protected φ =π crossing is lifted, as shown in the tainedfromtheI (T)fit(seeFig.1e).Theresultsaresumma- inset of Fig. 4b. Despite this, the I enhancement predicted C C rizedinFig.4d. Theoverallbehaviourisqualitativelyconsis- tooccuratthetopologicaltransitionforidealjunctionlengths tentwiththeexperimentalobservationalthoughaquantitative (L (cid:29)ξ), remains visible even in our short-contact geome- S comparison is difficult due to the complexity of the junction try (L (cid:28)ξ) as a reminiscence of the Majorana zero modes S geometry. Despite the good qualitative description of I (B), which,evenifstronglyoverlapping,areeffectivelycontribut- C the maindiscrepancy between themodel andthe experiment ing to I . This is shown in Fig. 4b where a remnant of a C liesinthelargevalueoffieldinhomogeneity,VS/VN(cid:38)10,re- topological transition for short L leads to a critical current Z Z S quiredtoobtainamagnetically-drivenI enhancement. This enhancementaroundacrossovermagneticfieldVZ(n)(cid:38)∆(for last condition is indeed much stronger tChan the maximal ex- µn∼0)asthejunctiontransmissivityisreduced.Forthetypi- pectation obtained for our junctions geometry in the out-of- calenergygapdeducedfromtheexperiment,∆∼80µeV,and planemagneticfieldconfiguration,i.e.,VS/VN (cid:46)1.2,asdis- Z Z assumingg=15forInAsNWs,thisyieldsacriticalmagnetic playedinFig.3c. fieldB =∆/(1gµ )(cid:39)184mT.Thislattervalueisinrough crit 2 B agreementwiththeexperimentalmagneticfieldsatwhichthe I enhancement is observed, B≈23 mT, if we consider the C field focusing factor of 2 (as shown in Fig. 3c) and a large g Conclusions We have reported a colossal enhancement factor,g∼60. ofthecriticalsupercurrentatfinitemagneticfieldsinn-InAs (ii) Diffusive scenario -Inhomogeneous Zeeman field- If NW-based weak links which is in total contrast with the be- we exclude the above topological transition scenario as the havior observed so far in conventional Josephson junctions. originoftheobservedeffectanalternativemodeltodescribe The effect manifests itself only for very specific experimen- the colossal I enhancement is based on the increase of the C talconditions: themagneticfieldneedstobeappliedperpen- criticalcurrentpredictedtooccurinSF-I-SFJosephsonjunc- dicular to the NW axis and to the substrate, i.e., in the only tions,whereSFdenotesasuperconductorwithaZeeman-split configurationwhichisexpectedtobeperpendiculartotheSO density of states, and I is an insulator. If the effective spin- vector in the weak link. Despite this clear but puzzling ex- splittingZeemanfieldsintheleftandrightelectrodesaredif- perimentalevidence,aconclusivetheorycapabletofullyde- l(r) ferent, V , one expects to observe an enhancement of the scribeourresultsisstillmissing. Wepresentedtwopossible Z criticalcurrentwithamaximumatVl−Vr=∆ +∆ [34,35] models that allow to qualitatively grasp the observed effect, Z Z l r asaconsequenceofarobustspintripletcomponentinthesu- one holding in the ballistic limit, the other in the diffusive perconductingcondensate,where∆ isthepairingpotential regime. Theavailableevidencesfallinacomplexintermedi- l(r) in the left(right) superconductor. It is worthwhile to empha- ateregimethatpreventsadetailedagreementbetweentheory sizethattheI enhancementonlytakesplaceifthetransmis- and experiment. Yet, the realization of fully ballistic junc- C sivityofthebarrierislow[35]toavoidthecouplingbetween tionsisexpectedtoprovideanimprovedunderstandingofthe thetwospin-polarizedsuperconductingcondensates. Inaddi- present phenomenology. In addition, extension of the theory tion,thecriticalcurrentenhancementisalsopossibleinSF-I- oftopologicallynon-trivialpairingtothecaseofdiffusiveNW N-I-SF[36]andeveninS-I-N-I-Sjunctions,thelatterbeinga Josephson weak links will offer a refined description of our geometrysomewhatclosertotheexperimentalone,ifthefol- system, and further clarify the role of MBSs in the experi- lowingconditionsarefulfilled: (i)Thedensityofthestatesof ment. Webelievethatthesenewsworthyresultswillstimulate theSelectrodesisBCSlikewiththecoherentpeaksZeeman the development of novel theoretical models, and will con- split thanks to the presence of the magnetic field (the orbital tributetotheprogressoftheinvestigationandunderstanding effectsaredisregarded);(ii)TheZeemanfieldsintheSandN ofMBSsincondensedmatterphysics. 7 ACKNOWLEDGEMENTS ferentNWs,andmeasuredatlowtemperature. The magneto-electric characterization of the InAs-NW PartialfinancialsupportfromtheMarieCurieInitialTrain- Josephson junctions was performed in a filtered dilution re- ingAction(ITN)Q-NET264034,fromtheMIUR-FIRB2013 frigeratordownto15mKusingastandard4-wiretechnique. ProjectCoca(GrantNo. RBFR1379UX),fromCNRthrough The current-voltage characteristics of the junctions were ob- thebilateralCNR-RFBRproject2015-2017,andfromtheEu- tained by applying a low-noise biasing current, with volt- ropean Research Council under the European Union’s Sev- age across the NW being measured by a room-temperature enth Framework Programme (FP7/2007-2013)/ERC Grant battery-powereddifferentialpreamplifier. 615187-COMANCHE is acknowledged. The work of E.S. is funded by the Marie Curie Individual Fellowship MSCA- FittingdetailsofI (T). TostudythedecayofI (T)pre- C C IFEF-STNo.660532-SupeMag.M.A.acknowledgesthesup- sentedinFig.1eandidentifythemaintransportregimehold- portoftheTuscanyregionthroughtheproject’TERASQUID’ ing in the NW we have modelled the Josephson junction in andthePeopleProgramme(MarieCurieActions)oftheEu- two opposite limits: diffusive and ballistic. In the diffusive ropeanUnionH2020ProgrammeunderREAgrantagreement regime,I (T)isfittedwiththeexpressionofthecriticalcur- C n [656485]. The work by P.S-J. is supported by the Span- rentofasuperconductor-normalmetal-superconductor(SNS) ish Ministry of Economy and Innovation through Grant No. junction obtained by solving the linearized Usadel equation FIS2011-23713andtheRamo´nyCajalprogramme.Thework [39] of R.A. is funded by the Spanish Ministerio de Econom´ıa y Competitividad through grant FIS2012-33521. The work of I = πkBT ∑ (κωL)∆2 , (1) F.S.B is supported by the Spanish Ministerio de Econom´ıa C eRNW ω (ω2+∆2)[αsinh(κωL)+βcosh(κωL)] y Competitividad through the Project No. FIS2014-55987- P and Grupos Consolidados UPV/EHU del Gobierno Vasco where the sum is over the Matsubara frequencies ω = (GrantNo. IT-756-13). πkBT(2n+1), n = 0,±1,±2,..., kB is the Boltzmann con- (cid:112) stant, κ = 2|ω|/(h¯D), D isthe NWdiffusioncoefficient, ω h¯ is the reduced Planck constant, R is the resistance of NW METHODS the NW of length L, α =1+r2(κωL)2, β =2r(κωL), and r=R /R withR beingtheresistanceoftheSNinterface. b NW b ThebestfitwiththediffusivemodelpresentedinFig.1e(pink Devicefabrication TheJosephsonjunctionspresentedin dashed line) is obtained from Eq. 1 by using L = 300 nm, thisworkarebasedonheavilyn-dopedInAsNWsgrownby D=0.0416m2/s,R =4Ω,andR =741Ω. metal-assisted chemical beam epitaxy [37]. NWs are grown b NW Ontheotherhand,forthefitintheballisticregimeweuse inaRiberC-21reactorbyusingmetallicseedsobtainedfrom the expression of the Josephson current I valid for a multi- thermal dewetting of a thin Au film layer evaporated on a J channeljunction[40] InAs substrate [17, 38]. Trimethylindium (TMIn) and ter- tiarybutylarsine (TBAs)(cracked at 1000°C) are usedin the e∆(T)2 N D (cid:20)E (T)(cid:21) growth as metallorganic precursors while ditertiarybutyl se- I (φ)= sinφ ∑ ntanh n , (2) J lenide(DtBSe)isusedasaseleniumsourceforn-typedoping. 2h¯ n=1En 2kBT Based on previous experiments performed on similar NWs [17,29]weestimateacarrierdensityn ∼3×1018cm−3and where Dn are the eigenvalues of the transmission matrix de- s anelectronmobilityµ∼2000cm2/Vsfromwhichwededuce scribingthejunction,Nisthenumberofconductingchannels, (cid:113) a Fermi velocity vF ∼2.2×106m/s, an electron mean free En(T) = ∆(T) 1−Dnsin2φ/2, ∆(T) is the temperature- pathle∼60nmandtheeffectiveelectronmassforInAsNWs dependent BCS energy gap, and φ is the macroscopic quan- m∗=0.023me,wheremeisthefree-electronmass. tumphasedifferenceoverthejunction. Thecriticalcurrentat After the growth, the NWs are transferred mechanically each temperature is then obtained by maximizing I (φ) with J onto a SiO2/n-Si commercial substrate pre-patterned with respect to φ, IC =max|φ[IJ(φ)]. The best fit with the ballis- Ti/Au pads and alignment markers which are defined by op- tic model shown in Fig. 1e (blue dashed line) is obtained by tical and electron beam lithography, and deposited by ther- setting∆ =120µeV,D =1,andN=5. 0 n mal evaporation. The position of the NWs on the substrate ismappedwithascanningelectronmicroscope,andusedfor ModelfortheI (B)enhancementbyatopologicaltran- C thealignedelectronbeamlithographyoftheJosephsonjunc- sition. TheBogoliubov-deGennesHamiltonianofaproxi- tions. Prior to the deposition of the Ti/Al superconducting mizedtwo-dimensionalRashbasemiconductorreads electrodes the NWs are etched with a highly-diluted ammo- niumpolysulfide(NH4)2Sx solutiontoremovethenativeox- H=(cid:18) p2 −µ(cid:19)τ +αSO(σ p τ −σ p ) ide layer present on the semiconductor surface. This proce- 2m∗ z h¯ y x z x y dureimprovesthequalityoftheohmiccontact,limitingunde- +∆σ τ +V σ τ , (3) y y Z x z siredsurfacescatteringprocesses. ThedepositionoftheTi/Al (12/78 nm) leads is performed at room temperature in ultra- where p2= p2+p2,m∗ istheeffectivemass,σ arethespin x y i high vacuum conditions by electron beam evaporation [17]. Paulimatrices, τ arePaulimatricesintheelectron-holesec- i Morethan10junctionswerefabricatedstartingfromfivedif- tor, and α is the Rashba spin-orbit coupling. The last two SO 8 termsdescribeaninducedsuperconductingpairingofstrength dimensional semiconducting nanowires, as demonstrated in ∆ and the Zeeman energyV produced by an external mag- Ref.[20]. Z neticfield. Ithasbeenshown(fordetailssee,e. g.,[1,2])that thes-wavepairinginEq.(3)inducesbothaneffectivep ±ip x y intrabandpairing,andaninterbands-wavepairingwhenreex- ModelfortheI (B)enhancementbyaninhomogeneous C pressed in terms of the ± eigenbasis of the helical Rashba + Zeemanfield. WehavecalculatedthecriticalcurrentI ofa C Zeemannormalproblem. Intermsoftheseeffectivepairings, diffusiveSF-I-F’-I-SFjunctionbysolvingtheUsadelequation the system is topologically non-trivial when only one of the within the quasiclassical Green’s functions formalism [36]. two p-wavepairingsdevelops. ThisoccurswhentheZeeman Above,SFdenotesasuperconductor(S’)Zeemansplitbyan energyVZ exceeds a critical value. In a quasi-1D geometry exchange field h1, F’ is a N wire possessing an internal ex- (withdiscreteconfinementsubbands),thiscriticalvaluereads changeenergyh ,andIrepresentaninsulatingtunnelbarrier 2 (seethesketchshowninFig.4c). I canbeexpressedas C (cid:113) VZ(n)= ∆2+µn2, (4) I = πAkBT ∑(cid:20) (f+)2 + (f−)2 (cid:21), (5) C e sinh(χ+L)χ+ sinh(χ−L)χ− with µ the Fermi energy measured from the bottom of the ω n subband. If the subbands are coupled, through the trans- verseSOcoupling, anevennumberofMajoranazeromodes where χ± = (cid:112)2(|ω|±isign[ωh2])/D, f± = (cid:112) per edge hybridise in pairs and form (cid:98)N/2(cid:99) full fermions ∆(h )/ (ω±ih )2+∆2(h ), the sum is over the Mat- 1 1 1 (standardAndreevlevels)atnon-zeroenergiesε(n) (withn= subara frequencies ω already introduced, and ∆(h1) is 0 1,...(cid:98)N/2(cid:99))localisedateachedge. TheremainingN mod2 the effective superconducting order parameter calculated (0) self-consistentlyfromtheBCSgapequation[41]. Moreover, endstatesstayasMajoranazeromodes,atε =0. 0 A= RNWANW,whereR istheresistanceoftheNWoflength This spectral even-odd effect is therefore a manifestation 2R2A2L NW C C of changes in the topological order in the multiband system, L, A is the NW crossection, R is the contact resistance, NW C and is reflected in the Josephson effect. In particular, the and A is the contact area. For the calculation of the curves C additional supercurrent contributed by Majorana zero modes displayed in Fig. 4d we have used the junction geometrical in the junction in the non-trivial regime directly maps the dimensions,theparametersobtainedfromthediffusiveI (T) C topologicalphasediagramofproximizedmultibandquasi-one fitshowninFig.1e,andT =60mK. [1] Beenakker, C.W.J. SearchforMajoranaFermionsinSuper- [11] Rokhinson,L.P.,Liu,X.&Furdyna,J.K. Thefractionala.c. conductors. Annual Review of Condensed Matter Physics 4, Josephsoneffectinasemiconductor-superconductornanowire 113–136(2013). as a signature of Majorana particles. Nat Phys 8, 795–799 [2] Alicea,J. NewdirectionsinthepursuitofMajoranafermions (2012). insolidstatesystems. Rep.Prog.Phys.75,076501(2012). [12] Doh,Y.-J.etal. TunableSupercurrentThroughSemiconductor [3] Mourik, V. et al. Signatures of Majorana Fermions in Hy- Nanowires. Science309,272–275(2005). brid Superconductor-Semiconductor Nanowire Devices. Sci- [13] De Franceschi, S., Kouwenhoven, L., Schnenberger, C. & ence336,1003–1007(2012). Citedby0355. Wernsdorfer,W. Hybridsuperconductor-quantumdotdevices. [4] Das, A. et al. Zero-bias peaks and splitting in an Al-InAs NatNano5,703–711(2010). nanowire topological superconductor as a signature of Majo- [14] Nilsson,H.A.,Samuelsson,P.,Caroff,P.&Xu,H.Q. Super- ranafermions. NatPhys8,887–895(2012). currentandMultipleAndreevReflectionsinanInSbNanowire [5] Deng, M. T. et al. Parity independence of the zero-bias con- JosephsonJunction. NanoLett.12,228–233(2012). ductancepeakinananowirebasedtopologicalsuperconductor- [15] Abay, S. et al. High Critical-Current Superconductor-InAs quantumdothybriddevice. ScientificReports4,7261(2014). Nanowire-Superconductor Junctions. Nano Lett. 12, 5622– [6] Williams,J.R.etal. UnconventionalJosephsonEffectinHy- 5625(2012). bridSuperconductor-TopologicalInsulatorDevices. Phys.Rev. [16] Abay, S.etal. QuantizedConductanceandItsCorrelationto Lett.109,056803(2012). theSupercurrentinaNanowireConnectedtoSuperconductors. [7] Hart,S.etal. Inducedsuperconductivityinthequantumspin NanoLett.13,3614–3617(2013). Halledge. NatPhys10,638–643(2014). [17] Paajaste, J.etal. Pb/InAsNanowireJosephsonJunctionwith [8] Pribiag, V. S. et al. Edge-mode superconductivity in a two- HighCriticalCurrentandMagneticFluxFocusing. NanoLett. dimensional topological insulator. Nat Nano 10, 593–597 15,1803–1808(2015). (2015). [18] Abay, S. et al. Charge transport in InAs nanowire Josephson [9] Sochnikov,I.etal. NonsinusoidalCurrent-PhaseRelationship junctions. Phys.Rev.B89,214508(2014). inJosephsonJunctionsfromthe3dTopologicalInsulatorHgTe. [19] Roddaro,S.etal.Hot-electroneffectsinInAsnanowireJoseph- Phys.Rev.Lett.114,066801(2015). sonjunctions. NanoRes.4,259–265(2010). [10] Wiedenmann, J. et al. $4\pi$-periodic Josephson su- [20] San-Jose,P.,Prada,E.&Aguado,R. MappingtheTopological percurrent in HgTe-based topological Josephson junctions. Phase Diagram of Multiband Semiconductors with Supercur- arXiv:1503.05591[cond-mat](2015). ArXiv:1503.05591. rents. Phys.Rev.Lett.112,137001(2014). 00006. 9 [21] Furusaki,A.,Takayanagi,H.&Tsukada,M. Josephsoneffect (2006). ofthesuperconductingquantumpointcontact.Phys.Rev.B45, [32] Cuevas,J.C.&Bergeret,F.S. MagneticInterferencePatterns 10563–10575(1992). andVorticesinDiffusiveSNSJunctions. Phys.Rev.Lett.99, [22] Courtois,H.,Meschke,M.,Peltonen,J.T.&Pekola,J.P.Origin 217002(2007). 00029. of Hysteresis in a Proximity Josephson Junction. Phys. Rev. [33] Yokoyama,T.,Eto,M.&Nazarov,Y.V.AnomalousJosephson Lett.101,067002(2008). 00069. effect induced by spin-orbit interaction and Zeeman effect in [23] Gnel, H. Y. et al. Supercurrent in Nb/InAs-nanowire/Nb semiconductornanowires. Phys.Rev.B89,195407(2014). Josephsonjunctions. JournalofAppliedPhysics112,034316– [34] Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Enhance- 034316–6(2012). Citedby0000. ment of the Josephson Current by an Exchange Field in [24] Fornieri,A.etal. AballisticquantumringJosephsoninterfer- Superconductor-Ferromagnet Structures. Phys. Rev. Lett. 86, ometer. Nanotechnology24,245201(2013). 3140–3143(2001). 00165. [25] Amado, M.et al. Electrostatic tailoring of magnetic interfer- [35] Chtchelkatchev,N.,Belzig,W.&Bruder,C. Josephsoneffect ence in quantum point contact ballistic Josephson junctions. inSFXSFjunctions. JEPTLett.75,646–650(2002). 00016. Phys.Rev.B87,134506(2013). [36] Strambini, E., Bergeret, F. S. & Giazotto, F. Mesoscopic [26] Spathis, P. et al. Hybrid InAs nanowirevanadium proximity Josephson junctions with switchable current-phase relation. SQUID. Nanotechnology22,105201(2011). EPL112,17013(2015). [27] Giazotto,F.etal. AJosephsonquantumelectronpump. Nat. [37] Ercolani,D.etal. InAs/InSbnanowireheterostructuresgrown Phys.7,857–861(2011). bychemicalbeamepitaxy.Nanotechnology20,505605(2009). [28] Dubos,P.etal. Josephsoncriticalcurrentinalongmesoscopic [38] Gomes, U.P., Ercolani, D., Zannier, V., Beltram, F.&Sorba, S-N-Sjunction. Phys.Rev.B63,064502(2001). L. Controlling the diameter distribution and density of InAs [29] Viti, L., Vitiello, M.S., Ercolani, D., Sorba, L.&Tredicucci, nanowiresgrownbyAu-assistedmethods.Semicond.Sci.Tech- A. Se-dopingdependenceofthetransportpropertiesinCBE- nol.30,115012(2015). grown InAs nanowire field effect transistors. Nanoscale Re- [39] Kuprianov, M. Y. & Lukichev, V. F. Influence of boundary searchLetters7,159(2012). transparencyonthecriticalcurrentof”dirty”SS’Sstructures. [30] Hammer,J.C.,Cuevas,J.C.,Bergeret,F.S.&Belzig,W.Den- Sov.Phys.JETP67,1163(1988). 00000. sityofstatesandsupercurrentindiffusiveSNSjunctions:Roles [40] Beenakker,C.W.J. Universallimitofcritical-currentfluctua- ofnonidealinterfacesandspin-flipscattering. Phys.Rev.B76, tionsinmesoscopicJosephsonjunctions. Phys.Rev.Lett.67, 064514(2007). 3836–3839(1991). [31] Rogachev,A.etal. Magnetic-FieldEnhancementofSupercon- [41] Giazotto,F.&Taddei,F. Superconductorsasspinsourcesfor ductivity in Ultranarrow Wires. Phys. Rev. Lett. 97, 137001 spintronics. Phys.Rev.B77,132501(2008). 00028.