Magneti sus eptibility anisotropies in a two-dimensional quantum Heisenberg antiferromagnet with Dzyaloshinskii-Moriya intera tions ∗ 1, 2 1 1 M. B. Silva Neto, L. Benfatto, V. Juri i , and C. Morais Smith 1 Institute for Theoreti al Physi s, University of Utre ht, P.O. Box 80.195, 3508 TD, Utre ht, The Netherlands 2 SMC-INFM and Department of Physi s, University of Rome (cid:16)La Sapienza(cid:17), 6 0 Piazzale Aldo Moro 5, 00185, Rome, Italy 0 (Dated: February 2, 2008) 2 The magneti and thermodynami properties of the two-dimensional (2D) quantum Heisenberg n antiferromagnet(QHAF)thatin orporatesbothaDzyaloshinskii-Moriya (DM)andpseudo-dipolar a (XY)intera tionsarestudiedwithintheframeworkofageneralizednonlinearsigmamodel(NLSM). J We al ulate the stati uniform sus eptibility and sublatti e magnetization as a fun tion of tem- 4 perature and we show that: i) the magneti -response is anisotropi and di(cid:27)ers qualitatively from 2 theexpe tedbehaviorofa onventionaleaBsy-⊥axisQH2AF;ii)theNéelse ond-orderphasetransition be omes a rossover, for a magneti (cid:28)eld CuO layers. We provide a simple and lear expla- ] nation for all the re ently reported unusual magneti anisotropies in the low-(cid:28)eld sus eptibility of l 2 4 e La CuO , L. N. Lavrov et al., Phys. Rev. Lett. 87, 017007 (2001), and we demonstrate expli itly 2 4 - whyLa CuO annot be lassi(cid:28)ed as an ordinary easy-axis antiferromagnet. r t s PACSnumbers: 74.25.Ha,75.10.Jm,75.30.Cr . t a m I. INTRODUCTION the DM term generates an e(cid:27)e tive staggered magneti - (cid:28)eld proportional to the applied uniform (cid:28)eld. In the d two-dimensional ase the ontinuum (cid:28)eld theory allows n Theusualstartingpointforthedes riptionofthemag- 6,7 o netism in undoped uprates is the 2D isotropi Heisen- one to reprodu e straightforwardly the same e(cid:27)e t, . 7 c berg model In Ref. the attention wasfo used on the( lassi al)spin [ on(cid:28)gurationsexpe tedinanexternal(cid:28)eld. Inthispaper 3 H =J Si·Sj, (1) weinvestigateinsteadthethermodynami alpropertiesof v <Xij> the system, whi h enter in a ru ial wayχin the evalua- 8 tion of the stati uniform sus eptibility, , as a fun tion T 8 J of temperature, . In parti ular, we show that the ou- 5 withonlytheAF++super-ex haSnig1e betweenthenearest- plingindu edbytheDMtermbetweenthemagneti (cid:28)eld neighboring Cu spins, . Remarkably, a long- 2 andtheantiferromagneti orderparameterisparti ularly 0 wavelength NLSM des ription of su h model has been relevant when the order-parameter (cid:29)u tuations be ome 5 shown to orre tly apture many of the features ob- riti al,leadingtoananomalousmagneti responseofthe 0 served experimentally in the high-temperature param- 4 / agneti phase.2,3 At lower temperatures, however, small system, as observed for example in . As an out ome of t a anisotropiesliketheDMandXYintera tionsbe omeim- ourstudiesweobservethat,whiletheisotropi nonlinear m sigmamodel(NLSM)iswell establishedto giveaproper portant, and the ommonly used isotropi des ription is - nolongeradequatetodes ribethelong-wavelengthmag- des ription of the maTgnetisTm in the high-temperature d 2 4 paramagneti phase, ≫ N,2,3 for the ordered (bro- neti properties of La CuO . In a re ent paper, Lavrov T <T n N ken) phase, , we(cid:28)nd moreappropriatetheadop- o et al. reported on some unusual anisotropies in the tion of a soft version of su h (cid:28)xed-length onstraint, in c low-(cid:28)eld magneti sus eptibility observed in detwinned : La2CuO4 single rystals.4 Among the unexpe ted fea- order to orre tly apture the physi s of the longitudi- v nal (cid:29)u tuations. For the sake of larity, we refer expli - i tures one ould mention: i) aχn almost featureless trans- 2 4 X versein-planesus eptibility, a, foranextendedtemper- itly to the La CuO system throughout the paper, but theresultspresentedhereapplytoany2Dsquare-latti e r ature range; ii) the in rease of the longitudinal sus epti- a χb QHAFwheretheDMand/orXYanisotropyintera tions bility, ,asoneapproa hestheNéeltransitiontempera- T T =0 N arepresent,asforexampleother upratesand ni kelates ture, ,fromtheorderedside;iii)theanomalous χ > χ > χ a,b,c 2 4 8 c b a La NiO . hierar hy , where represent the low- temperatureorthorhombi (LTO) rystallographi dire - tions of Fig. 1. Inthisarti leweinvestigatetheoreti allythemagneti response and thermodynami properties of the square- latti e QHAF that in orporates both the DM and XY anisotropyterms by investigatingthe generalized NLSM orresponding to this mi ros opi problem. As it has 5 beenstressedinthe ontextofone-dimensionalsystems, 2 II. THE LONG-WAVELENGTH LIMIT and Γ Γ 0 Γ Γ 0 1 2 1 2 S =We1/ 2oHnsaimdeirltotnhieanfoflolorwtihnegLsaq2uCaurOe-4lastytis teemsingle-layer ←→Γ ij=Γ02 Γ01 Γ0 , ←→Γ ik= −0Γ2 −Γ01 Γ0 , 3 3 H =J S S + D (S S )+ S ←→Γ S , i j ij i j i ij j · · × · · hXi,ji hXi,ji hXi,ji ij ik ++ d wherΓe an>d0 label the Cu10−2sites (1s0e−e4Fig. 1), and (2) and 1,2,3 are of order and , respe tively, Dij ←→Γij J 8 where and are, respe tively, the DM and in units of . XY anisotropi intera tion terms that arise due to To onstru t the long wavelength e(cid:27)e tive theory for the spin-orbit oupling and dire t-ex hange in the low- theaboveHamiltonianwefollowthestandardpro edure: 2 4 8 temperature orthorhombi (LTO) phase of La CuO . we write Thedire tionandthealternatingpatternoftheDMve - S (τ) tors, shown in Fig. 1, are a dire t onsequen e of the i =eiQ·xin(x ,τ)+L(x ,τ), i i S (4) tiltingstru tureoftheoxygeno tahedraandofthesym- 2 4 metry of the La CuO rystal. Throughout this work (bac) n L we adopt the LTO oordinate system of Fig. 1, for where and are, respe tively, the staggered and uni- Q = (π,π) both the spin~a=ndkBla=tti1 e degreesof freedom, and we use form omponeLnts of the spin and . We then units where . Thus we have that integrate out and we obtain a modi(cid:28)ed NLSM where 1 1 additionalterms appear due to the DM and XY intera - D = ( d,d,0), D = (d,d,0), β =1/T ij ik √2 − √2 (3) tions ( ) and 1 β = dτ d2x (∂ n)2+c2( n)2+(D n)2+Γ n2 , S 2g c Z Z τ 0 ∇ +· c c (5) 0 0 0 (cid:8) (cid:9) n2 =1 (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) andthe(cid:28)xedlegngth onstraint isimpli it(seealso (cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1) 6,7 0 Ref. ). Here isthebcare oupling onstant,relatedρto (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 0 s (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) tthhreosupgihn-ρwsa=vecv0e(l1o/ Nityg,0−Λ, a/n4dπ)r,e2n,3owrmhearleizΛedisstai(cid:27) nuetsos(cid:27), for, (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) D+ a = 1 (cid:0)(cid:1) (cid:0)(cid:1) momentum integrals (we set the latti e spa ing ) N =3 a and is the number of spin omponents. Finally, k D =2S(D +D ), c + ij ik (6) b i j see Fig. 1, and Γ =32JS2(Γ Γ )>0, −− c 1− 3 (7) FIG. 1: Left: the hat hed ir les represent the O ions 2 c tiltedabovetheCuO plane+;+theembpatcyonesaretiltedbelow andwenegle tedasmallanisotropi orre tionto om- it;smallbla k ir lesareCu ions; orthorhombi oordi- Γ J ing from the XY term, sin e 1,2 ≪ . natesystem. Right: S hemati arrangementof thestaggered ObservethatintheNLSM(5)onlythesumoftheDM magnetization (small bla k arrows) andDDM ve tors (open (ij) (ik) + arrows). Center: ontinuumde(cid:28)nitionof . and XY terms on the and bonds appears. This has several onsequen es: (i) the XYΓternm2 gαen=eraat,ebs,ca ontribution to (5) proportional to − αα α, , bc Γ =(1/2)(Γ +Γ ) = (Γ ,Γ ,Γ ) αβ ij ik αβ 1 1 3 unit ve tors), rendering a se ond easy plane. When wn2he=re1 diag . Sin e the system orders we (cid:28)nd the staggered magnetization the las,ssi ua lhe noenrgtryibpulutisonthreeΓduc ne2cstteorma inonEstqa.n(t5s)h.iTfthiins athni=σ0xˆb, asxˆobserxvˆedexperimentally,10 beD a2usetΓhe ab orientationalong aor cwould ostanenergy +or c, allows us to identify the as the (cid:28)rst easy plane. The Γ Γ 1 3 respe tively. Moreover, sin e the uniform magnetization property that only the ombination − a(cid:27)e ts the 6,7 is given by physi s of the model (2) was an out ome of the numer- 1 i al results of the RPA improved spin-wave analysis of L = ( n D ), Ref.9, but no explanation for this e(cid:27)e t was provided. h i 2J h i× + (8) (ii)TheDMdistortionentersthea tion(5)onlythrough D = D xˆ xˆ ,xˆ xˆ L xˆ + + a a b c c the ve tor ( , and are the LTO we (cid:28)nd that, in the AF phase, h i, is dire ted along , 3 ++ ab D + so that the Cu spins are anted out of the plane depending on the dire tions of and of the applied bc and on(cid:28)ned to the plane. (cid:28)eld,therewillbe(ornot)additionaltermsproportional G α to in Eq. (11), responsible for the unusual magneti response. Se ond, this oupling is generi to any system III. MAGNETIC SUSCEPTIBILITY where the la k of inversion- enter symmetry allows for anos illatingDMintera tionbetweenneighboringspins. χ To evaluate the stati uniform sus eptibility, α, we Third,Eqs.(11)areexa t, within linearresponsetheory, rederivefrom themi ros opi Hamiltonian(2) theqBuan- even though the σev0a(Tlu)ation Mofαt(hTe)zero-(cid:28)eld thermody- tum a tigonµ(5)/~in=th1e presen ge of a2magneti (cid:28)eld (in nami quantities and will require, in gen- units of S B , where S ≈ is the gyromagneti eral,a ertaindegreeofapproximation. Nevertheless,we ratio and µB is the Bohr magneton)6,7 show now that all the qualitative features observed in4 (B) = (∂ n ∂ n+iB n) are already present at the mean-(cid:28)eld level. τ τ S S → × The thermodynami properties of the model (5) an 1 β N 3 + g0c0 Z0 dτZ d2xB·(D+×n). (9) Nbe=in∞ve,staignadtefodrbTy>mTeaNn,swoef(cid:28)andlaσrg0e=- 0 eaxnpdansion. At M2 =c2ξ−2, M2 =D2+c2ξ−2, M2 =Γ +c2ξ−2, The last term in the above equation, whi h ouples the b 0 a + 0 c c 0 (14) D n + DM ve tor and the staggered magnetization , is ξ responsible for many of the unusual features observed where the orrelation length, 1, i=s Nal Iul(aξt)ed througIh a=n experimentally in La2CuO4. However, this oupling is a(1v/e2ra)(gIed+ oIns)traint equation ⊥ . Here ⊥ a c generi to any square-latti e system, as other uprates with andni kelates,wheresymmetryguaranteesthattheDM g c g T sinh(c Λ/2T) 8 I = 0 0 G (k,ω )= 0 log 0 . ve tors alternate in sign between neighboring bonds. α βV α n 2πc (cid:26)sinh(M /2T)(cid:27) The zero-(cid:28)eld magneti sus eptibility is al ulated in kX,ωn 0 α linear response theory as (15) a c 1 ∂2logZ Sin e both transverse spin-wave modes, and , are χ = , α βV ∂B2 (cid:12) (10) gapped, the 2D system orders at a (cid:28)nite Néel temper- α (cid:12)B=0 TN 1=NI⊥(ξ = )12 (cid:12) ature, , de(cid:28)ned by ∞ . Z(B) = nexp (B) (cid:12) For the ordered phase, T < TN, instead of repla ing where D {−S } is the Eu lidean par- tition fun tion fRor the a tion (9), and we obtain the lo al onstraint by(ua0/n2)a(vne2rage1)o2ne, we introdu e a potential of the type − in the a tion (5), σ2 χ = χu+ 0 , makingthe onstraintlo allysoft. Inthis aseweobtain a a g0c0 a generalized linear sigma model (LSM), whi h leads to D2 an ordered phase des ribed by: χ = χu+ + G (0,0), b b g c c σ2 =1 NI , M2 =2σ2u , M2 =D2, M2 =Γ . 0 0 0 − ⊥ b 0 0 a + c c σ2 D2 χ = χu+ 0 + + G (0,0), (16) c c g0c0 g0c0 b (11) We should emphasizue t=ha(tγtJh)e2only newγparameter here 0 is the energy s ale , where is a (cid:28)tting pa- where rameterthatwillbe(cid:28)xed laterthrough omparisonwith G−α1(k,ωn)=c20k2+ωn2 +Mα2 (12) dexi paetreismtehnatst.neHitohweervTerN, annorintshpee vtailounesofofEσq0. a(n1d6)M, ian,c- u 0 a,b,c depend on . The only di(cid:27)erTen< eTis the physi s of the is the inverMse propagator for the magneti modes , longitudinal (cid:29)u tuations, for N. While the hard α with gaps and onstraint yields a longitudinal mode always gapless,13 χu = 1 G (q)+G (q) 4ω2 G (q)G (q) , the sToft one gives a mass for the longitudinal mode be- α βV β γ − n β γ low N that is proportional to the strength of the order q=X(k,ωn)(cid:8) (cid:9) parameter. N 2 4 (13) We (cid:28)x the large- parameters for La CuO by om- ξ is the traditional (cid:16)uniform(cid:17) ontribution to the sus epti- paring the orrelation length, , with the experimental (αβγ)=(abc) M (T = a bility, with and its permutations. data in the paramagneti phase, and we use 0) D = 2.5 M (T = 0) √Γ = 5.0 + c c The set of Eqs. (11), following from the quantum a - ≡ meV and ≡ meV, tions (5) and (9), is the main results of this arti le. A for the zone enter in-plane and out-of-plane spin-wave 14 few remarks are in order now on erning the usefulness gaps as determined from neuξtr−o1n s attering. ρIn=th0e.1iJn- s of the NLSM approa h to the model (2) with respe t to set (a) of Fig. 2 we ompare obtained for , c = 1.3J J = 100 ξ 8,9,11 0 exp otherapproa hes. First, thea tion(9)allowsoneto and meV with the urve , whi h T >T N easily tra k down the sour e of theBani(sDotropin )magneti representsthebest(cid:28)toftheexperimentaldaξta−1at response,as omingfrom theterm · +× . Infa t, obtained in the isotropi NLSM15 (so that exp deviates 4 0.7 χu 0.06 tσw2/eegncthe de rease of a and the in rease of the term 0.6 cc a −1Å) 0.04 x−1xe−x1p 0We0t0u.rn now to χc and χb. As T →TN, c bc −1x ( 0.02 D2 D2 1 (a) χ + G (0,0)= + 0.5 0 c ≈ g0c0 b g0c0Mb2 (17) c(1/J) 0.4 M/Ja 0 0.1.15 MMMbac divergesbe auseMof(tThe vaTn+is)hing0of the mass of the lon- 0.05 (b) gitudinalmode, b → N → ,andthisisasso iated 11 0.3 0 0 0.1 0.2 0.3 0.4 0.5 0.6 withtheferromagneti orderiMngbofthe TaNntedmoments. T/J Itisessentialtohavea(cid:28)nite below inorderto or- χ c re tlyreprodu ethebehaviorof intheorderedphase. 0.2 So, although theMhard-sTpin mTo+del orre tly reprodu es the vanishing of b as → N, it is not adequate for 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 M = 0 T/J the ordered phase, where b leading to a diverging χ T <T c N forall . Thatiswhy wehaveadoptedthesoft T N FIG. 2: (Color online) Temperature dependen e of the mag- version of the onstraint below . tneemti pesruast uerpetdibeiplietniedsenχ ae,oχfbMaan,db,cχacndfro(bm) ξ(1−11).. Insets: (a) TNFbinuatlleyx,hwibeiotsbsaerwveelDlinp2rFGoing(o.0u2,n0t )he/adgtpχcebaki=s.nTDoht2ids/ii(vsgearcg eoMnnts2ae)t- quen e of the term + c 0 0 + 0 0 c . T N from the experimental data near TN). When 1/N or- Apa r aomrdaignngettio Esiqd.e ξ(−1D24)2,g/oa(egss wctoeΓzae)prporo1aa/n (d4hgDc+2/)(fgr0ocm0Mthc2e) re tionstoour al ulationsarein ludedoneexpe tsthat approa hesthe value + 0 0 c ≈ 0 0 , whi h is T /J N 13 the ratio is redu ed, whi h allows for larger and ontrolledby the ratiobetweenthe DM and XY intera - ρ c J s 0 2,3 more realisti values for , , and . Nevertheless, tionterms. Observethattheabsen eofasimilarfeature with the above parameters we (cid:28)nd σ0(T = 0+)+≈ 0.46 in χχa isdue tothefa tthat,forBka,B·χ(Du +×n)=0, ewµxhp=i ehrgimSleSeanσdt0ssµ.t1Bo5 Ta≈nhe0e.r(cid:27)4ee6s uµtlBitvi,engimnMogmao,oeb,ndctaaosgfaretfehumene Cntiutoγnw=oitfshp0te.it1nmh5se-, iisntos rueanaTishfeoarisnmoχnpblayarstt,hTχe→ubu,nTwiDfN−ohr2i mi/sh( g ilsoecanmrtMlroyinb2aou)ttroieonsnui latlaoly.ftiThneh ruseusa,mstinhogef peratureareshownintheinset(b)ofFig.2for , with T, and the term + 0 0 c ,ξw2hi h isT onstant N N a hoi e that will be justi(cid:28)ed below. below and de reases instead as ∼ above . A. Temperature dependen e of χa,χb and χc B. Unusual χa(0)<χb(0)<χc(0) hierar hy Let us now dis uss how all the unusual features of AT o=m0mentisinordernow on erningthehierar hyof the sus eptibilities reported in4 follow straightforwardly the sus eptibilitiesinFig.2. Foranordinaryeasy- lferovmel (Eseqesχ.Fig(1.12)).alrAeatdylaragte ttheme pmereaatnu-Tr(cid:28)eesl,dT(la≫rgeTNN), vaexrisseAgFapws,ithMdai(cid:27)<ereMntc,init-pilsaneexpaen dteoduχttuh-o(a0ft-)ptl<haneχeTut(r0=a)n<s0- all three a,b,c exhibit the usual linear- behavior ob- uχnui(f0o)rm sus eptibilities should satisfy b a served experimentally16 and expe ted for the uniform c , with the lowest value for the easy axis and with T 0 sus eptibility ofχtuhe is0otropi NLSMχ.u3 As χu→ , on a transversesus eptibility smallerin the dire tion of the the other hand, b → while both c and a saturate smaller gap. This is in fa t the result thDa2t one obtains at very small, but nonzero, values. The smooth evolu- afterdroppingthetermsproportionalto B+ in Enq. (11). tχiaonisthdruoeugtohtthheeftar atntshitaiotnχeuax poenritmaiennstatellrymosblsiekreveIαd iinn gχHiov(we0se)vriesre, ttohethuenutesurmals poruopploinrgtiobneatwl teoenD+2 Tainn=dχb0(0i)na(n9d) c Eq. (15), whi h areregularfor the transversemodes (al- , whi h, in turn, lead to the following values ways gapped by the DM and XY intera tions) and di- for the three sus eptibilities T N avesrgMeb(loTga→rithTmNi) a→lly 0a.t Thisfordivtheerχgelonn geitaupdpineaarlsmaosdae χa ≈ gσc02 , χb = g1c MD+22, χc ≈χa+ g1c MD+22, humpinthenumeri alevaluationof a presentedinFig. 0 0 0 0 c 0 0 b 2 and is an artifa t of both the low dimensionality and (18) N 2 of the large- limit (a oupling between CuO layers or resulting in the unusual hierar hy of the zero- η 2 4 a nonzero anomalous dimension for the propagator of temperature values and rendering La CuO an example thelongitudinalmoderegulatessu hlogarithmi infrared ofanun onventionaleasy-axisantiferromagnet. Observe I T χ χ (0)/χ (0) > 1 T = 0 b N a c a divergen e of at and wipes out the feature in ). that always, and we use the in- χ T 0 χ γ = 0.15 a c Finally, the weak in rease observed in as → , also ter ept of to (cid:28)x . Finally, for our hoi e χ (0)/χ (0) 1.1 b a observed experimentally, is due to the ompensation be- of parameters the ratio ∼ , in relatively 5 4 goodagreementwiththeexperiments, butitdependsin proper des ription of the longitudinal-(cid:28)eld (cid:29)u tuations 17 general on the values of the transversemasses. below the rossovertemperature an be done within the LSM,wheretheorder-parameterequationandthelongi- 0.6 0.4 tudinal mass read: 6 00..45 -710 emu/g) 345 cEccexcx pp 00..335 u0σ0(σ02−1+NI⊥(M⊥2+h/σ0,T))=h, Mb2 =2u0σ02+(2σh10). c ( 2 0.25 Observe that the rossover temperature obtained from 0.3 1 0.2 Eq. (19) and Eq. (21) is almost the same.(MToexpin)2te=r- 0.2 MMbebx/pJs/ J0 0 100 20 0T(K )3 00 400 500 00..115 pm uoeoarslraxbet(leyha/tb(cid:28)iσote0tnt,iwn2leeguen0nMgσt02tbhehx+aepbhttoow/vσoet0hT)seoNaltnu.hdteAioewsnxefspa(cid:28)erwrxaeimstdhteehen(cid:28)etpnacael-radaxamitsaebtsoeurns vteahple-- 0.1 H=1 T tibility is on erned it is now evident from the inset of 0.05 χ M c b Fig.3that nolongerdiverges( isalways(cid:28)nite)but M b 0 0 be omes peaked at a rossovertemperatureat whi h 0 0.1 0.2 0.3 0.4 χa T/J hχasaminimum(seeFig.3). Observealsothatfor and c the e(cid:27)e ts of a (cid:28)nite magneti (cid:28)eld are instead negli- FIG. 3: (ColorMonexlipne) Plot of σ0, Mb, and Mbexp from Eqs. gible, leading only to small quantitative di(cid:27)ereBn e=s0with (21)and(20). b is(cid:28)ttedtotheexperimentaldataforthe respe t to the al ulation presented before for . TN inverse orrelationlengthabove ,seedis ussioninthetext χc belowEq. (21).χeIxnpset: inunitsofemu/gandexperimMenextapl points from4. c is obtained from Eqs. (11) using b . ρs =0.07J γ =0.5 a=5.3 V. CONCLUSIONS Here , , Å, the out-of-plane latti e d = 13.5 T parχamete≈r 1.0×10−Å7, and we added a -independent shift of emu/g to a ount for the van Vle k In on lusion, we have derived the uniform magneti vV 4 paramagneti sus eptibility. sus eptibilitywithinthelong-wavelengthe(cid:27)e tivetheory (5)-(9)forthesingle-layersquare-latti eQHAFwithDM andXY intera tions(2). Weobtainedthatthemagneti responseisanisotropi ,inremarkableagreementwiththe 4 IV. EFFECS OBF⊥A FINITE MAGNETIC FIELD experiments of , and di(cid:27)ers from the expe ted behavior CuO2 LAYERS foramore onventionaleasy-axisQHAF.Duetothepres- en e of the DM term, the uniform magneti (cid:28)eld gener- χc ates an e(cid:27)e tive staggered (cid:28)eld proportional to both the The result for plotted in Fig. 2 an be further im- DMintera tionandtotheapplied(cid:28)eld. Weshowedthat proved by onsidering expli itly the nontrivial e(cid:27)e ts of B ab D+ =0 the oupling between the magneti (cid:28)eld and the stag- the ombination ⊥ plane and 6 on the ther- gered order parameter is parti ularly relevant when the modynami properties of the theory (9). In fa t, in this (1/g0c0) hnb order-parameter (cid:29)u tuations be ome riti al, leading to ase the last term in Eq. (9) be omes − , h= B D+ R an anomalous magneti response of the system, as ob- where | × |. Within the NLSM formulation the 4 served for example in . Moreover, this same oupling averaged onstraint equation de(cid:28)nes a self- onsisten y is responsible for the unusual zero temperature hiera hy equation for the order parameter given by: 2 4 of the sus eptibilities, rendering La CuO an example σ2 =1 NI (M2 +h/σ ) 0 − ⊥ ⊥ 0 (19) of an un onventional easy-axis antiferromagnet. Finally, we onsidered the e(cid:27)e t of a (cid:28)nite magneti (cid:28)eld on the χ B ab c where the masses appearing in the transverse spin (cid:29)u - sus eptibility. We found that, for a nonzero ⊥ σ tuations (15) are themselves a fun tion of 0: plane, the Néel se ond order phase transition be omes a rossover, see Fig. 3, in analogy with the beahvior of a h h M2 =D2 + , M2 =Γ + +B2. ferromagnetin a(cid:28)nite magneti (cid:28)eld. The (cid:28)nite-(cid:28)eld ef- a + σ c c σ (20) 0 0 fe tsareinsteadirrelevantasfarasthesus eptibilitiesin a b the and dire tionare onsidered. However,the aseof B b As one an see, besieds a (quantitatively small) hard- k presentsinterestingout omesasfarasthesele tion c ening of the mode due to the applied (cid:28)eld, we (cid:28)nd rules for one-magnon Raman s attering are on erned, h/σ 0 18 that the termc2ξ−2 plays a a role similar to the orrσe- as it has been dis ussed re ently in Ref. . While Eq. 0 2 4 lation length, , in Eq. (14). The result is that (9) and (11) have been derived for the ase of La CuO h=0 never vanishes for 6 (see Fig. 3), and be ause of the materials, the present analysis an be extended to other B ab DMintera tion,anonvanishing ⊥ planetransforms QHAF systems where the la k of inversion- enter sym- the Néel se ond order phase transition into a rossover. metry allows for an os illating DM intera tion between B = 0 In analogy with the dis ussion of the ase , the neighboring spins. 6 VI. ACKNOWLEDGEMENTS troNeto, and R. Gooding. We alsothankA. Lavrov,for fruitfull dis ussionsand for providing us with the exper- χ c 4 The authors have bene(cid:28)tted from dis ussions with imental data for from , shown in Fig. 3 (inset). A. Aharony,Y. Ando, B.Binz, C. Castellani, A. H.Cas- ∗ Ele troni address: barbosaphys.uu.nl M. A. Kastner, H. P. Jenssen, D. R. Gabbe, C. Y. Chen 1 M.A.Kastner,R.J.Birgeneau,G.Shirane,andY.Endoh, and R. J. Birgeneau, and A. Aharony, Phys. Rev. B 38, Rev. Mod. Phys.70, 897 (1998). R905 (1988); T. Thio, and A. Aharony, Phys. Rev. Lett. 2 S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. 73, 894 (1994). 12 J⊥ Rev. B 39, 2344 (1989). The interlayer oupling, , plays also an important role 3 2 4 A. V. Chubukov,S. Sa hdev,andJ. Ye,Phys.Rev.B 49, for the Néel transition in La CuO . We will nevertheless 11919 (1994). pro eed with our 2D model sin e it already aptures the 4 4 A. N. Lavrov,Y. Ando,S. Komiya,and I. Tsukada, Phys. essential physi sreported in . 13 Rev. Lett. 87, 017007 (2001). V. Yu. Irkhin, and A. A. Katanin, Phys. Rev. B 57, 379 5 M. Oshikawa and I. A(cid:31)e k, Phys. Rev. Lett. 79, 2883 (1998). 14 (1997); Phys. Rev. B 60, 1038 (1999). B. Keimer, R. J. Birgeneau, A. Cassanho, Y. Endoh, 6 L. Benfatto, M. B. Silva Neto, V. Juri i , and M. Greven, M. A. Kastner, and G. Shirane, Z. Phys. B C.MoraisSmith,toappearinthePro eedingsoftheInter- 91, 373 (1993). 15 national Conferen e on Strongly Correlated Ele tron Sys- B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, tems - SCES05, Vienna, 2005. C.Y.Chen,M.Greven,M.A.Kastner,A.Aharony,Y.En- 7 J. Chovan and N. Papani olaou, Eur. Phys. J. B 17, 581 doh,R.W.Erwin,andG.Shirane,Phys.Rev.B46,14034 (2000). (1992). 8 16 L. Shekhtman, O. E. Wohlman, and A. Aharony, Phys. T. Nakano, M. Oda, C. Manabe, N. Momono, Y. Miura, Rev. Lett. 69, 836 (1992); W. Koshibae, Y. Ohta, and 17 and M. Ido, Phys. Rev. B 49, 16000 (1994). 9 χa(0) ∼ S. Maekawa, Phys.Rev. B 50, 3767 (1994). In the RPA improved spin-wave analysis of 9 1/g0c0 χb(0)>χa(0) K.V. Tabunsh hyk,and R. J.Gooding, Phys.Rev.B 71, andasa onsequen e isonlyobtained Ma >Mc 14 214418 (2005). if , in ontrast to the experimentalsituation . 10 18 D. Vaknin, S. K. Sinha, D. E. Mon ton, D. C. Johnston, M. B. Silva Neto and L. Benfatto, ond-mat/0507103, to J. M. Newsam, C. R. Sa(cid:28)nya, and H. E. King Jr., Phys. apper in Phys. Rev. B (2005). Rev. Lett. 58, 2802 (1987). 11 T. Thio, T. R. Thurston, N. W. Preyer, P. J. Pi one,