ebook img

Magnetic susceptibility anisotropies in a two-dimensional quantum Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetic susceptibility anisotropies in a two-dimensional quantum Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions

Magneti sus eptibility anisotropies in a two-dimensional quantum Heisenberg antiferromagnet with Dzyaloshinskii-Moriya intera tions ∗ 1, 2 1 1 M. B. Silva Neto, L. Benfatto, V. Juri i , and C. Morais Smith 1 Institute for Theoreti al Physi s, University of Utre ht, P.O. Box 80.195, 3508 TD, Utre ht, The Netherlands 2 SMC-INFM and Department of Physi s, University of Rome (cid:16)La Sapienza(cid:17), 6 0 Piazzale Aldo Moro 5, 00185, Rome, Italy 0 (Dated: February 2, 2008) 2 The magneti and thermodynami properties of the two-dimensional (2D) quantum Heisenberg n antiferromagnet(QHAF)thatin orporatesbothaDzyaloshinskii-Moriya (DM)andpseudo-dipolar a (XY)intera tionsarestudiedwithintheframeworkofageneralizednonlinearsigmamodel(NLSM). J We al ulate the stati uniform sus eptibility and sublatti e magnetization as a fun tion of tem- 4 perature and we show that: i) the magneti -response is anisotropi and di(cid:27)ers qualitatively from 2 theexpe tedbehaviorofa onventionaleaBsy-⊥axisQH2AF;ii)theNéelse ond-orderphasetransition be omes a rossover, for a magneti (cid:28)eld CuO layers. We provide a simple and lear expla- ] nation for all the re ently reported unusual magneti anisotropies in the low-(cid:28)eld sus eptibility of l 2 4 e La CuO , L. N. Lavrov et al., Phys. Rev. Lett. 87, 017007 (2001), and we demonstrate expli itly 2 4 - whyLa CuO annot be lassi(cid:28)ed as an ordinary easy-axis antiferromagnet. r t s PACSnumbers: 74.25.Ha,75.10.Jm,75.30.Cr . t a m I. INTRODUCTION the DM term generates an e(cid:27)e tive staggered magneti - (cid:28)eld proportional to the applied uniform (cid:28)eld. In the d two-dimensional ase the ontinuum (cid:28)eld theory allows n Theusualstartingpointforthedes riptionofthemag- 6,7 o netism in undoped uprates is the 2D isotropi Heisen- one to reprodu e straightforwardly the same e(cid:27)e t, . 7 c berg model In Ref. the attention wasfo used on the( lassi al)spin [ on(cid:28)gurationsexpe tedinanexternal(cid:28)eld. Inthispaper 3 H =J Si·Sj, (1) weinvestigateinsteadthethermodynami alpropertiesof v <Xij> the system, whi h enter in a ru ial wayχin the evalua- 8 tion of the stati uniform sus eptibility, , as a fun tion T 8 J of temperature, . In parti ular, we show that the ou- 5 withonlytheAF++super-ex haSnig1e betweenthenearest- plingindu edbytheDMtermbetweenthemagneti (cid:28)eld neighboring Cu spins, . Remarkably, a long- 2 andtheantiferromagneti orderparameterisparti ularly 0 wavelength NLSM des ription of su h model has been relevant when the order-parameter (cid:29)u tuations be ome 5 shown to orre tly apture many of the features ob- riti al,leadingtoananomalousmagneti responseofthe 0 served experimentally in the high-temperature param- 4 / agneti phase.2,3 At lower temperatures, however, small system, as observed for example in . As an out ome of t a anisotropiesliketheDMandXYintera tionsbe omeim- ourstudiesweobservethat,whiletheisotropi nonlinear m sigmamodel(NLSM)iswell establishedto giveaproper portant, and the ommonly used isotropi des ription is - nolongeradequatetodes ribethelong-wavelengthmag- des ription of the maTgnetisTm in the high-temperature d 2 4 paramagneti phase, ≫ N,2,3 for the ordered (bro- neti properties of La CuO . In a re ent paper, Lavrov T <T n N ken) phase, , we(cid:28)nd moreappropriatetheadop- o et al. reported on some unusual anisotropies in the tion of a soft version of su h (cid:28)xed-length onstraint, in c low-(cid:28)eld magneti sus eptibility observed in detwinned : La2CuO4 single rystals.4 Among the unexpe ted fea- order to orre tly apture the physi s of the longitudi- v nal (cid:29)u tuations. For the sake of larity, we refer expli - i tures one ould mention: i) aχn almost featureless trans- 2 4 X versein-planesus eptibility, a, foranextendedtemper- itly to the La CuO system throughout the paper, but theresultspresentedhereapplytoany2Dsquare-latti e r ature range; ii) the in rease of the longitudinal sus epti- a χb QHAFwheretheDMand/orXYanisotropyintera tions bility, ,asoneapproa hestheNéeltransitiontempera- T T =0 N arepresent,asforexampleother upratesand ni kelates ture, ,fromtheorderedside;iii)theanomalous χ > χ > χ a,b,c 2 4 8 c b a La NiO . hierar hy , where represent the low- temperatureorthorhombi (LTO) rystallographi dire - tions of Fig. 1. Inthisarti leweinvestigatetheoreti allythemagneti response and thermodynami properties of the square- latti e QHAF that in orporates both the DM and XY anisotropyterms by investigatingthe generalized NLSM orresponding to this mi ros opi problem. As it has 5 beenstressedinthe ontextofone-dimensionalsystems, 2 II. THE LONG-WAVELENGTH LIMIT and Γ Γ 0 Γ Γ 0 1 2 1 2 S =We1/ 2oHnsaimdeirltotnhieanfoflolorwtihnegLsaq2uCaurOe-4lastytis teemsingle-layer ←→Γ ij=Γ02 Γ01 Γ0 , ←→Γ ik= −0Γ2 −Γ01 Γ0 , 3 3     H =J S S + D (S S )+ S ←→Γ S , i j ij i j i ij j · · × · · hXi,ji hXi,ji hXi,ji ij ik ++ d wherΓe an>d0 label the Cu10−2sites (1s0e−e4Fig. 1), and (2) and 1,2,3 are of order and , respe tively, Dij ←→Γij J 8 where and are, respe tively, the DM and in units of . XY anisotropi intera tion terms that arise due to To onstru t the long wavelength e(cid:27)e tive theory for the spin-orbit oupling and dire t-ex hange in the low- theaboveHamiltonianwefollowthestandardpro edure: 2 4 8 temperature orthorhombi (LTO) phase of La CuO . we write Thedire tionandthealternatingpatternoftheDMve - S (τ) tors, shown in Fig. 1, are a dire t onsequen e of the i =eiQ·xin(x ,τ)+L(x ,τ), i i S (4) tiltingstru tureoftheoxygeno tahedraandofthesym- 2 4 metry of the La CuO rystal. Throughout this work (bac) n L we adopt the LTO oordinate system of Fig. 1, for where and are, respe tively, the staggered and uni- Q = (π,π) both the spin~a=ndkBla=tti1 e degreesof freedom, and we use form omponeLnts of the spin and . We then units where . Thus we have that integrate out and we obtain a modi(cid:28)ed NLSM where 1 1 additionalterms appear due to the DM and XY intera - D = ( d,d,0), D = (d,d,0), β =1/T ij ik √2 − √2 (3) tions ( ) and 1 β = dτ d2x (∂ n)2+c2( n)2+(D n)2+Γ n2 , S 2g c Z Z τ 0 ∇ +· c c (5) 0 0 0 (cid:8) (cid:9) n2 =1 (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) andthe(cid:28)xedlegngth onstraint isimpli it(seealso (cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1) 6,7 0 Ref. ). Here isthebcare oupling onstant,relatedρto (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 0 s (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) tthhreosupgihn-ρwsa=vecv0e(l1o/ Nityg,0−Λ, a/n4dπ)r,e2n,3owrmhearleizΛedisstai(cid:27) nuetsos(cid:27), for, (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) D+ a = 1 (cid:0)(cid:1) (cid:0)(cid:1) momentum integrals (we set the latti e spa ing ) N =3 a and is the number of spin omponents. Finally, k D =2S(D +D ), c + ij ik (6) b i j see Fig. 1, and Γ =32JS2(Γ Γ )>0, −− c 1− 3 (7) FIG. 1: Left: the hat hed ir les represent the O ions 2 c tiltedabovetheCuO plane+;+theembpatcyonesaretiltedbelow andwenegle tedasmallanisotropi orre tionto om- it;smallbla k ir lesareCu ions; orthorhombi oordi- Γ J ing from the XY term, sin e 1,2 ≪ . natesystem. Right: S hemati arrangementof thestaggered ObservethatintheNLSM(5)onlythesumoftheDM magnetization (small bla k arrows) andDDM ve tors (open (ij) (ik) + arrows). Center: ontinuumde(cid:28)nitionof . and XY terms on the and bonds appears. This has several onsequen es: (i) the XYΓternm2 gαen=eraat,ebs,ca ontribution to (5) proportional to − αα α, , bc Γ =(1/2)(Γ +Γ ) = (Γ ,Γ ,Γ ) αβ ij ik αβ 1 1 3 unit ve tors), rendering a se ond easy plane. When wn2he=re1 diag . Sin e the system orders we (cid:28)nd the staggered magnetization the las,ssi ua lhe noenrgtryibpulutisonthreeΓduc ne2cstteorma inonEstqa.n(t5s)h.iTfthiins athni=σ0xˆb, asxˆobserxvˆedexperimentally,10 beD a2usetΓhe ab orientationalong aor cwould ostanenergy +or c, allows us to identify the as the (cid:28)rst easy plane. The Γ Γ 1 3 respe tively. Moreover, sin e the uniform magnetization property that only the ombination − a(cid:27)e ts the 6,7 is given by physi s of the model (2) was an out ome of the numer- 1 i al results of the RPA improved spin-wave analysis of L = ( n D ), Ref.9, but no explanation for this e(cid:27)e t was provided. h i 2J h i× + (8) (ii)TheDMdistortionentersthea tion(5)onlythrough D = D xˆ xˆ ,xˆ xˆ L xˆ + + a a b c c the ve tor ( , and are the LTO we (cid:28)nd that, in the AF phase, h i, is dire ted along , 3 ++ ab D + so that the Cu spins are anted out of the plane depending on the dire tions of and of the applied bc and on(cid:28)ned to the plane. (cid:28)eld,therewillbe(ornot)additionaltermsproportional G α to in Eq. (11), responsible for the unusual magneti response. Se ond, this oupling is generi to any system III. MAGNETIC SUSCEPTIBILITY where the la k of inversion- enter symmetry allows for anos illatingDMintera tionbetweenneighboringspins. χ To evaluate the stati uniform sus eptibility, α, we Third,Eqs.(11)areexa t, within linearresponsetheory, rederivefrom themi ros opi Hamiltonian(2) theqBuan- even though the σev0a(Tlu)ation Mofαt(hTe)zero-(cid:28)eld thermody- tum a tigonµ(5)/~in=th1e presen ge of a2magneti (cid:28)eld (in nami quantities and will require, in gen- units of S B , where S ≈ is the gyromagneti eral,a ertaindegreeofapproximation. Nevertheless,we ratio and µB is the Bohr magneton)6,7 show now that all the qualitative features observed in4 (B) = (∂ n ∂ n+iB n) are already present at the mean-(cid:28)eld level. τ τ S S → × The thermodynami properties of the model (5) an 1 β N 3 + g0c0 Z0 dτZ d2xB·(D+×n). (9) Nbe=in∞ve,staignadtefodrbTy>mTeaNn,swoef(cid:28)andlaσrg0e=- 0 eaxnpdansion. At M2 =c2ξ−2, M2 =D2+c2ξ−2, M2 =Γ +c2ξ−2, The last term in the above equation, whi h ouples the b 0 a + 0 c c 0 (14) D n + DM ve tor and the staggered magnetization , is ξ responsible for many of the unusual features observed where the orrelation length, 1, i=s Nal Iul(aξt)ed througIh a=n experimentally in La2CuO4. However, this oupling is a(1v/e2ra)(gIed+ oIns)traint equation ⊥ . Here ⊥ a c generi to any square-latti e system, as other uprates with andni kelates,wheresymmetryguaranteesthattheDM g c g T sinh(c Λ/2T) 8 I = 0 0 G (k,ω )= 0 log 0 . ve tors alternate in sign between neighboring bonds. α βV α n 2πc (cid:26)sinh(M /2T)(cid:27) The zero-(cid:28)eld magneti sus eptibility is al ulated in kX,ωn 0 α linear response theory as (15) a c 1 ∂2logZ Sin e both transverse spin-wave modes, and , are χ = , α βV ∂B2 (cid:12) (10) gapped, the 2D system orders at a (cid:28)nite Néel temper- α (cid:12)B=0 TN 1=NI⊥(ξ = )12 (cid:12) ature, , de(cid:28)ned by ∞ . Z(B) = nexp (B) (cid:12) For the ordered phase, T < TN, instead of repla ing where D {−S } is the Eu lidean par- tition fun tion fRor the a tion (9), and we obtain the lo al onstraint by(ua0/n2)a(vne2rage1)o2ne, we introdu e a potential of the type − in the a tion (5), σ2 χ = χu+ 0 , makingthe onstraintlo allysoft. Inthis aseweobtain a a g0c0 a generalized linear sigma model (LSM), whi h leads to D2 an ordered phase des ribed by: χ = χu+ + G (0,0), b b g c c σ2 =1 NI , M2 =2σ2u , M2 =D2, M2 =Γ . 0 0 0 − ⊥ b 0 0 a + c c σ2 D2 χ = χu+ 0 + + G (0,0), (16) c c g0c0 g0c0 b (11) We should emphasizue t=ha(tγtJh)e2only newγparameter here 0 is the energy s ale , where is a (cid:28)tting pa- where rameterthatwillbe(cid:28)xed laterthrough omparisonwith G−α1(k,ωn)=c20k2+ωn2 +Mα2 (12) dexi paetreismtehnatst.neHitohweervTerN, annorintshpee vtailounesofofEσq0. a(n1d6)M, ian,c- u 0 a,b,c depend on . The only di(cid:27)erTen< eTis the physi s of the is the inverMse propagator for the magneti modes , longitudinal (cid:29)u tuations, for N. While the hard α with gaps and onstraint yields a longitudinal mode always gapless,13 χu = 1 G (q)+G (q) 4ω2 G (q)G (q) , the sToft one gives a mass for the longitudinal mode be- α βV β γ − n β γ low N that is proportional to the strength of the order q=X(k,ωn)(cid:8) (cid:9) parameter. N 2 4 (13) We (cid:28)x the large- parameters for La CuO by om- ξ is the traditional (cid:16)uniform(cid:17) ontribution to the sus epti- paring the orrelation length, , with the experimental (αβγ)=(abc) M (T = a bility, with and its permutations. data in the paramagneti phase, and we use 0) D = 2.5 M (T = 0) √Γ = 5.0 + c c The set of Eqs. (11), following from the quantum a - ≡ meV and ≡ meV, tions (5) and (9), is the main results of this arti le. A for the zone enter in-plane and out-of-plane spin-wave 14 few remarks are in order now on erning the usefulness gaps as determined from neuξtr−o1n s attering. ρIn=th0e.1iJn- s of the NLSM approa h to the model (2) with respe t to set (a) of Fig. 2 we ompare obtained for , c = 1.3J J = 100 ξ 8,9,11 0 exp otherapproa hes. First, thea tion(9)allowsoneto and meV with the urve , whi h T >T N easily tra k down the sour e of theBani(sDotropin )magneti representsthebest(cid:28)toftheexperimentaldaξta−1at response,as omingfrom theterm · +× . Infa t, obtained in the isotropi NLSM15 (so that exp deviates 4 0.7 χu 0.06 tσw2/eegncthe de rease of a and the in rease of the term 0.6 cc a −1Å) 0.04 x−1xe−x1p 0We0t0u.rn now to χc and χb. As T →TN, c bc −1x ( 0.02 D2 D2 1 (a) χ + G (0,0)= + 0.5 0 c ≈ g0c0 b g0c0Mb2 (17) c(1/J) 0.4 M/Ja 0 0.1.15 MMMbac divergesbe auseMof(tThe vaTn+is)hing0of the mass of the lon- 0.05 (b) gitudinalmode, b → N → ,andthisisasso iated 11 0.3 0 0 0.1 0.2 0.3 0.4 0.5 0.6 withtheferromagneti orderiMngbofthe TaNntedmoments. T/J Itisessentialtohavea(cid:28)nite below inorderto or- χ c re tlyreprodu ethebehaviorof intheorderedphase. 0.2 So, although theMhard-sTpin mTo+del orre tly reprodu es the vanishing of b as → N, it is not adequate for 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 M = 0 T/J the ordered phase, where b leading to a diverging χ T <T c N forall . Thatiswhy wehaveadoptedthesoft T N FIG. 2: (Color online) Temperature dependen e of the mag- version of the onstraint below . tneemti pesruast uerpetdibeiplietniedsenχ ae,oχfbMaan,db,cχacndfro(bm) ξ(1−11).. Insets: (a) TNFbinuatlleyx,hwibeiotsbsaerwveelDlinp2rFGoing(o.0u2,n0t )he/adgtpχcebaki=s.nTDoht2ids/ii(vsgearcg eoMnnts2ae)t- quen e of the term + c 0 0 + 0 0 c . T N from the experimental data near TN). When 1/N or- Apa r aomrdaignngettio Esiqd.e ξ(−1D24)2,g/oa(egss wctoeΓzae)prporo1aa/n (d4hgDc+2/)(fgr0ocm0Mthc2e) re tionstoour al ulationsarein ludedoneexpe tsthat approa hesthe value + 0 0 c ≈ 0 0 , whi h is T /J N 13 the ratio is redu ed, whi h allows for larger and ontrolledby the ratiobetweenthe DM and XY intera - ρ c J s 0 2,3 more realisti values for , , and . Nevertheless, tionterms. Observethattheabsen eofasimilarfeature with the above parameters we (cid:28)nd σ0(T = 0+)+≈ 0.46 in χχa isdue tothefa tthat,forBka,B·χ(Du +×n)=0, ewµxhp=i ehrgimSleSeanσdt0ssµ.t1Bo5 Ta≈nhe0e.r(cid:27)4ee6s uµtlBitvi,engimnMogmao,oeb,ndctaaosgfaretfehumene Cntiutoγnw=oitfshp0te.it1nmh5se-, iisntos rueanaTishfeoarisnmoχnpblayarstt,hTχe→ubu,nTwiDfN−ohr2i mi/sh( g ilsoecanmrtMlroyinb2aou)ttroieonsnui latlaoly.ftiThneh ruseusa,mstinhogef peratureareshownintheinset(b)ofFig.2for , with T, and the term + 0 0 c ,ξw2hi h isT onstant N N a hoi e that will be justi(cid:28)ed below. below and de reases instead as ∼ above . A. Temperature dependen e of χa,χb and χc B. Unusual χa(0)<χb(0)<χc(0) hierar hy Let us now dis uss how all the unusual features of AT o=m0mentisinordernow on erningthehierar hyof the sus eptibilities reported in4 follow straightforwardly the sus eptibilitiesinFig.2. Foranordinaryeasy- lferovmel (Eseqesχ.Fig(1.12)).alrAeatdylaragte ttheme pmereaatnu-Tr(cid:28)eesl,dT(la≫rgeTNN), vaexrisseAgFapws,ithMdai(cid:27)<ereMntc,init-pilsaneexpaen dteoduχttuh-o(a0ft-)ptl<haneχeTut(r0=a)n<s0- all three a,b,c exhibit the usual linear- behavior ob- uχnui(f0o)rm sus eptibilities should satisfy b a served experimentally16 and expe ted for the uniform c , with the lowest value for the easy axis and with T 0 sus eptibility ofχtuhe is0otropi NLSMχ.u3 As χu→ , on a transversesus eptibility smallerin the dire tion of the the other hand, b → while both c and a saturate smaller gap. This is in fa t the result thDa2t one obtains at very small, but nonzero, values. The smooth evolu- afterdroppingthetermsproportionalto B+ in Enq. (11). tχiaonisthdruoeugtohtthheeftar atntshitaiotnχeuax poenritmaiennstatellrymosblsiekreveIαd iinn gχHiov(we0se)vriesre, ttohethuenutesurmals poruopploinrgtiobneatwl teoenD+2 Tainn=dχb0(0i)na(n9d) c Eq. (15), whi h areregularfor the transversemodes (al- , whi h, in turn, lead to the following values ways gapped by the DM and XY intera tions) and di- for the three sus eptibilities T N avesrgMeb(loTga→rithTmNi) a→lly 0a.t Thisfordivtheerχgelonn geitaupdpineaarlsmaosdae χa ≈ gσc02 , χb = g1c MD+22, χc ≈χa+ g1c MD+22, humpinthenumeri alevaluationof a presentedinFig. 0 0 0 0 c 0 0 b 2 and is an artifa t of both the low dimensionality and (18) N 2 of the large- limit (a oupling between CuO layers or resulting in the unusual hierar hy of the zero- η 2 4 a nonzero anomalous dimension for the propagator of temperature values and rendering La CuO an example thelongitudinalmoderegulatessu hlogarithmi infrared ofanun onventionaleasy-axisantiferromagnet. Observe I T χ χ (0)/χ (0) > 1 T = 0 b N a c a divergen e of at and wipes out the feature in ). that always, and we use the in- χ T 0 χ γ = 0.15 a c Finally, the weak in rease observed in as → , also ter ept of to (cid:28)x . Finally, for our hoi e χ (0)/χ (0) 1.1 b a observed experimentally, is due to the ompensation be- of parameters the ratio ∼ , in relatively 5 4 goodagreementwiththeexperiments, butitdependsin proper des ription of the longitudinal-(cid:28)eld (cid:29)u tuations 17 general on the values of the transversemasses. below the rossovertemperature an be done within the LSM,wheretheorder-parameterequationandthelongi- 0.6 0.4 tudinal mass read: 6 00..45 -710 emu/g) 345 cEccexcx pp 00..335 u0σ0(σ02−1+NI⊥(M⊥2+h/σ0,T))=h, Mb2 =2u0σ02+(2σh10). c ( 2 0.25 Observe that the rossover temperature obtained from 0.3 1 0.2 Eq. (19) and Eq. (21) is almost the same.(MToexpin)2te=r- 0.2 MMbebx/pJs/ J0 0 100 20 0T(K )3 00 400 500 00..115 pm uoeoarslraxbet(leyha/tb(cid:28)iσote0tnt,iwn2leeguen0nMgσt02tbhehx+aepbhttoow/vσoet0hT)seoNaltnu.hdteAioewsnxefspa(cid:28)erwrxaeimstdhteehen(cid:28)etpnacael-radaxamitsaebtsoeurns vteahple-- 0.1 H=1 T tibility is on erned it is now evident from the inset of 0.05 χ M c b Fig.3that nolongerdiverges( isalways(cid:28)nite)but M b 0 0 be omes peaked at a rossovertemperatureat whi h 0 0.1 0.2 0.3 0.4 χa T/J hχasaminimum(seeFig.3). Observealsothatfor and c the e(cid:27)e ts of a (cid:28)nite magneti (cid:28)eld are instead negli- FIG. 3: (ColorMonexlipne) Plot of σ0, Mb, and Mbexp from Eqs. gible, leading only to small quantitative di(cid:27)ereBn e=s0with (21)and(20). b is(cid:28)ttedtotheexperimentaldataforthe respe t to the al ulation presented before for . TN inverse orrelationlengthabove ,seedis ussioninthetext χc belowEq. (21).χeIxnpset: inunitsofemu/gandexperimMenextapl points from4. c is obtained from Eqs. (11) using b . ρs =0.07J γ =0.5 a=5.3 V. CONCLUSIONS Here , , Å, the out-of-plane latti e d = 13.5 T parχamete≈r 1.0×10−Å7, and we added a -independent shift of emu/g to a ount for the van Vle k In on lusion, we have derived the uniform magneti vV 4 paramagneti sus eptibility. sus eptibilitywithinthelong-wavelengthe(cid:27)e tivetheory (5)-(9)forthesingle-layersquare-latti eQHAFwithDM andXY intera tions(2). Weobtainedthatthemagneti responseisanisotropi ,inremarkableagreementwiththe 4 IV. EFFECS OBF⊥A FINITE MAGNETIC FIELD experiments of , and di(cid:27)ers from the expe ted behavior CuO2 LAYERS foramore onventionaleasy-axisQHAF.Duetothepres- en e of the DM term, the uniform magneti (cid:28)eld gener- χc ates an e(cid:27)e tive staggered (cid:28)eld proportional to both the The result for plotted in Fig. 2 an be further im- DMintera tionandtotheapplied(cid:28)eld. Weshowedthat proved by onsidering expli itly the nontrivial e(cid:27)e ts of B ab D+ =0 the oupling between the magneti (cid:28)eld and the stag- the ombination ⊥ plane and 6 on the ther- gered order parameter is parti ularly relevant when the modynami properties of the theory (9). In fa t, in this (1/g0c0) hnb order-parameter (cid:29)u tuations be ome riti al, leading to ase the last term in Eq. (9) be omes − , h= B D+ R an anomalous magneti response of the system, as ob- where | × |. Within the NLSM formulation the 4 served for example in . Moreover, this same oupling averaged onstraint equation de(cid:28)nes a self- onsisten y is responsible for the unusual zero temperature hiera hy equation for the order parameter given by: 2 4 of the sus eptibilities, rendering La CuO an example σ2 =1 NI (M2 +h/σ ) 0 − ⊥ ⊥ 0 (19) of an un onventional easy-axis antiferromagnet. Finally, we onsidered the e(cid:27)e t of a (cid:28)nite magneti (cid:28)eld on the χ B ab c where the masses appearing in the transverse spin (cid:29)u - sus eptibility. We found that, for a nonzero ⊥ σ tuations (15) are themselves a fun tion of 0: plane, the Néel se ond order phase transition be omes a rossover, see Fig. 3, in analogy with the beahvior of a h h M2 =D2 + , M2 =Γ + +B2. ferromagnetin a(cid:28)nite magneti (cid:28)eld. The (cid:28)nite-(cid:28)eld ef- a + σ c c σ (20) 0 0 fe tsareinsteadirrelevantasfarasthesus eptibilitiesin a b the and dire tionare onsidered. However,the aseof B b As one an see, besieds a (quantitatively small) hard- k presentsinterestingout omesasfarasthesele tion c ening of the mode due to the applied (cid:28)eld, we (cid:28)nd rules for one-magnon Raman s attering are on erned, h/σ 0 18 that the termc2ξ−2 plays a a role similar to the orrσe- as it has been dis ussed re ently in Ref. . While Eq. 0 2 4 lation length, , in Eq. (14). The result is that (9) and (11) have been derived for the ase of La CuO h=0 never vanishes for 6 (see Fig. 3), and be ause of the materials, the present analysis an be extended to other B ab DMintera tion,anonvanishing ⊥ planetransforms QHAF systems where the la k of inversion- enter sym- the Néel se ond order phase transition into a rossover. metry allows for an os illating DM intera tion between B = 0 In analogy with the dis ussion of the ase , the neighboring spins. 6 VI. ACKNOWLEDGEMENTS troNeto, and R. Gooding. We alsothankA. Lavrov,for fruitfull dis ussionsand for providing us with the exper- χ c 4 The authors have bene(cid:28)tted from dis ussions with imental data for from , shown in Fig. 3 (inset). A. Aharony,Y. Ando, B.Binz, C. Castellani, A. H.Cas- ∗ Ele troni address: barbosaphys.uu.nl M. A. Kastner, H. P. Jenssen, D. R. Gabbe, C. Y. Chen 1 M.A.Kastner,R.J.Birgeneau,G.Shirane,andY.Endoh, and R. J. Birgeneau, and A. Aharony, Phys. Rev. B 38, Rev. Mod. Phys.70, 897 (1998). R905 (1988); T. Thio, and A. Aharony, Phys. Rev. Lett. 2 S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. 73, 894 (1994). 12 J⊥ Rev. B 39, 2344 (1989). The interlayer oupling, , plays also an important role 3 2 4 A. V. Chubukov,S. Sa hdev,andJ. Ye,Phys.Rev.B 49, for the Néel transition in La CuO . We will nevertheless 11919 (1994). pro eed with our 2D model sin e it already aptures the 4 4 A. N. Lavrov,Y. Ando,S. Komiya,and I. Tsukada, Phys. essential physi sreported in . 13 Rev. Lett. 87, 017007 (2001). V. Yu. Irkhin, and A. A. Katanin, Phys. Rev. B 57, 379 5 M. Oshikawa and I. A(cid:31)e k, Phys. Rev. Lett. 79, 2883 (1998). 14 (1997); Phys. Rev. B 60, 1038 (1999). B. Keimer, R. J. Birgeneau, A. Cassanho, Y. Endoh, 6 L. Benfatto, M. B. Silva Neto, V. Juri i , and M. Greven, M. A. Kastner, and G. Shirane, Z. Phys. B C.MoraisSmith,toappearinthePro eedingsoftheInter- 91, 373 (1993). 15 national Conferen e on Strongly Correlated Ele tron Sys- B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, tems - SCES05, Vienna, 2005. C.Y.Chen,M.Greven,M.A.Kastner,A.Aharony,Y.En- 7 J. Chovan and N. Papani olaou, Eur. Phys. J. B 17, 581 doh,R.W.Erwin,andG.Shirane,Phys.Rev.B46,14034 (2000). (1992). 8 16 L. Shekhtman, O. E. Wohlman, and A. Aharony, Phys. T. Nakano, M. Oda, C. Manabe, N. Momono, Y. Miura, Rev. Lett. 69, 836 (1992); W. Koshibae, Y. Ohta, and 17 and M. Ido, Phys. Rev. B 49, 16000 (1994). 9 χa(0) ∼ S. Maekawa, Phys.Rev. B 50, 3767 (1994). In the RPA improved spin-wave analysis of 9 1/g0c0 χb(0)>χa(0) K.V. Tabunsh hyk,and R. J.Gooding, Phys.Rev.B 71, andasa onsequen e isonlyobtained Ma >Mc 14 214418 (2005). if , in ontrast to the experimentalsituation . 10 18 D. Vaknin, S. K. Sinha, D. E. Mon ton, D. C. Johnston, M. B. Silva Neto and L. Benfatto, ond-mat/0507103, to J. M. Newsam, C. R. Sa(cid:28)nya, and H. E. King Jr., Phys. apper in Phys. Rev. B (2005). Rev. Lett. 58, 2802 (1987). 11 T. Thio, T. R. Thurston, N. W. Preyer, P. J. Pi one,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.