ebook img

Magnetic Shape Memory Alloys: Preparation, Martensitic Transformation and Properties PDF

273 Pages·2021·14.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetic Shape Memory Alloys: Preparation, Martensitic Transformation and Properties

Xuexi Zhang Mingfang Qian Magnetic Shape Memory Alloys Preparation, Martensitic Transformation and Properties Magnetic Shape Memory Alloys · Xuexi Zhang Mingfang Qian Magnetic Shape Memory Alloys Preparation, Martensitic Transformation and Properties XuexiZhang MingfangQian SchoolofMaterialsScience SchoolofMaterialsScience andEngineering andEngineering HarbinInstituteofTechnology HarbinInstituteofTechnology Harbin,China Harbin,China ISBN978-981-16-6335-2 ISBN978-981-16-6336-9 (eBook) https://doi.org/10.1007/978-981-16-6336-9 JointlypublishedwithHarbinInstituteofTechnologyPress TheprinteditionisnotforsaleinChina(Mainland).CustomersfromChina(Mainland)pleaseorderthe printbookfrom:HarbinInstituteofTechnologyPress. ©HarbinInstituteofTechnologyPress2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsofreprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishersnortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublishersremainneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Shapememoryalloys,polymersandceramicsareimportantintelligentmaterialsfor variousapplications.Traditionalshapememoryalloys(SMAs)suchasTi-Nihave beenwidelyusedinengineeringandbiomedicalfields.TheseSMAsaredrivenby heat or stress. In the past few decades, a new type of SMAs, i.e., magnetic shape memoryalloys(MSMAs),attractedmuchattentionssincetheycanbedrivenbyan externalmagneticfield,andthuscanworkatmuchhigherfrequenciesthantraditional Ti-Nialloyowingtotherapidgenerationofreversiblestrainundermagneticfield. MSMAs can respond to temperature, stress and magnetic fields and output stress, strainandheateffects.So,theyarepromisingforactuators,sensorsandrefrigeration applications. In 1996, Ullakko obtained 0.19% recoverable magnetic field-induced strain (MFIS)inNi MnGasinglecrystals.SoonO’HanderlyproposedthatthehighMIFS 2 was attributed to the reorientation of twin variants in the martensite that has high magnetic anisotropy energy. In the following years, the obtained MFIS in Ni-Mn- Gasingle-crystalalloysincreasedrapidlyandreachedthetheoreticalvalueof9.4% at 2003. This makes the MSMAs represented by Ni-Mn-Ga gain extensive atten- tion for scientist and engineers. In 2006, Kainuma reported the magnetic-induced phase transformation in a Co-doped Ni-Mn-In alloy that showed extremely high workoutputduringthemetamagnetictransitionprocess.Then,Ni-Mn-In(Sn,Sb)and related quaternary alloys set off another research upsurge in the field of MSMAs, especiallyfortheroom-temperaturerefrigeration. Ni-Mn-Ga single crystals exhibit excellent MFIS; but the growth rate of single crystalsisslowandthecompositionispronetoserioussegregation.Thepreparation costofsinglecrystalsisalsohigh.Polycrystallinealloysarefeasibletopreparewith lowcost;however,theMFISinpolycrystallinealloysislowduetotheconstraintsof twinboundarymotioninducedbygrainboundaries.Byintroducingtextureandpores (sizeofporesisthesameorderofgrains)inpolycrystallinebulkalloysorpreparing reduced sized microwires to reduce the restriction of grain boundaries, the MFIS canbeenhanced.Thesereducedsizedmaterialswithporousorwirestructurehasa largespecificsurfaceareaandthussomeadvantagesoverbulkcounterpart,suchas reducedthermal/magnetichysteresisandeddycurrentloss,increasedheattransfer v vi Preface efficiencyandaccelerateddemagnetizationtime.Thesecharactersmakesmall-sized Ni-Mn-X(X=Ga,In,Sn,Sb)alloyespeciallyattractiveforhigh-efficientsolid-state refrigeration,whichissuperiorthanconventionalvaporcompressiontechnique. For more than ten years, the preparation, processing, phase transformation and propertiesofMSMAs,especiallytheirsmall-sizedmaterials,havebeensystemati- callystudied.Thisbooktriedtosummarizethelatestdevelopmentinthisfield,aiming atacceleratingthecommunicationoftheresearchersinthisfield.Inthisbook,the developmenthistoryandcharactersofMSMAs(Chap.1)arebrieflyreviewed.The preparationandpropertiesofbulkalloys,especiallysingle-crystalalloysaregiven inChap.2.Then,thepreparationtechniques,phasetransformationsandfunctional propertiesoffoams(Chap.3),microwires(Chaps.4,5)andparticles(Chap.6)are introduced. Finally, the possible application fields are discussed in Chap. 7. This book is mainly composed of the research work published by the authors and their supervised graduate and postgraduate students; the latest research results of other researcher are also included. This book focuses on the size effect of MSMAs and describesthepreparation,phasetransformationandfunctionalcharacteristicsunder multiple conditions. This book can be used as a reference book for researchers, engineersandpostgraduatesinthisfield. Duringwritingthisbook,Prof.LinGeng(HarbinInstituteofTechnology)gave warm support and help. The postgraduate students Longsha Wei, Hehe Zhang, Ruochen Zhang, Siyao Ma, Muhammad Imran and Xuejie Zhu participated in the materialorganizationanddraftwriting.Theauthorsexpresshis/hergratitudetothem. FinancialsupportsfromNationalScienceFoundationofChina(NSFC),Heilongjiang TouyanTeamandChinaPostdoctoralScienceFoundationfortheresearchworkare alsoappreciated. Harbin,China XuexiZhang 2021 MingfangQian Contents 1 AnOverviewonMagneticShapeMemoryAlloys .................. 1 1.1 Introduction ............................................... 1 1.2 PhaseDiagram,CompositionandCrystalStructure .............. 3 1.2.1 Ni–Mn–GaAlloys ................................... 3 1.2.2 Ni–Mn–X(X=In,Sn,Sb)Alloy ...................... 7 1.3 MagnetostructuralTransition ................................. 10 1.3.1 TypesofMartensiticTransformationinMSMAs .......... 10 1.3.2 Composition-DependentMartensiticTransformation Temperature ......................................... 12 1.4 Ferromagnetic-RelatedPropertiesinNi–Mn–GaAlloys .......... 15 1.4.1 ShapeMemoryEffectandSuperelasticity ............... 15 1.4.2 Magnetic-Field-InducedStrain(MFIS) .................. 15 1.5 Meta-MagneticBehaviorandRelatedProperties ................ 21 1.5.1 Meta-Magnetic Field-Induced Phase Transition andStrain ........................................... 21 1.5.2 MagnetocaloricEffect ................................ 21 1.6 Conclusions ............................................... 26 References ..................................................... 27 2 PreparationandPropertiesofBulkMagneticShapeMemory Alloys ......................................................... 35 2.1 Introduction ............................................... 35 2.2 PreparationofPolycrystallineAlloy ........................... 36 2.2.1 MeltingandCasting .................................. 36 2.2.2 Solid-StateSintering ................................. 36 2.3 PreparationofSingleCrystallineAlloy ........................ 37 2.4 PlasticDeformationBehaviorofPolycrystals ................... 38 2.4.1 High-TemperatureCompressiveBehavior ............... 38 2.4.2 ConstitutiveRelationofFlowStress .................... 40 2.4.3 HotWorkingDiagram ................................ 42 2.4.4 HotExtrusion ....................................... 48 vii viii Contents 2.5 SuperplasticDeformationBehavior ........................... 50 2.6 Magnetic-Field-InducedStrain ............................... 53 2.7 MagneticandMagnetocaloricProperties ....................... 54 2.7.1 Ni–Mn–GaAlloy .................................... 54 2.7.2 Ni–Mn–In–(Co)Alloy ................................ 59 2.7.3 Ni–Mn–Sn–FeAlloy ................................. 62 2.8 Conclusions ............................................... 66 References ..................................................... 67 3 PreparationandPropertiesofMagneticShapeMemoryAlloy Foams ......................................................... 71 3.1 Introduction ............................................... 71 3.2 PreparationMethodsofMSMAFoam ......................... 72 3.2.1 TemplateReplication ................................. 72 3.2.2 PowderMetallurgy ................................... 75 3.3 Magnetic-Field-InducedStrain(MFIS)ofNi–Mn–GaFoam ...... 77 3.3.1 Single-PoreFoam .................................... 77 3.3.2 Dual-PoreFoam ..................................... 81 3.3.3 MagnetocaloricEffect(MCE) ......................... 87 3.4 MagnetostructuralTransitionandMagnetocaloric Effect ofNi–Mn–In–CoFoam ..................................... 87 3.4.1 Single-PoreNi–Mn–In–CoFoam ....................... 88 3.4.2 Dual-PoreNi–Mn–In–CoFoam ........................ 89 3.4.3 MagnetocaloricPropertiesofNi–Mn–In–CoFoam ........ 94 3.5 Conclusions ............................................... 97 References ..................................................... 98 4 PreparationandHeatTreatmentofMagneticShapeMemory AlloyMicrowires ............................................... 101 4.1 Introduction ............................................... 101 4.2 WirePreparationTechnology ................................ 101 4.2.1 Optimization of Processing Parameters for Melt SpinningProcess ..................................... 101 4.2.2 TaylorDrawingMethod ............................... 107 4.3 MicrostructureEvolutionofNi–Mn–Ga–XAlloyMicrowires DuringMelt-extraction ...................................... 107 4.3.1 MicrostructureandPhaseCompositionofPrepared Microwires .......................................... 107 4.3.2 Characteristics of Martensitic Phase Transition inAs-PreparedMicrowire ............................. 116 4.3.3 MicrostructureEvolutionofNi–Mn–GaMicrowire PreparedbySpinningMethod ......................... 124 4.3.4 Magnetic Properties of Ni–Mn–GA Microwire PreparedbyMeltSpinning ............................ 131 4.4 Effects of Chemical Ordering on Microstructure andPropertiesofNi–Mn–GaMicrowire ....................... 132 Contents ix 4.4.1 TheMicrostructureandPhaseofMicrowireTreated byOrderingHeatTreatment ........................... 133 4.4.2 Characteristics of Ordering Heat Treatment andMartensiticTransformation ........................ 138 4.4.3 MagneticPropertiesofMicrowiresAfterOrdered HeatTreatment ...................................... 148 4.5 EffectofGrainGrowthonMicrostructureandProperties ofNi–Mn–Ga–XMicrowires ................................. 150 4.5.1 HeatTreatmentProcessforGrainGrowth ............... 150 4.5.2 GrainMorphologyandInterfaceofOligocrystalline Microwires .......................................... 154 4.5.3 Crystal Microstructure and Phase Component oftheOligocrystallineMicrowires ...................... 157 4.5.4 Characteristics of Martensitic Transformation intheOligocrystallineMicrowire ....................... 158 4.6 Conclusions ............................................... 160 References ..................................................... 161 5 PropertiesofMagneticShapeMemoryAlloyMicrowires ........... 165 5.1 Introduction ............................................... 165 5.2 Superelasticity(SE) ......................................... 165 5.3 Magnetic-Field-InducedStrainofNi–Mn–GaMicrowires ........ 173 5.3.1 Twin Boundary Motion Characteristics ofOligocrystallineMicrowires ......................... 173 5.3.2 Magnetic-InducedStrainofNi–Mn–GaMicrowire ........ 177 5.4 Magnetocaloric Properties of Ni–Mn–Ga–X Alloy Microwires ................................................ 178 5.4.1 Magnetic/StructuralPhaseTransitionDesignofNi– Mn–GaMicrowires .................................. 178 5.4.2 Magnetocaloric Effect of Ni–Mn–Ga Microwire inMagnetostructuralCoupledState ..................... 184 5.4.3 Magnetocaloric Effect of Ni–Mn–Ga Microwire inPartialMagneticCouplingState ...................... 190 5.4.4 EffectofCuDopingonMagnetocaloricProperties ofNi–Mn–GaMicrowires ............................. 196 5.4.5 EffectofFeDopingonMagnetocaloricProperties ofNi–Mn–GaMicrowires ............................. 201 5.4.6 Cooling Temperature Broadening and Magnetic CoolingCapacityDesign .............................. 217 5.5 DampingCharacteristicsofNi–Mn–Ga–XAlloyMicrowires ..... 219 5.5.1 Ni–Mn–GaMicrowire ................................ 219 5.5.2 Ni–Mn–Ga–CuMicrowire ............................ 222 5.6 Conclusions ............................................... 224 References ..................................................... 224 x Contents 6 PreparationandPropertiesofMagneticShapeMemoryAlloy Particles ....................................................... 229 6.1 Introduction ............................................... 229 6.2 PreparationofMSMAMicron-Particles ....................... 229 6.3 HeatTreatmentofNi–Mn–GaAlloyParticles .................. 230 6.3.1 EffectofHeatTreatmentonParticleComposition ........ 231 6.3.2 EffectofHeatTreatmentonParticlePhaseChange ....... 232 6.4 MagneticandMagnetocaloricEffectofMicronNi–Mn–Ga Particle ................................................... 233 6.4.1 MartensiteandMagneticTransitionsofSingle-Sized Ni–Mn–GaParticle ................................... 234 6.4.2 MagnetocaloricPropertiesSingle-SizedNi–Mn–Ga Particle ............................................. 236 6.4.3 MagneticandThermalPropertiesNi–Mn–GaMixed ParticleSize ......................................... 238 6.4.4 Optimization of Mixed Proportion of Different ParticleSize ......................................... 241 6.5 HeatTreatmentofNi–Mn–In–CoAlloyParticles ............... 242 6.5.1 EffectofStress-ReliefAnnealingonParticleStructure andComposition ..................................... 242 6.5.2 Effect of Stress-Relief Annealing on Martensitic TransformationofParticles ............................ 243 6.6 MagneticandThermalPropertiesofNi–Mn–In–CoParticles ..... 246 6.6.1 CompositionNi–Mn–In–CoMixedParticles ............. 246 6.6.2 MagneticandThermalPropertiesofSingleParticle SizeNi–Mn–In–CoParticles ........................... 248 6.7 Conclusions ............................................... 253 References ..................................................... 253 7 ApplicationofMagneticShapeMemoryAlloys ................... 255 7.1 Introduction ............................................... 255 7.2 Temperature-ControlledShapeMemoryEffect ................. 255 7.2.1 AerospaceField ..................................... 256 7.2.2 AutomobileComponent ............................... 259 7.2.3 MedicalField ....................................... 259 7.2.4 DailyLife ........................................... 259 7.3 MagneticShapeMemoryEffect .............................. 260 7.4 ApplicationofMagnetocaloricEffect .......................... 262 7.4.1 TraditionalMagneticRefrigerator ...................... 262 7.4.2 NewMagneticRefrigerator ............................ 263 7.4.3 Well-StudiedMagneticRefrigerationPrototype .......... 265 7.5 Conclusions ............................................... 266 References ..................................................... 267

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.