ebook img

Magnetic Resonant excitations in High-{$\rm T_c$} superconductors PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetic Resonant excitations in High-{$\rm T_c$} superconductors

phys.stat.sol.(2003) 4 0 T Magnetic resonant excitations in High- superconductors 0 c 2 Y.Sidis1,S.Pailhe`s1, B.Keimer2,P.Bourges1,C.Ulrich2,andL.P.Regnault3 n a 1 LaboratoireLe´onBrillouin,CEA-CNRS,CE-Saclay,91191GifsurYvette,France. J 2 Max-Planck-Institutfu¨rFertko¨rperforschung,70569Stuttgart,Germany. 0 3 CEAGrenoble,DRFMC38054Grenoblecedex9,France. 2 Receivedzzz,revisedzzz,acceptedzzz ] n Publishedonlinezzz o c PACS 74.72.-h,78.70.Nx,75.40.Gb - r p TheobservationofanunusualspinresonantexcitationinthesuperconductingstateofvariousHigh-Tccop- u peroxidesbyinelasticneutronscatteringmeasurementsisreviewed. Thismagneticmodeisdiscussedin s lightofafewtheoreticalmodelsandlikelycorrespondstoaspin-1collectivemode. . t a m Morethanfifteenyearsafterthehightemperaturesuperconductivitydiscovery,antiferromagnetic(AF) - fluctuationspairingmechanism[1]isstillhighlycontroversial.However,inelasticneutronscattering(INS) d n measurements have successfully brought to light the existence of unusual AF excitations that develop o belowT andcouldbethehallmarkofanunexpectedspin-1collectivemode,tightlyboundtothesuper- c c conducting(SC)state. Whatevertheroleofthatmodeforsuperconductivity,ithastobederivedfromthe [ samemicroscopicmodelusedtodiscusssuperconductivity.Weherereviewitscharacteristicfeaturesina 2 fewcupratesanddiscussitspossibleorigininlightofdifferenttheoreticalmodels. v InoptimallydopedYBa Cu O (YBCO)(T =93K)whereithasbeendiscovered[2](Fig.1.a),the 2 3 6+x c 8 spinexcitationspectrumisdominatedintheSCstatebyasharpmagneticexcitationatanenergyof∼40 2 meVandattheplanarantiferromagneticwavevectorq =(π/a,π/a),theso-calledmagneticresonance 3 AF 1 peak[2, 3,4, 5]. Itsintensitydecreaseswith increasingtemperatureandvanishessteeplyat Tc, without 0 anysignificantshiftofitscharacteristicenergyE . Intheunderdopedregime,E monotonicallydecreases r r 4 with decreasing hole concentration [6, 7] so that E ≃ 5 k T (Fig. 2). Besides, it is possible to vary r B c 0 T withoutchangingthe carrierconcentrationthroughimpuritysubstitutionsof Cu in the CuO planes. / c 2 at ThisisthecaseinYBa2(Cu1−yNiy)3O7 (y=1%,Tc=80K),wherethemagneticresonancepeakshiftsto m lowerenergywithapreservedEr/kBTc ratio(Fig.1.b)[8]. In optimally doped Bi Sr CaCu O (BSCO) (T =91 K), a similar magnetic resonance peak has - 2 2 2 8+δ c d beenobservedat43meV(Fig.1.d)[9]. Furthermore,E shiftsdownto38meVintheoverdopedregime r n (T =80 K) [10], preservinga constant ratio with T : E ≃ 5.4 k T (Fig. 2). Thus, whatever the hole c c r B c o doping,theenergypositionofthemagneticresonancepeakalwaysscaleswithT . IncontrasttoYBCO, c c : wheretheresonancepeakisresolutionlimitedinenergy,theresonancepeakinBSCOexhibitsanenergy v widthof∼13meV.Inaddition,themomentumwidthoftheexcitationistwicebroader. Asimilarenergy i X andmomentumbroadeninghasbeenalsoreportedinYBa2(Cu1−yNiy)3O7[8](Fig.1.b)andcantherefore r be ascribedto disorder,such asimpuritiesorinhomogeneities. Furthermore,the observationofa spatial a distributionoftheSCgapinBi Sr CaCu O byScanningTunnelingMicroscopymeasurements[11] 2 2 2 8+δ providesevidenceinfavorofanintrinsicdisorderinthissystem. Further, the magnetic resonance peak has been observed in optimally doped Tl Ba CuO (T =90 2 2 6+δ c K) at E =47 meV (Fig. 1.c) [12]. This yields a ratio E /k T ≃ 6 slightly larger than YBa Cu O . r r B c 2 3 6+x Nevertheless,asinYBa Cu O ,theexcitationislimitedbytheresolutioninenergyanddisplaysamo- 2 3 7 mentumwidthof0.25A˚−1 (halfwidthathalfmaximum). Meanwhile,theenergyintegratedintensityof Copyrightlinewillbeprovidedbythepublisher 2 Y.Sidisetal:MagneticResonantexcitationsinHigh-Tcsuperconductors 160 a ) n) 1600 b ) YBCO - E 100 mi r s / 10 min) 50 cnts / 87 1280000 112400 BB(ASSRCCPOOE S-- E2) r∆m Intensity (cnt 0 10 K - 100 K Intensity ( -4400000 10 K - 87 K ∆2 (meV)m18000 5.3 k T B(SSISC)O - 2 ∆m 150 -5020 30 40 50 60 20 30 40 50 E, r 60 B c Energy (meV) Energy (meV) 100 T 40 c urs) 50 c ) urs) 200 d ) 20 50 (K) o o h 0 h Underdoped Overdoped s / 2 -50 s / 2 100 0 0 nt nt -0.1 -0.05 0 0.05 0.1 c c 0 y ( -100 y ( n -n nsit -150 nsit -100 h opt e e Int -200 27 K - 99 K Int -200 10 K - 100 K Fthieg.m2agnDetoicpinrgesodnepanencedenpceeakofatth(eπe/nae,rπgy/ao)f, 30 40 50 60 30 40 50 60 Er, and of twice the maximum of the super- Energy (meV) Energy (meV) conducting gap, 2 ∆m. Er has been mea- sured by INS in YBCO [2, 3, 4, 5, 6, 7], Fig. 1 Difference spectrum of the neutron intensities at low temperature, measured at the wave vector (π/a,π/a) and BSCO[9, 10]. 2 ∆m is determined from and T≥ Tc: a) YBa2Cu3O6.95: Tc=93 K, V=10 cm3 angle resolved photo-emission spectroscopy [4], b) YBa2(Cu1−yNiy)3O7: Tc=80 K, V∼2 cm3 (ARPES) [13] or superconducting-insulator- [8], c) Tl2Ba2CuO6+δ:Tc∼90 K, V=0.11 cm3 [12], d) superconductor (SIS) tunneling [14] data per- Btedi2Stor2aCGaCauus2sOian8+pδr;oTfilce=.91ThKe,sVo=li0d.0b6arcmin3di[c9a]t.esDtahteaaerneerfigty- fthorromuegdhinthBeSeCmOp.irTichaeldroeplaintigonle:veTlcis/Tesctmimaxa=te1d- resolution. 82.6(nh-nopt)2[15]. themagneticresonancepeakisalmostthesameinbothsystems:0.7-0.8µ2.eV−1/CuO plane.Thus,the B 2 magneticresonancepeakappearsasacommonexcitationtotheSCstateofallHigh-T superconductors, c investigated so far by INS measurements, whose maximum T can be as high as ∼90 K. Furthermore, c the existence of this excitation does not depend on the number of CuO planes per unit cell: one for 2 Tl Ba CuO andtwoforYBa Cu O andBi Sr CaCu O . 2 2 6+δ 2 3 6+x 2 2 2 8+δ WhilethemagneticresonancepeakexistsincuprateswhosemaximumT isabout90K,ithasnever c beenobservedinthemono-layersystemLa2−xSrxCuO4withamaximumofTcof∼40K.Furthermore, themagneticexcitationsinthatcompoundareratherstrongeveninthenormalstateandlocatedatincom- mensurateplanarwavevectorQ = (π/a(1±δ ),π/a)and(π/a,π/a(1±δ ))[16]. Thisisina mag inc inc markedcontrastwith thethesystemsmentionedabove,forwhichthenormalstatemagneticfluctuations (if observable) remain centered around (π/a,π/a). However, passing through T , the incommensurate c spinfluctuationsofLa2−xSrxCuO4areenhancedandbecomenarrowerinmomentumspace,inanenergy rangewhichis about5k T [17]. Thisphenomenon,usuallyreferredto asa ”coherenceeffect”andthe B c resonancepeakcouldeventuallyshareacommonorigin. InunderdopedYBa Cu O (x=0.6,T =63K,E =34meV),INSmeasurementsprovideevidencefor 2 3 6+x c r incommensurate-likespinfluctuationsat24meVandlowtemperature(seeminglysimilartothoseobserved La2−xSrxCuO4) [18]. These incommensurate-likespin fluctuationsare also observed at higher oxygen concentrations: x=0.7[19], x=0.85[20]. Asafunctionoftemperatureandenergy[20],theincommensu- rability(δ )increasesbelowT withdecreasingtemperatureanddecreasesuponapproachingE inthe inc c r phys.stat.sol.(2003) 3 SCstate(Fig.3.a). Thesimultaneousdisappearanceofδ atE andT indicatesthattheresonancepeak inc r c and the incommensurate-likespin fluctuations are intrinsic features of the SC state and that they can be viewedascontinuouslyconnected(Fig.3.a). Inotherwords,theseresultsleadtoanunifieddescriptionof boththeincommensuratespinexcitationsandthemagneticresonancepeakintermsofauniquecollective spin excitation mode with a downwarddispersion[20]. Recently, the actual symmetryof this dispersion foran optimallydopedYBCO samplehasbeenlookedat carefully[21] andwas foundbasicallycircular within the 2D copper-oxygen plane. In addition, a second magnetic mode with much weaker intensity is reporteddispersingupward abovethe (π/a,π/a)peak[21]. The deepunderdopedstate YBCO has 6.5 been also recently re-investigatedin partly detwinned sample with an ortho-IIstructure[22]. In contrast to the dispersive modepicture, it is claimed[22] thatthe low energymagneticexcitationsare essentially one-dimensionalasexpectedforhydrodynamicstripes. Therefore,thedetaileddopingdependenceofthe spinfluctuationsneedstobeclarifiedtoreconciletheseconclusionsbystudyingfullydetwinnedsamples. Indeed,oneneedstodeterminethespecificroleoftheCu-OchainsinYBCOforthemagneticanisotropy. Themaindifferencebetweenmono-layerandbilayersystemsshowsupinthemomentumdependenceof themagneticresonancepeakalongthe(001)direction.InTl Ba CuO ,theexcitationremainspurely 2 2 6+δ bidimensional.Incontrastinbilayersystems,thetwoCuO planescorrelateantiferromagneticallywithin 2 the bilayer. ThatinterlayerAFcouplingis responsiblein insulatingparentcompoundsforbothacoustic andopticmagnons,whosecounterpartin themetallicstate aretheodd(o)andeven(e)excitations. The neutronscatteringcrosssectionthenreads[6]: d2σ(Q,ω) ∝sin2(Q d/2)Im[χ (Q,ω)]+cos2(Q d/2)Im[χ (Q,ω)] (1) z o z e dΩdω where Im[χ (Q,ω)] corresponds to the imaginary part of the dynamical magnetic susceptibility in o,e eachchannelandd(=3.3A˚)standsforthedistancebetweenCuO planeswithinthebilayer. Intuitively, 2 one could expect a splitting of the magnetic resonance peak under the interlayer AF coupling, leading to a magnetic resonance in each channel. For a long time, the magnetic resonance peak was observed onlyintheoddchannel. However,wecouldrecentlyobservearesonantmodeineachchannelinslightly overdopedYBCOthrough10%substitutionofYbyCa[23].TheyoccurattwodifferentenergiesEo=36 r meVandEe=43meVandtheevenmodeexhibitsanintensityonethirdtimeslessthantheoddone. The r questionwhytheevenmodeisnowsizeableinthisoverdopedregimeandnotinpreviousstudiesremains openasitcouldbesimplyduetoimprovementofneutroninstruments. However,itmightalsoberelated totheelectronictransportbetweencloselyspacedCuO layerswhichbecomescoherentintheoverdoped 2 regime,asdemonstratedbyrecentexperimentsshowingwell-definedbondingandantibondingbands. Consideringthedifferentmodelsforthemagneticresonancepeak,wefocusonmodelswhereelectron- electroninteractionsplaythecentralrole,despitethestillpossibleexistenceofelectron-phononcouplings incuprates. Essentially, thereisnoindicationofaneffectofthelattice onthemagneticresonancepeak. Secondly, we consider here models where the downward dispersion of the resonant mode would natu- rallyemerge. Forinstance,approaches[24,25]whichassociatetheresonancepeaktoapre-existingsoft modereminiscentofnearby(commensurateorincommensurate)AFphasewouldyieldacollectivemode dispersingpredominantlyupward. The existence of a spin 1-collective in d-wave superconductorssuch as High-T cuprates, is derived c from an itinerant description of the magnetic properties of the system and of strong correlation effects ([26, 27, 28, 29, 30, 31] and referencestherein). This leads to a particle-hole(p-h)boundstate, usually referredasaspinexciton.Inthesestrongcouplingmodels(seealsoRefs. [32,33]intheframeworkofthe t−J model),thegeneralizedspinsusceptibilityχ(q,ω)isexpressedasafunctionofthenoninteraction spinsusceptibilityχ (q,ω)andthemagneticinteraction.χ(q,ω)hasanRPA-likeform: 0 χ (q,ω) 0 χ(q,ω)= (2) 1+J(q)χ (q,ω) 0 4 Y.Sidisetal:MagneticResonantexcitationsinHigh-Tcsuperconductors 50 YBa Cu O continuum 2 3 6.85 70 Imχ (q ,ω) ω odd AF V) 40 60 c Imχeven(qAF,ω) Energy (me 2300 T=11 K Energy / J -12ωµ) (,).eVAFB345000 ω/t 10 T =89 K χ(q a) c b) Im 20 0 ω -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 10 c continuum δ δ inc inc 00 0.05 0.1 0.15 0.2 0.25 0.3 ω/t Fig. 3 a) Dispersion of the magnetic resonance peak as a function q=(π/a(1 ± δinc),π/a), measured in Fig.4 Calculatedspinsusceptibilityforbothoddandeven YBa2Cu3O6.85 [20],b)dispersionofthespinexciton symmetry according to Eq. 3 with an interlayer coupling [31] (thick line) below the continuum which is repre- ofJ⊥ ≃0.1Jandwiththebandstructureparametersand sentedbythedashedarea.Themaximumofthedashed t/J=2ofref. [31]andt=250meV.Thedottedareasshow lines correspond to 2∆m, and their crossing defines theweakelectron-holecontinuumintensity. ωc =2∆ks. whereJ(q)=2J(cos(q )+cos(q ))istheintra-planeAFsuper-exchangecouplingandχ (q,ω)describes x y 0 in an itinerant system the continuum of spin flip particle-hole (p-h) excitations, given by the Lindhard functioninthenormalstateortheBCSfunctionintheSCstate. IntheSCstate,duetotheopeningofthe SC gap, the continuumbecomesgaped(Fig. 3.b) below a threshold energyat ω = 2∆ , where ∆ is c ks k themomentumdependentsuperconductingd-waveenergygapandk istheso-calledhot-spotwavevector s definedasbothk andk +Q arelyingontheFermisurface. Inadditiontothep-hexcitationswithin s s AF the continuum,a spin tripletp-hboundstate can formbelow thecontinuumthankto the AFinteraction. In Eq. 2, the dynamical Stoner criterion, i.e. 1 + J(q)Re[χ (q,ω)]=0, is then fulfilled for an energy 0 smallerthatthethresholdofthecontinuumatwavevectorq. Thisspin1-collectivemodeischaracterized byadownwarddispersioncontrolledbythemomentumdependencesofthecontinuumthresholdandthe magnetic interaction (Fig 3.b). The mode vanishes when approachingthe continuumby changingwave vectorfrom(π/a,π/a). Themodelalsopredictedanexcitationdispersingupwardwithinthecontinuum [29,31]whichmightcorrespondtotherecentlyobservedhighenergymode[21]. From experimentalpoint of view, a major challenge for future INS experimentswould be to observe the magnetic continuum. So far, one can deduce the continuumthreshold, ω , from i) the measurement c ofthemaximumoftheSCgap,∆ (determinedbyangleresolvedphoto-emissionspectroscopy[13],by m the measurement of the B mode in Raman scattering[34] or by tunneling data[14], see Fig. 2) and 1g ii) from the Fermi surface topology[35]. At optimal doping in BSCO, one can show that the magnetic resonance peak lies well below the continuum: ∆ ≃ 35 meV, ω ≃ 1.8∆ and E ≃ 1.2∆ . From m c m r m optimaldoping to the overdopedregime, one may expectω to reach the limit ∼2∆ . Simultaneously, c m theratio2∆ /k T evolvesfrom7-8to5-6,whileaccordingtoINSdata,theratioE /k T seemstobe m B c r B c preserved(Fig.2). Theseevolutionssuggestthatintheoverdopedregimethebindingenergyofthespin exciton,ω -E ,weakens,leadingtothepossibledisappearanceofthespin1-collectivemode.FurtherINS c r experiments,inthedeeplyoverdopedregimearerequiredtotestsuchapossibility. Fora bilayersystem [26, 27, 36], the interlayerAF coupling,J⊥, is treatedin perturbation,suchthat theodd(o)andeven(e)spinsusceptilitiesaregivenby: χ(q,ω) χ(q,ω) χ (q,ω)= and χ (q,ω)= . (3) o e 1−J⊥χ(q,ω) 1+J⊥χ(q,ω) phys.stat.sol.(2003) 5 InFig. 4,wecalculatedthesesusceptibilitieswitharealisticvalueofJ⊥ (∼0.1J)[37]andwithother parametersidenticalto thoseofref. [31]. Because ofJ⊥, the oddspin excitonislikely pushedto lower energy,whiletheevenonemergesintothecontinuum. Actually,thisexplainswhytheoddchannelmode ismainlyobservedaswellaswhytheresonantmodeappearstoshifttolowerenergyinabilayersystem in regardwith a mono-layersystem. Going further, their respective spectral weights W are predicted o,e to be approximatelyproportionalto their binding energies[27] as W ∼ ω −Eo,e. This is found in o,e c r thecalculatedsusceptibilitiesinFig. 4andsketchedinthefigureinset. Usingthispropertyinoverdoped YBCO-Ca[23],onecoulddirectlyestimateofcontinuumthresholdatω (Q )≃49meV. c AF Ifthespinexcitonscenarioprovidesaplausibleexplanationfortheresonancepeakaroundtheoptimal doping,moretheoreticalworkisneededtofullyaccountforitsevolutionasafunctionofholedoping. In particular,thereisnoexplicitrelationshipbetweentheenergyofthecollectivemodeat(π/a,π/a)andthe valueof T . ThephenomenologicalrelationshipE /k T ≃ 5-6remainsto be explained. Furthermore, c r B c thesamemodelmustsimultaneouslydescribetheunusualfeaturesobservedbelowT aswellasthespin c excitationspectrumofthenormalstate. Intheunderdopedregime,themagnitudeandtheenergydepen- denceofspinfluctuationsobservedbyINSarestilldifficulttoreproducequantitatively.Thus,mostlikely, themodelneedstogobeyondapurelyitinerantpictureinordertocapturethedeepunderdopedstate. Howeverthe spin-excitoninterpretationforthemagneticneutronresonanceandits downwarddisper- sionisnotunique.Indeed,besidessuchanapproachthespin1-collectivemodecorrespondstoap-hbound state,ithasalsobeenproposedthatthemagneticresonancepeakcouldbeap-ppair,theπ-excitation,in SO(5) model(spin itinerantpicture) or a magnon-likeexcitation (spin localized picture) of a disordered stripephase. The SO(5) model [38] considers as a starting point that, in the AF insulating state of cuprates, there existsa super-symmetrythatallowsthesystemtoswitch fromtheAFstate tothed-waveSCstate. This symmetryinvolvesthe existence of a Goldstonemode, the π-excitation[39]. Thisexcitation can be de- pictedasanexcitationthatcreatesa p-ppaircarryinga charge2e, a spinS=1 andwithtotalmomentum (π/a,π/a). Upondopingthesymmetryisbroken,theπ-excitationsurvives,butbecomesmassive. While itexistsalreadyinthenormalstate,itcanonlybeobservedbyINSintheSCstateduetothep-hmixing. Its characteristic energy is roughly linear with hole doping and its intensity in the SC state scales with |∆ |2. Moreover, a downward dispersion is obtained due to by the phase slips of the SC order param- m eter inducedby the propagationof the π-excitation[40]. Such an approachaccountsfor severalfeatures observedbyINS,especiallyintheunderdopedregime,whereT andE increasewithholedoping. The c r π-excitation should decrease in magnitude, but remains almost at the same energy, as observed experi- mentally. HoweverthisscenariocannotexplainthedecreaseofE intheoverdopedregime. Furthermore, r recentcalculationshaveshownthat,iftheπ-excitationexisted,itshouldbeobservedathighenergy,above 2∆ [41]:thiscastssomedoubtabouttheinterpretationoftheresonanceasaπ-tripletexcitation. m Alternatively,thestripemodelconsidersthatinaS=1/2AFHeisenbergsystem,dopedholessegregates toformlinesofcharges,separatingAFdomainsinanti-phase.Themetallicstateisviewedasadisordered stripe phase, where charged lines can fluctuate. While there is not a general interpretation of the mag- netic resonancepeak in stripe models, it hasbeenfor instanceproposedthatthe resonancepeakandthe incommensuratespinfluctuationsobservedbyINSintheSCstatecouldbeviewedasmagnon-likeexci- tationsreminiscentofthe orderedstripephase[42, 43] or couldcorrespondto theeigenmagneticmodes oftheliquidstripephase[44]. Magnons,developingsymmetricallyaroundthemagneticincommensurate wave-vector,Q ,ofthestripeorderedphaseandmergingat(π/a,π/a),actuallydescribecorrectlythe mag spin dynamicsobserved in stripe-orderednickelates[45] as predictedin the spin-only model[42, 43]. In cuprates,thelackofsymmetricpeaksaroundtheincommensuratewave-vectorQ (seeFig. 3)doesnot mag seemtovalidatetheseapproaches.Inaddition,thismodel,ifinteresting,failstoexplainwhytheresonance peakandtheincommensuratespinfluctuationsexistbasicallyonlyintheSCstate. Independently,itcould bealsointerestingtounderstandhow,inbilayercompounds,theadjacentCuO planessucceedinaccom- 2 modatingtheCoulombrepulsionbetweenchargedlinesandtheAFinterlayercoupling. Thisisacentral issuetoaccountforasthemagneticresonancepeakexistsmostlyintheoddchannel. 6 Y.Sidisetal:MagneticResonantexcitationsinHigh-Tcsuperconductors Finally,INSexperimentshaveshowntheexistenceofanusualenhancementofspinfluctuationsinthe SC state around the vector (π/a,π/a) and at an energyE which is foundexperimentallyto scale with r T . Combined with the observation at lower energy of incommensurate spin fluctuations, that develop c alsobelowT ,INSdatapointtowardtheexistenceofadispersivespin1-collectivemodedeepinsidethe c SCstate. Theobservationofthatmode,firstdiscoveredinYBa Cu O ,hasbeenthenextendedtoother 2 3 7 systems with one or two CuO planes per unit cell, such as Bi Sr CaCu O and Tl Ba CuO . 2 2 2 2 8+δ 2 2 6+δ This establishes the magnetic resonance peak as a generic excitation of the SC state of cuprates whose maximum T can be as high as 90 K. In the strongly under- and overdopedregimes (T ≤ 50 K) or in c c othercupratefamilieswithlowermaximumTc(suchasLa2−xSrxCuO4),theobservationofthethespin 1-collectivemode(ifany)stillrequiresmoreexperimentalwork. Inanycase,theobservationofsuchan excitation, thankto inelastic neutronscattering, is oneof the mostpersuasiveexperimentalindicationof thecrucialroleofmagneticinteractionsinforthephysicsofHigh-T copperoxides. c References [1] Seee.g.D.Scalapino,Phys.Rep.250329(1995). [2] J.Rossat-Mignod,L.P.Regnault,C.Vettier,P.Bourges,P.Burlet,J.Bossy,etal.,PhysicaC185-189,86(1991). [3] H.A.Mook,M.Yethiraj,G.Aeppli,T.E.Mason,andT.Armstrong,Phys.Rev.Lett.70,3490(1993). [4] H.F.Fong,B.Keimer,P.W.Anderson,etal.,Phys.Rev.Lett.75,316(1995);Phys.Rev.B54,6708(1996). [5] P.Bourges,L.P.Regnault,Y.Sidis,andC.Vettier,Phys.Rev.B53,876(1996). [6] H.F.Fong,P.Bourges,Y.Sidis,L.P.Regnault,J.Bossy,A.S.Ivanov,etal.,Phys.Rev.B61,14774(2000). [7] P.Dai,H.A.Mook,R.D.Hunt,F.Dog˘an,Phys.RevB.,63,054525(2001). [8] Y.Sidis,P.Bourges,H.F.Fong,B.Keimer,L.P.Regnault,J.Bossy,etal.,Phys.Rev.Lett.86,4100(2001). [9] H.F.Fong,P.Bourges,Y.Sidis,L.P.Regnault,A.S.Ivanov,G.D.Gu,etal.,Nature398,588(1999). [10] H.He,Y.Sidis,Ph.Bourges,G.D.Gu,A.Ivanov,N.Koshizuka,B.Liang,etal.,Phys.Rev.Lett.86,1610(2001). [11] K.M.Lang,V.Madhavan,J.E.Hoffman,E.W.Hudson,H.Eisaki,S.Uchida,J.C.Davis,Nature415,412(2002). [12] H.He,P.Bourges,Y.Sidis,C.UlrichL.P.Regnault,S.Pailhe`s,etal.,Science295,1045(2002). [13] J.Mesot,M.R.Norman,H.Ding,M.Randeria,J.C.Campuzano,etal.,Phys.Rev.Lett.83,840(1999). [14] J.F.Zasadzinski,L.Ozyuzer,N.Miyakawa,etal.,Phys.Rev.Lett.87,067005(2001)(cond-mat/0102475). [15] J.L.Tallon,C.Bernhard,H.Shaked,R.L.HittermanandJ.D.Jorgensen,Phys.Rev.B51,12911(1995). [16] G.Aeppli,T.E.Mason,S.M.Hayden,H.A.Mook,J.Kulda, Science278,1432(1997). [17] T.E.Mason,A.Schro¨der,G.Aeppli,H.A.Mook,andS.M.Hayden,Phys.Rev.Lett77,1604(1996). [18] H.A.Mook,P.Dai,S.M.Hayden,G.Aeppli,T.G.Perring,andF.Dog˘an,Nature395,580(1998). [19] M.Arai,T.Nishijima,Y.Endoh,T.Egami,S.Tajima,K.Tomimoto,etal.,Phys.Rev.Lett.83,608(1999). [20] P.Bourges,Y.Sidis,H.F.Fong,L.P.Regnault,J.Bossy,A.Ivanov,andB.Keimer,Science288,1234(2000). [21] D.Reznik,P.Bourges,L.Pintschovius,Y.Endoh,etal.,submittedtoPhys.Rev.Lett(cond-mat/0307591). [22] C.Stock,W.J.L.Buyers,R.Liang,D.Peets,Z.Tun,etal.,Phys.Rev.B,(2004)(cond-mat/0308168). [23] S.Pailhe`s,Y.Sidis,P.Bourges,C.Ulrich,etal.,Phys.Rev.Lett.91,237002(2003)(cond-mat/0308394). [24] D.K.MorrandD.Pines,Phys.Rev.Lett.81,1086(1998). [25] S.Sachdev,C.Buragohain,andM.Vojta,Science286,2479(1999). [26] D.Z.Liu,Y.Zha,andK.Levin,Phys.Rev.Lett.75,4130(1995). [27] A.J.MillisandH.Monien,Phys.Rev.B54,16172(1996). [28] A.Abanov,andA.V.Chubukov,Phys.Rev.lett.83,1652(1999). [29] M.N.Norman,Phys.Rev.B61,14751(2000). [30] D.Manske,I.EreminandK.H.Bennemann,Phys.Rev.B63,054517(2001). [31] F.Onufrieva,andP.Pfeuty,Phys.Rev.B65,014502(2002)(cond-mat/9903097). [32] J.BrinckmannandP.A.Lee,Phys.Rev.B65,014502(2002). [33] I.Sega,P.Prelovs˘ek,andJ.Bonc˘a,Phys.Rev.B68,054524(2003). [34] Forarecentreview,seee.g.M.Cardona,PhysicaC318,30(1999). [35] H.Ding,M.R.Norman,T.Yokoya,T.Takeuchi,M.Randeria,etal.,Phys.Rev.Lett.78,2628(1997). [36] T.LiandZ.Gan,Phys.RevB60,3092(1999);T.Li,Phys.Rev.B64,012503(2001). [37] D.Reznik,P.Bourges,H.F.Fong,L.P.Regnault,J.BossyC.Vettier,etal.,Phys.Rev.B53R14741(1996). [38] S.C.Zhang,Science275,1089(1997). [39] E.Demler,H.Kohno,andS.C.Zhang,Phys.Rev.B58,5719(1998). [40] J.P.HuandS.C.Zhang,Phys.Rev.B64,100502(2001). [41] O.Tchernychyov,M.R.NormanandA.V.Chubukov,Phys.Rev.B63,144507(2001). [42] C.D.Bastista,G.Ortiz,andA.V.Balatsky,Phys.Rev.B65,180402(2002). [43] F.Kru¨ger,andS.Scheidl,Phys.Rev.B67,134512(2003). [44] N.Hasselmann,A.H.CastroNeto,C.MoraisSmith,andY.Dimashko,Phys.Rev.lett.82,2135(1999). [45] P.Bourges,Y.Sidis,M.Braden,K.Nakajima,andJ.M.Tranquada,Phys.Rev.Lett.,90,147202(2003).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.