Magneti phase diagram for a non-extensive system: Experimental onne tion with manganites ∗ M.S. Reis and V.S. Amaral Departamento de Físi a, Universidade de Aveiro, 3810-193 Aveiro, Portugal 3 0 0 J.P. Araújo 2 IFIMUP, Departamento de Físi a, Universidade do Porto, 4150 Porto, Portugal n a I.S. Oliveira J Centro Brasileiro de Pesquisas Físi as, Rua Dr. Xavier Sigaud 150 Ur a, 22290-180 Rio de Janeiro-RJ, Brazil 6 (Dated: February 2, 2008) 1 Inthepresentpaperwemakeathoroughanalysisofa lassi alspinsystem,withintheframework ofTsallis nonextensivestatisti s. FromtheanalysisofthegeneralizedGibbsfreeenergy,withinthe ] h mean-(cid:28)eld approximation, a para-ferromagneti phase diagram, whi h exhibits (cid:28)rst and se ond c order phase transitions, is built. The feaqtures of the generalized, and lassi al, magneti moment e are mainly determined by the values of , the non-extensive parameter. The model is su essfully m applied to the ase of La0.60Y0.07Ca0.33MnO3 manganite. The temperature and magneti (cid:28)eld - dependen e of the experimental magnetization on this manganite are faithfully reprodu ed. The t agreement between rather "exoti " magneti properties of manganites and the predi tions of the a q -statisti s, omes to support our early laim that these materials are magneti ally nonextensive t s obje ts. . t a PACSnumbers: m - d I. INTRODUCTION systems and tight-binding-like Hamiltonians29,30,31, n 32 33 metalli and super ondu tor systems, et . The (cid:28)rst o c In the literature of manganites, various models have eviden es that the magneti properties of manganites [ appeared as di(cid:27)erent attempts to reprodu e the ele tri ould be des ribed within the framework of Tsallis and magneti properties of these systems. Krivoru hko statisti s were presented by Reis et al.34, followed by an 2 et al.1, Nunez-Regueiro et al.2 and Dionne3 are in- analysis35 of the unusual paramagneti sus eptibility of v 0.67 0.33 3 36 9 teresting examples of multiparameter models, but La Ca MnO , measured by Amaral et al. . 3 whi h failed to a hieve full agreement to experimental Maximizationqof Eq.1 subje ted to the onstraint of 2 data. Ravindranath et al.4 ompare resistivity data in tˆhe normalized -expe tation value of the Hamiltonian 1 La0.6Y0.1Ca0.3MnO3 to di(cid:27)erent two-parameter models, H14,15: 0 whi h do not agreeto ea hother in the low-temperature Tr ˆρˆq 3 U = {H } 0 rwaonrgkeo.fORitvhaesreitnatel.r5e,sHtinugesoatettemal.p6t,sH earnembaenfsoeutnadl.7in,Pthael q Tr{ρˆq} (2) / t etal.8,Philipetal.9,Szew zyketal.10,Viretetal.11 and a 12 and the usual normalization of the density matrix m Tka huketal. . Noneoftheseobtainedplainagreement Tr ρˆ =1 { } ,yieldsthefollowingexpressionforthedensity between experiment and theory, irrespe t their number ρˆ - matrix : d of adjusting parameters and approa h. n On another hand, Tsallis generalized ρˆ= 1 [1 (1 q)β˜(ˆ U )]1/(1−q) o statisti s13,14,15,16, has been su essfully applied to Zq − − H− q (3) c 17 an impressive number of areas . The formalism rests : v on the de(cid:28)nition of generalized entropy13: where i 1 pq rX Sq =k −qP1i i (1) Zq =Tr[1−(1−q)β˜(Hˆ−Uq)]1/(1−q) (4) − a q pi β˜ = β/Tr ρˆq β where ips t=he1entropki index, are probabilities satis- is the partition fun tion and { }. Here, is fying i i and is a positive onstant. The above theLagrangeparameterasso iatedtotheinternalenergy. P formula onverges to the usual Maxwell-Boltzmann def- Themagnetizationofaspe imenis,a ordingly,given inition of entropy, and to thqe usu1al derived thermody- by14,15,16,34,35: 13,14,15,16,17 nami fun tions, in the limit → . Tr µˆρˆq In what on erns Condensed Matter prob1le8,m19s,2,0a,2p1p,2l2i- Mq = Tr{ ρˆq } (5) ations of Eq.1 in lude: Ising ferromagnets , { } 23,24,25 mole ular (cid:28)eld approximation , per olation µˆ 26 27,28 problems , Landau diamagnetism , ele tron-phonon where is the magneti moment operator. 2 However, Eq.3 an be wβr∗itten in a morβe∗ =onvβ˜e/n[i1en+t II. CLASSICAL MODEL 14,15,34,35 (fo1rmq)β˜Uq] in terms of , de(cid:28)ned as µ~ − . In parti ular, to analy1z/e(tkhβe∗)physi al sys- Considera lHa~ssi alspin submittedtoahomogeneous tem des ribed here, the quantity will repre- magneti (cid:28)eld . The hamiltonian H is given by 34,35 sentthephysi altemperatures ale, asin referen es . = µHcosθ Dis ussion about the on ept of temperature and La- H − (6) grange param1e4t,1e5r,s34i,n35,T37s,a38ll,3is9 statisti s an be found in θ ~µ H~ tqhe literature . In the pre0sentqwor1k, the where is the angle between and . Following the parameter is restri ted to the interval ≤ ≤ , pre- usual Tsallis formalism14,15,16,34,35, the magnetization serving the entropy on avity35,40. Mq an be determined from Eq.5, yielding: In this paper we pursue the idea, based on novel ex- 1 1 1, x> 1 pmeargimneetni taalllyanndonth-eexotreentis iavleroebsujelt st,s.thTathimsapnrgoapneirtteys aapre- Mµq =Lq(x)= (2−q)(cid:26)cothq−(x)x− x1, x< 11−−1qq (7) pears in systems where long-range intera tions and/or x = µH/kT coth fra tality exist, and su h features have been invoked in where , and q is the generalized q- re entmodelsofmanganites,aswellasintheinterpreta- hyperboli o-tangent52. The above two bran hes fun - tion of experimental results. They appear, for instan e, tion results from the Tsallis ut-o(cid:27)15,16,53,54. It is inter- 41 in the work of Dagotto and o-workers , who empha- estingtonotethesimilaritybetweentheaboveresultand size the role of the ompetition between di(cid:27)erent phases the traditional Langevin fun tion. In what follows, Eq.7 to the physi al properties of these materials. Various will be alled Generalized Langevin Fun tion, and this authors have onsidered the formation of mi ro- lusters result analsobederivedfrom theGeneralized Brillouin of ompeting phases, with fra tal shapes, randomly dis- Fun tion, introdu ed in Ref.35, taking the limit of large S 42,43 tributed in the material , and the role of long-range spin values ( → ∞). The result derived above is valid 44,45 q intera tions to phase segregation . Important exper- only for 0≤ ≤1. χ imental results in this dire tion have also been reported The generalized magneti sus eptibility q shows the 46 47 by Marithew et al. , and Fiebig et al. . Parti ularly usual dependen e on the inverse of the absolute temper- 48 insightful is the work of Satou and Yamanada , who ature derivedaCantor spe traforthedouble-ex hangehamil- ∂ qµ2 q χ = lim M = =qχ tonian, basis of theoreti al models of manganites. q H→0(cid:20) ∂H (cid:21) 3kT 1 (8) A major di(cid:30) ulty with Tsallis formulation on erns q thephysi almeaningoftheentropi parameter . Inthis dire tion, Be k and Cohen49 have re ently shown that and is proportχional to the usual paramagneti Langevin q sus eptibility 1. A similar result was dedu ed for the the value of gives a dire t measure of the internal dis- 35 generalized Brillouin fun tion . tribution of temperatures in an inhomogeneous system. Although their results are not dire tly applied to mag- neti systems,ithasbeenknownforsometimethatman- III. MEAN-FIELD APPROXIMATION ganitesaremagneti allyinhomogeneoussystems(see,for 41,50 instan e, Ref. and referen es therein), and this fa t 51 A. Gibbs Free Energy hasbeenexploredveryre entlybySalamonetal. , who applied the idea of distribution of the inverse sus epti- bility (whi h turns out to be equivalent to a distribu- TheGibbsfreeenergyis,withinthemean(cid:28)eldapprox- tion of temperatures), to the analysis of the magneti imation, sus eptibility and the e(cid:27)e tive paramagneti moment of kT Mq λ 0.7 0.3 3 G= −1( ′)d ′ H 2 La Ca MnO . µ Z Mq Mq Mq − Mq− 2Mq (9) 0 In whatfollows,wepresentamagneti model for las- si alspins( luster),usingforthat,theTsallisgeneralized −1 wherethe(cid:28)rsttermistheentropy,withMq theinverse statisti . In the model, we onsider that non-extensivity fun tionofthegeneralizedLangevinfun tion(Eq.7); the exists in the intra- luster intera tion, whereas the inter- se ond is the Zeeman term; and the third, the ex hange luster intera tion remains extensive. This is important λ energy,with asthemean (cid:28)eld parameter. The equilib- to maintain the total magnetization proportional to the rium magnetization an be found from the minimization number of lusters. Following, the Gibbs free energy is q of the Gibbs free energy and, depending on the value, analyzed,withinthemean-(cid:28)eldapproximation,andase- (cid:28)rst or se ond order transition features emerge. At zero ries of interesting magneti features appears, as a on- > magneti (cid:28)eld and for q 0.5the free energy presents, at sequen e of the intra- luster non-extensivity. Finally, a any temperature, only one minimum, for positive values onne tionbetweenthe modelproposedhereandtheex- perimental data obtained from magneti measurements of magnetization. Correspondingly, a se Ton(qd)o=rdqeTr(p1)ara- c c performed on manganites support our thesis that these ferromagneti phasetransitionTo(1 ) u=rsµa2tλ/3k , as c obje ts are magneti ally non-extensive. sket hedin (cid:28)gure1(a). Here, istheCurie 3 temperatureforthestandardLangevinmodel. Fromnow as the GtenetraliMzed(HCu=ri0e,FTu)n= ti0on. In the paramagnCet(qi ) c on,weintrodtu= eTt/hTec(d1)imensihon=leµssHt/ekmTpc(e1r)atureand(cid:28)eld phasθep(,q) =≥λC,(q) and the fun tions parameters and . and are onstants: For q≤0.5 the nature of the phase transition is more q C(q) = omplex, presenting a typi al behavior of (cid:28)rst order λ (14) 55 phase transition . As it is illustrated in (cid:28)gure 1(b), t > t SH for su(cid:30) iently high temperatures ( ), only one = 0 q minimumtat=Mt is observed. De reasing temper- θ(q) =q ature, at SH, a se ond minimum appears with (cid:28)- p (15) nite magnetization and further lowering temperature to t=t χ c q , thisminimumbe omesdegenerate, orresponding Thetemperaturedependen eof ,anditsinverse,are = 0 t < t q < 0.5 q > 0.5 q c to M . For the free energy global minimum quite distin t, depending whether or , as q >0.5 o urs for (cid:28)nite magnetization, determining its equilib- displayedin(cid:28)gure3(a)and(b), respe tively. For t c riumvalue. However,this equilibrium stateis not ne es- the sus eptibility diverges at , the same temperaθtu(qr)e sarily the one observed in (cid:28)nite times, sin e there is an where its inverseinter epts the temperature axis at p . q < 0.5 energy barrier between the two minima, whi h prevent For the sus eptibility is always (cid:28)nite and peaks t thewholesystemtorea htheglobalminimumofenergy. dis ontinuouslyat c. Correspondingly, its inverseshows The minimum temperature that an sutsta=intSzCero mag- a dis ontinuity with (cid:28)nite valuθe(sq)and the Curie-Weiss netization is the one orresponding to , where p linear behavior extrapolates to , whi h is lower than t the energy barrier goes to zero and only one minimum c t . SH exists at (cid:28)nite magnetization. In a similar way, or- responds to the maximum temperature that an sustain a (cid:28)nite magnetization. These phenomena are the well- C. In(cid:29)uen e of Magneti Field on the Phase known `superheating' and `super ooling' y les and are Transition responsible for the thermal hysteresis normally observed t t 55 SH SC in (cid:28)rst orderphase transitions . The and tem- FromtheanalysisoftheGibbsfreeenergy,we on lude peratures anbeanalyti allyderivedfromthe onditions q < 0.5 h = 0 q that for and , the equilibrium magnetiza- des ribed above,and arevalid onlyfor ≤0.5,yielding: tion has a (cid:28)rst order phase transition. Su(cid:30) iently high h h 3 1 0q t = magneti (cid:28)eld ≥ , is able to removethe energybar- SH 4(2 q) (10) rier between the two minima in the Gibbs free energy − and, onsequently, the dis ontinuity in the equilibrium magnetization urve. Thise(cid:27)e tisillustratedin(cid:28)gure4. h 0q t =q Theexpressionfor anbederivedfromthe ondition SC (11) des ribed above, yielding: t 3(1 2q) On the ontrary, a losed expression for c annot be h0q = − 2 q (16) derived, sin e it involves trans endental equations. The − temperaturedependen eoftheredu edequilibriummag- (2 q)/µ h/ q q netization M − is sensitive to the features de- Thequantity M isparti ularlyimportantfromthe s ribed above, as it an be seen in (cid:28)gure 2 and inset experimental point of view, and is sket hed in (cid:28)gure 5, h=3h 0q therein. for q<0.5 and . q < 0.5 Another interesting point of this model, for , is the existen e of a ferromagneti phase transition in- B. Magneti Sus eptibility du ed by the magneti (cid:28)eld,tin the paramagneti phase. c Infa t, su(cid:30) iently loseto , thetwominimahavesim- χq q ilar free energy values and, onsequently, the magneti The generalized magneti sus eptibiliy , for any (cid:28)eldenergyplaysade isiverole,beingabletoswit hbe- value, an be derived from Eq.9, tween the low and high magnetization values, indu ing C(q) the (cid:28)rst orderphase transition. However, for su(cid:30) iently χq = t θ(q) (12) high temperatures t ≥ t0q, only one minimum exists for p − any value of magneti (cid:28)eld, and the phase transition be- omesofse ondorder hara ter. Thise(cid:27)e tisillustrated t where, in analogy with the usual Curie-Weiss law, we in (cid:28)gure 6. The temperature 0q, whi h determines the de(cid:28)ne ontinuousor dis ontinuous nature of the magnetization −1 versus (cid:28)eld urve is given by: µ ∂ −1 C(q) = kTC(1) ∂MMqq (cid:12)(cid:12)(cid:12)(cid:12)Mq(H=0,T) (13) t0q = 3(21−−qq)2 (17) (cid:12) 4 t 0q Above ,themagnetizationasafun tionofmagneti orderregion. As the magneti (cid:28)eld in reases, this points (cid:28)eld urves are ontinuous, presenting, however, a har- travels in the dashed urve a ording to the parametri h c a teristi hangeofslopeatsu hmagneti (cid:28)eld ,whi h equations: varies linearly with temperature, and is given by 3 2h q = − h =α(t t′) 0h 6 h (21) c − (18) − 1(3+h)2 where t = 0h 3q(1 q) 3 6 h (22) t′ = − − (2 q) (19) − Inananalogousway,(cid:28)gure7(b)presentstheproje tion h q ofthephasediagraminthe − planeforseveraltemper- t>t and c atures . Ea hlinedividestheplaneintheferromag- 1 α= neti region (above the urve) aqnd<in0.t5he paramagneti 1 q (20) region (below the urve). For and su(cid:30) iently − tc lose to , a (cid:28)eld indu ed phase transition o urs dis- ontinuously,withthedashedareas orrespondingtothe regions of phase oexisten e. The magnitude of the dis- D. Magneti Phase Diagrams ∆ q ontinuity M de reases with in reasing temperature, t t 0q disappearingfor ≥ (Eq.17), abovewhi hthe transi- At this point it is onvenient to summarize the main tionisalwaysse ondorder(see(cid:28)gure6). Thedashedline properties found so far: the behavior of the generalized (q0t,h0t) uts the transition urves at the point , whi h magnetization and the generalized magneti sus eptibil- similarly as in the previous diagram, divides the urves itywithtemperatureand(cid:28)elddependgreatlyontheval- q in regions of (cid:28)rst and se ond order phase transition. As ues assumed for the entropi parameter . It an be the the temperature in reases, the point movesup along the usual se ond order para-ferromagneti phase transition urvea ordingtotheparametri equationsgivenbelow, but it an be ome (cid:28)rst order, exhibiting the properties with orresponding in rease of the se ond order region: normally asso iated to this type of transitions. t q 6 t √t2+12t Figure7(a)presentsthe − phasediagramforseveral q = − − h 0t 6 (23) values. The solid lines divide the plane in ferro (be- h = 0 low) and paramagneti (above) regions. For and q >0.5 thepara-ferromagnqe<ti 0p.5hasetransitionisalways 6(t 3+√t2+12t) se ondorder,whereasfor thetransitionbe omes h0t = − t+6+√t2+12t (24) (cid:28)rst order. The dotted lines limit the stability regions of the fully ordered and disordered phases. In this way, h t Theproje tionofthephasediagraminthe − planeis theshadedareabetweensu hdottedlinesrepresentsthe q presentedin (cid:28)gure7( ), only for =0.1,forsakeof lear- ferro-paramagneti phase oexisten e,whi h anexistfor tSC(q) t tSH(q) ness. Again,thedottedlineslimitthestabilityregionsof temperatures in the interval ≤ ≤ . h the para and ferromagneti phases and the shaded area Stri tly, in the presen e of the magneti (cid:28)eld the represents the values of (cid:28)eld and temperature where the ferro-paramagneti phase transition does not exist for anytemperatureq, s<in 0e.5Mq isalwaysdi(cid:27)erentfromzero. atwndo tpehmapseesra taunre ho0eqxaisntd. t0Aq,btohveet rearntsaiitnionvablue eosmoefs(cid:28)seel d- In any ase, for , if the magneti (cid:28)eld is not too hc ond order and the hara teristi (cid:28)eld varies linearly high, the Gibbs free energy presents two minima lose totc andwe analwayssmdiasltlinguish twophases, onewith w(ti0tqh,ht0eqm)perature, as given by Eq.18. The open ir le smallmagnetizationMq andotherwithlargemagne- divides the urve into the (cid:28)rst and se ond or- large derphasetransitionregions,andtravelsalongthedashed tization Mq . If the magneti (cid:28)eld is su(cid:30) iently high h h urve a ording to Eqs.16 and 17. 0q ≥ ,theenergybarrierdisappearsandthetransition be omes ontinuous. However, in this ase, the transi- tion o urs with a hara teristi slope hange in magne- E. Generalized Landau Coe(cid:30) ients tizationversustemperature urves,whi hdoesnoto ur q > 0.5 q < 0.5 for . For and up to a riti al applied In this se tion we derive the generalized oe(cid:30) ients of magneti (cid:28)eld, the phase transition o urs dis ontinu- 55 ously, with the shaded areas orresponding to the values Landau theory of phase tran=sitGio/nksT(.1)Let us assume a q redu ed Gibbs free energy G C , and magnetiza- of temperature and where phase oexisten e o urs. m= /µ ∆ q tion Mq . Thus, we are able to expand, for small Themagnitudeofthedis ontinuity M de reaseswith h h 0q values of magnetization, the previously presented Gibbs in reasing (cid:28)eld, disappearing for ≥ (Eq.16), above free energy (Eq.9), yielding: whi h the transition is always se ond order (see (cid:28)gure 4q). T,the dashedline uts the transitionlinesat the point = Aqm2+ Bqm4+ Cqm6 hm ( 0h 0h), whi h divides ea h line into a (cid:28)rst and se ond G 2 4 6 − (25) 5 where, hara ter, with addit<iona∗l hysteresis for (cid:28)elds below 3 than a riti al (cid:28)eld H Hc and tempera∗ture ranges be- Aq = q(t−q) (26) tween TC and a riti al temperature TC. For the last manganite ited above, for instan e, M(H) presents an C upward in(cid:29)e tion point from T =150 K up to 220 c 9(8q 3 4q2)t K, with a hara teristi (cid:28)eld H (T), for the in(cid:29)ex- Bq = −5q3− (27) ion point, presenting an almost liner temperature de- penden e. In addition, a large thermal hysteresis is C learly delimited for temp∗eratures ranging from T up 27(54 318q+623q2 464q3+116q4)t to the bran hing point TC ∼170 K. Analogous behav- Cq = − 175q5− (28) ior0a.6r5e f0o.u35nd in3L64a0.67Ca0.33M0.5nO30.5and0L.9a50.80M.0n5O336625, Sm Sr MnO and Pr Ca Mn Cr O , among others. WithintheLandautheory,negativevaluesofthe oef- (cid:28) ientBmean(cid:28)rstordertransitions. Inthisdire tion,an obvious orrelationbetweenthemodelhereproposedand q < Another interesting feature on the magnetization be- the usual Landau theory is obtained, sin e for 1/2, haviorof some manganites on erns the H/M vs T mea- q the generalized Landau oe(cid:30) ient B also assume nega- q < surement, that presents a strong downturn for temper- tive values, assket hed in (cid:28)gure 8. Note that for 1/2 C atures nearly above T . It makes a deviation from our model also predi ts (cid:28)rst order transition. Addition- C the simple Curie-Weiss law, and, at T , the mag- ally,stillwithintheLandautheory,theparameterAusu- =a(T T ) neti state is qui kly swit hed to a ferromagneti one. 0 ally takes the form A − (Curie Law), and this Su h feature is frequently found in the literature of is exa tly the relation found for the generalized Landau 0.60 0.07 0.33 3 0.8 363 manganites: La Y Ca MnO and La MnO , q oe(cid:30) ient A (Eq.26 and sket hed on the inset of (cid:28)gure 0.55 0.45 366,67 0.825 0.175 0.86 0.14 368 Sm Sr MnO , La Sr Mn Cu O , 8), that represents the inverse of the generalized sus ep- 1−x x 3 x 69 Ca Pr MnO with ≤0.1 , among others. tibility (Eq.12). 56,57,58 It is well know that, using the lassi al formu- lation of the Landauhth/emory, omr s2imilar, a negative slope However, even with the enormous quantity of experi- of the isothermplots vs. (Arrot Plot) would in- mental measurements on manganites (see, for example, di ate a (cid:28)rst order phase transition.dT/hdums,=de0riving the the impressivereview by Dagottoand o-workers41), the minimum of the Gibbs free energy ( G ), we an h/m nature of the phase transition in ferromagneti mangan- express the quantity as: itesisstilla ontroversialissue. Inthisdire tion,Amaral h 62,63 = + m2+ (m2)2 etal. laimfornewmodelstoexplainthe(cid:28)rst-se ond q q q m A B C (29) order hara terofthetransitioninmanganites,evenwith 70 thetheoreti alworksdevelopedbyJaimeetal. ,Alonso q < 71 60 Asexpe ted,for 1/2theGeneralizedArrotPlot has et al. and Novák et al. . anegativeslope,indi ating(cid:28)rstordertransition,whereas q > for 1/2, these plots are straight lines, hara teristi of a ferromagneti se ond order phase transition.qT>hese Toinquireabout theorderof thephase transitionand featuqre<s are presented in (cid:28)gure 9(a) and (b), for 1/2 des ribe theoreti ally the behavior of the relevant mag- and 1/2, respe tively. neti quantities, Amaral and o-workers62,63 used the ma ros opi Landau theory of phase transition, expand- ing the free energy up to sixth power of th4e magnetiza- IV. CONNECTIONS TO EXPERIMENTAL tion. IftheparameterB(withrespe ttoM )isnegative, RESULTS the transition an be (cid:28)rst-order like. In this ase, the magnetizationwill presentlarge(cid:28)eld y lingir∗reversib∗il- A. A Brief Survey ity only for (cid:28)elds and temperatures below Hc and TC, respe tively. Further analysis of Landau theory, even < The experimental (cid:28)eld and temperature dependen- for B ∗ 0 and hig∗her temperatures and magneti (cid:28)elds ies of some manganites present interesting aspe ts. (H>Hc and T>TC), show that the magnetization has a 58,59 Mira et al. analyzed the hara ter of the phase pe uliarin(cid:29)exionpoint at a hara teristi magneti (cid:28)eld 2/3 1−y y 1/3 3 c c transition in La (Ca Sr ) MnO and on luded H ,thatin reaseslinearlywithtemperature,H (T)∝(T- 0 58,59 that for y=0 the magneti transition is of (cid:28)rst or- T ). Miraetal. havealsoappliedtheLandautheory der, whereas it is se ond order for y=1. Other to manganites. However, the results of the Landau the- works,in luding those using nu lear magneti resonan e ory are not su(cid:30) ient to reprodu e all pe uliar magneti 60,61 36,62,63 (NMR), support this result . Amaral et al. properties of the manganites, su h as the anomalousbe- 0.67 0.33 3 0.8 3 emphasized that La Ca MnO , La MnO and havior of the H/M vs. T quantity, presented on (cid:28)gure 5 0.60 0.07 0.33 3 La Y Ca MnO exhibit (cid:28)rst order transition and (cid:28)gure 12. 6 B. Experimental and theoreti al results for In the present paper we have extended our analysis and 0.60 0.07 0.33 3 La Y Ca MnO presented new ompelling eviden es in this dire tion by dedu ing a magneti phase diagram whi h mat hes ob- A ferromagneti erami La0.60Y0.07Ca0.33MnO3 was served experimental results on La0.60Y0.07Ca0.33MnO3, prepared by standard solid-state methods63, and the along with some other magneti properties of this omq- magnetization was measured using a Quantum Design pound. The interpretation of the entropi parameter , 49 SQUID magnetometer (55 kOe) and an Oxford Instru- givenbyBe kandCohen ,intermsoftheratiobetween ments VSM (120 kOe). the mean and width of the temperature distribution in In this se tion we will apply the general results ob- the system, omes to support our proposal, sin e man- tained in the previous se tions to a quantitative analy- ganiteshavelongbeenre ognizedasobje tswhoseprop- sis of experimental data for La0.60Y0.07Ca0.33MnO3. As erties aredominated by intrinsi inhomogeneities41,50,66. stated in se tion III, we work within the mean-(cid:28)eld ap- Su hadistribution anbetranslatedasadistributionof x proximation, for whi h assume the expression: themagneti sus eptibility,aspointedoutbySalqamonet 51 µ(H +λ ) al. , from whi h a temperature dependen e of an be q x= M expe ted. Therefore,we on ludethattheTsallisnonex- kT (30) tensive statisti s is a handy tool to study, lassify and λ predi t magneti and thermal properties of manganites. where is the mean-(cid:28)eld parameter. Figure 10 presents themeasuredandtheoreti almagneti momentasafun - C tionofmagneti (cid:28)eld,forseveraltemperaturesaboveT . VI. ACKNOWLEDGEMENTS The ex ellent experimental-theoreti al agreement is due totheuseoftheTsallisstatisti s,whi hparametrizesthe 41 The authors thanks FAPERJ/Brasil, FCT/Portugal system inhomogeneity . q µ λ N ( ontra t POCTI/CTM/35462/99) and ICCTI/CAPES Here, we use , , and , the number of lusters in (Portugal-Brasilbilateral ooperation),for(cid:28)nan ialsup- the sample, as free parameters. The magneti moment µ port. WearealsothankfultoA.P.Guimarães,E.K.Lenzi of the lusters follows the usual temperature tenden y q and R.S. Mendes, for their helpful suggestions. of a para-ferromagneti transition, whereas in reases towards unity with in reasing temperature ((cid:28)gure 11). q The temperaturedependen e ofthe parameterwasex- VII. FIGURE CAPTIONS pe ted,sin eitshouldrea htheunityforsu(cid:30) ientlyhigh temperatures. From these results, we were able to ompare the Figure 1. Gibbshfr=ee energy(Eq.9), within the mean (cid:28)eld approximation and 0, as a fun tion of the redu ed mag- anomalous downturn in H/M vs. T urves, just with q > q µ netization. (a) For 0.5 only one minimum is observed, the temperature dependen e oλf anNd , and the ap- for any value of temperature (t>tc or t<tc), representing a proximately onstant values of and . The al ulated q qse< ond order=phase transition for the magnetization. (b) For H/M vs. T urveis displayedin (cid:28)gure12,with its or- c 0.5 and t t two degenerated minima are observed, rep- responding experimental value. One should stress that resenting a (cid:28)rst order phase transition. The tSH and tSC the solid line in this plot does not in lude any other (cid:28)t- temperatures limit the 'superheating' and 'super ooling' y- ting parameter. The urvewas al ulatedusingonly the le, responsible for the thermal hysteresis normally observed (cid:28)tted parameters obtained from Figure 10. in (cid:28)rst order transitions. Additionally, Amaral and o-workerspointed out that Figure 2. Temperature dependen e of tqhe redhu =ed0equi- La0.60Y0.07Ca0.33MnO362 presents two di(cid:27)erent features qlib<rium magnetization for several values of and . For H M H c 1/2 the transition shows a (cid:28)rst order hara ter, whereas on the in(cid:29)e tion point, at , of its vs. urves: q> for 1/2thetransitionisofse ondordertype. Inset: Ther- t(cid:28)(eie)mldapleHirncae,taufroretresmTin>petThr∗Caet,ruaarnengddee(TpiieC)nad<neTno <beTsoe∗Cfrv.tehFdeig huhyrasertea1r 3etsesirhsiosfwtoi rs tmioanlsh,ywstitehretshisen'sourpmearlhlyeaotibnsge'rvaenddi'nsu(cid:28)presrt ooordlienrg'ph ya sleest.ransi- H T Figure 3. Temperature dependen e of the generalized theplotof c vs. obtainedfromexperimentaldata. It magneti sus eptibilityχq,anditsinverse,for(a)q<0.5and q> is striking the similarity between this plot and the urve (b) 0.5. shown in Fig. 7( ). Figure4. Temperaturedependen eofhtheredqu= edequilib- 62,63 anFdinMailrlya,ethteaAl.5r8r,o59tPalroetsveprryesseinmteildarbytoAtmhaorsaelperteasle.nted r iiuenmtlymhagignhetmizaagtinoentif or(cid:28)esledvehra≥l vha0lqu(eEsqo.f16,),ainsdablet0o.1r.eSmuo(cid:30)ve- on (cid:28)gure 9(a)(b). thedis ontinuityin the equilibriummagnetization urveM. q Fqig=ure5. Tehm=pe3rha0tquredependen eofthequantityh/ , for 0.2 and . Figure 6. Magneti (cid:28)elddependen eoftheredu edequi- V. CONCLUSION lqib=rium magnetization for several values of temperature, and 0.1. It represents a genuine ferromagneti phase transi- 34,35 denIn estwthoatptrheveimouasgnpeutbi lip arotipoenrstiesofwmeanpgraensietnetse danevbie- Ftioornsuin(cid:30)d ui eendtlybyhimghagtnemetpi er(cid:28)aetludr,esint≥thet0qpa(rEaqm.1a7g)n,etthi etprhaanssei-. suitably des ribed in the framework of Tsallis statisti s. tion be omes ontinuous. 7 q− 2 Figure 7. magneti phase diagram summarizing the Figure 9. The generalized Arrot Plot (h/m vs. m q> q< main properties ftou−nqd in the model. (a) Proje tion of the urves), for (a) 0.5 and (b) 0.5. phasediagramin plane. Thesolidlinesdividetheplane Figure 10. Measured(open ir les) andtheoreti al (solid in ferro (below) and paramagneti (above) phases, with a re- lines -Eqs.7 and30) magneti momentas a fun tionof mag- C gion of phase oexisten e between the dotted lines (shaded neti (cid:28)eld, for several values of temperatures above T =150 area). Ontheleftsideofthedashedline,thetransitionhasa K. (cid:28)rst order hara ter, whereas a se ond order hara ter ahri−seqs Figqure11µ. Temperaturedependen eofthe(cid:28)ttingparam- fortherightside. (b)Proje tionofthephasediagramin eters, and (see text). > c plane, for several temperatures t t . The urves in this ase Figure 12. Measured(open ir les) andtheoreti al (solid have a omplete analogy to the previous one, however, it is lines)valuesofthequantityH/Mvs. T.Thesolidlineinthis ferromagneti above thetransition lines, sin e itrepresentsa plot does not in lude any (cid:28)tting parameters, and was al u- ferromagneti transition indu ed by mh−agnteti (cid:28)eld. (q )=Pro- lated using only the (cid:28)tted parameters obtained from (cid:28)gure je tion of the phase diagram in the plane, for 0.1. 10. h0q Abovt0eq ertain values of (cid:28)eld and temperatures (Eq.16), >Fig∗Cure 13. The linear temcperature dependen e, for and (Eq.17), thetransition be omesse ond oBrder. T T ,ofthe hara teristi (cid:28)eldH ,whi h orrespondstothe q Figure8. ThegeneralizedLanqdau oe(cid:30)q <ient Baqsafun - in(cid:29)ex0io.6n0p0o.i0n7tof0.t3h3eexpe3rimentaClM<vs<. H∗C urves,measured tion of the entropi parameter . For 0.5, assume in La Y Ca MnO . For T T T the hysteresis is negative values,indi ating(cid:28)rstorderphasAe transition. Inset: indi atedbytheshadedarea. It is striking thesimilarity be- q temperaturedependen eoftheparameter ,thatrepresents tween this experimental plot and the theoreti al one, shown theinverse of thegeneralized sus eptibility. in (cid:28)gure 7( ). ∗ 16 Present address: Centro Brasileiro de Pesquisas Físi as, C. Tsallis, Braz. J. Phys. 29, 1 (1999). 17 RuaDr.XavierSigaud150Ur a,22290-180RiodeJaneiro- For a ompleteand updatedlistof referen es, see theweb RJ, Brasil; Ele troni address: marior(cid:28)s.ua.pt site: tsallis. at. bpf.br/biblio.htm. 1 18 V. N. Krivoru hko, S. I. Khartsev, A. D. Prokhorov, V. I. R. F. S. Andrade,Physi a A 175, 285 (1991). 19 Kamenev, R. Szym zak, M. Baran, and M. Berkowski, J. R. F. S. Andrade,Physi a A 203, 486 (1994). 20 Magn. Magn. Mater. 207, 168 (1999). U. Tirnakli, D. Demirhan, and F. Buyukkili , A ta Phys. 2 J. E. Nunez-Regueiroand A. M.Kadin,Appl.Phys.Lett. Poloni a A 91, 1035 (1997). 21 68, 2747 (1996). S.A.CannasandA.C.N.Magalhães,J.Phys.A30,3345 3 G. F. Dionne, J. Appl.Phys.79, 5172 (1996). (1997). 4 22 V. Ravindranath, M. S. Rama handra, G. Rangarajan, L. C. Sampaio, M. P. Albuquerque, and F. S. Menezes, L. Yafeng,J.Klein,R.Klingeler, S.Uhlenbru k,B.Bü h- Phys.Rev. B 55, 5611 (1997). 23 ner, and R. Gross, Phys.Rev. B 63, 184434 (2001). F.Buyukkili ,U.Tirnakli,andD.Demirhan,Tr.J. Phys. 5 J.Rivas,L.E.Hueso,A.Fondado,F.Rivadulla,andM.A. (Turkey)21, 132 (1997). 24 López-Quintela, J. Magn. Magn. Mater. 221, 57 (2000). S. A. Cannas, A. C. N. Magalhaes, and F. A. Tamarit, 6 L. E. Hueso, F. Rivadulla, R. D. Sán hez, D. Caeiro, Phys.Rev. B 61, 11521 (2000). 25 C. Jardón, C. Vázquez-Vázquez, J. Rivas, and M. A. F. Buyukkili , D. Demirhan, and U. Tirnakli, Physi a A López-Quintela, J. Magn. Magn. Mater. 189, 321 (1998). 238, 285 (1997). 7 26 J.J.Heremans,M.Carris,S.Watts,X.Yu,K.H.Dahmen, H. H. A. Rego, L. S. Lu ena, L. R. Silva, and C. Tsallis, and S. vonMolnár, J. Appl.Phys.81, 4967 (1997). Physi a A 266, 42 (1999). 8 27 S. Pal, A. Banerjee, E. Rozenberg, and B. K. Chaudhuri, S.F.Ozeren,U.Tirnakli,F.Buyukkili ,andD.Demirhan, J. Appl.Phys.89, 4955 (2001). Eur. Phys.J. B 2, 101 (1998). 9 28 J. Philip and T. R. N. Kutty, J. Phys. Condens. Matter U.Tirnakli,S.F.Ozeren,F.Buyukkili ,andD.Demirhan, 11, 8537 (1999). Z. Physik B 104, 341 (1997). 10 29 A. Szew zyk, H. Szym za , A. Wisniewski, K. Pi- I. Koponen, Phys. Rev. E 55, 7759 (1997). 30 otrowski, R.Kartaszynski,B.Dabrowski,S.Kolesnik,and H. N. Nazareno and P. E. Brito, Phys. Rev. B 60, 4629 Z. Bukowski, Appl.Phys. Lett. 77, 1026 (2000). (1999). 11 31 M. Viret, L. Ranno,and J. M. D.Coey, Phys. Rev. B 55, L. Borland and J. G. Men hero, Braz. J. Phys. 29, 169 8067 (1997). (1999). 12 32 A. Tka huk, K. Roga kia, D. E. Brown, B. Dabrowski, I. S. Oliveira, Eur. Phys.J. B 14, 43 (2000). 33 A.J.Fedro,C.W.Kimball,B.Pyles,X.Xiong,D.Rosen- L.H.C.M.NunesandE.V.L.Mello,Physi aA296,106 mann,and B. D. Dunlap, Phys. Rev. B 57, 8509 (1998). (2001). 13 34 C. Tsallis, J. Stat. Phys.52, 479 (1988). M.S.Reis,J.C.C.Freitas,M.T.D.Orlando,E.K.Lenzi, 14 C. Tsallis, R. S. Mendes, and A. R. Plastino, Physi a A and I. S. Oliveira, Europhys.Lett. 58, 42 (2002). 35 261, 534 (1998). M. S. Reis, J. P. Araújo, V. S. Amaral, E. K. Lenzi, and 15 C. Tsallis, Nonextensive Statisti al Me hani s and Its I. S. Oliveira, Phys.Rev. B 66, 134417 (2002). 36 Appli ations (Springer-Verlag, Heidelberg, 2001), hap. V. S. Amaral, J. P. Araújo, Y. G. Pogorelov, J. M. B. L. NonextensiveStatisti alMe hani sandThermodynami s: dos Santos, P. B. Tavares, A. A. C. S. Lourenço, J. B. Histori alBa kgroundandPresentStatus,eds.S.Abeand Sousa, and J. M. Vieira, J. Magn. Magn. Mater. 226, 837 Y. Okamoto. (2001). 8 37 A. K. Rajagopal, Nonextensive Statisti al Me hani s and nomena (WorldS ienti(cid:28) , Singapore, 1993). 56 ItsAppli ations (Springer-Verlag,Heidelberg,2001), hap. C.P.BeanandD.S.Rodbell,Phys.Rev.126,104(1962). 57 QuantumDensityMatrixDes riptionofNonextensiveSys- S. K.Banerjee, Phys. Lett. 12, 16 (1964). 58 tems,eds. S. Abe and Y. Okamoto. J. Mira, J. Rivas, F. Rivadulla, and M. A. L. Quintela, 38 S. Abe, S. Martinez, F. Pennini, and A. Plastino, Phys. Physi a B 320, 23 (2002). 59 Lett. A 281, 126 (2001). J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, and 39 S. Abe, Physi a A 300, 417 (2001). M. A. López-Quintela, Phys.Rev. B 60, 2998 (1999). 40 60 A. K. Rajagopal and S. Abe, Phys. Rev. Lett. 83, 1711 P.Novák,M.Marysko,M.M.Savosta,andA.N.Ulyanov, (1999). Phys.Rev. B 60, 6655 (1999). 41 61 E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. B (2001). 63, 024421 (2000). 42 62 M. Mayr, A. Moreo, J. A. Vergés, J. Arispe, A. Feiguin, V.S.Amaral,J.P.Araújo,Yu.G.Pogorelov,J.B.Sousa, and E. Dagotto, Phys.Rev. Lett. 86, 135 (2001). P. B. Tavares, J. M. Vieira, P. A. Algarabel and M. 43 A. L. Malvezzi, S. Yunoki, and E. Dagotto, Phys. Rev. B R. Ibarra, to appear in J. Appl. Phys. 63 59, 7033 (1999). V.S.Amaral,J.P.Araújo,Y.G.Pogorelov,P.B.Tavares, 44 A. Moreo, S. Yunoki, and E. Dagotto, S ien e 283, 2034 J.B.Sousa,andJ.M.Vieira,J.Magn.Magn.Mater.242, (1999). 655 (2002). 45 64 J. Lorenzana, C.Castellani, and C.D.Castro, Phys.Rev. R. P. Borges, F. Ott, R. M. Thomas, V. Skumryev, and B 64, 235127 (2001). J. M. D. Coey, Phys. Rev. B 60, 12847 (1999). 46 65 R.D.Merithew,M.B.Weissman,F.M.Hess,P.Spradling, R. Mahendiran, M. Hervieu, A. Maignan, C. Martin, and E.R.Nowak,J.O'Donnell,J.N.E kstein,Y.Tokura,and B. Raveau, Solid StateCommun.114, 429 (2000). 66 Y. Tomioka, Phys. Rev. Lett. 84, 3442 (2000). Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 47 M.Fiebig,K.Miyano,Y.Tomioka,andY.Tokura,S ien e 1 (1999). 67 280, 1925 (1998). J. M. D. Teresa, M. R. Ibarra, P. Algarabel, L. Morellon, 48 A. Satou and M. Yamanada, Phys. Rev. B 63, 212403 B. Gra ia-Landa, C. Marquina, C. Ritter, A. Maignan, (2001). C. Martin, B. Raveau, et al., Phys. Rev. B 65, 100403 49 C. Be kand E. G. D.Cohen, ond-mat/0205097. (2002). 50 68 M.S. Reis, V.S. Amaral,P.B.Tavares, A.M.Gomes, A. L. Zheng, X. Xu, L. Pi, and Y. Zhang, Phys. Rev. B 62, Y.Takeu hi,A.P.Guimarães,I.S.Oliveira andP.Panis- 1193 (2000). 69 sod, ond-mat/0211143. M. M. Savosta, P. Novak, M. Marysko, Z. Jirk, J. Hejt- 51 M. B. Salamon, P. Lin, and S. H. Chun, Phys. Rev. Lett. manek, J. Engli h, J. Kohout, C. Martin, and B. Raveau, 88, 197203 (2002). Phys.Rev. B 62, 9532 (2000). 52 70 E. P. Borges, J. Phys. A: Math. Gen. 31, 5281 (1998). M. Jaime, P. Lin, S. H. Chun, M. B. Salamon, P. Dorsey, 53 A. R. Lima and T. J. P. Penna, Phys. Lett. A 256, 221 and M. Rubinstein,Phys.Rev. B 60, 1028 (1999). 71 (1999). J. L. Alonso, L. A. Fernandez,F. Guinea, V. Laliena, and 54 A. Plastino and A. R. Plastino, Braz. J. Phys. 29, 50 V. Martin-Mayor, Phys. Rev. B 63, 054411 (2001). (1999). 55 D. I. Uzinov, Introdu tion to the Theory of Criti al Phe- (cid:1)(cid:2)(cid:5) (cid:6)(cid:7)(cid:8)(cid:9)(cid:19) (cid:11)(cid:7)(cid:8) (cid:1)(cid:2)(cid:4) (cid:4)(cid:5)(cid:4) (cid:12)(cid:1)(cid:2)(cid:3) F (cid:4)(cid:18)(cid:4) F (cid:4)(cid:7)(cid:4) F (cid:1)(cid:2)(cid:1) 6HFRQG RUGHU WUDQVLWLRQ (cid:11)T!(cid:19)(cid:17)(cid:24)(cid:12) (cid:1)(cid:17)(cid:3) (cid:8)(cid:1)(cid:2)(cid:3) (cid:7)(cid:9) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10) (cid:4)(cid:7)(cid:4) 6+ (cid:7)(cid:1) (cid:11)(cid:7)(cid:8) (cid:4)(cid:5)(cid:4) 6+ (cid:9) (cid:21) (cid:1) (cid:19) (cid:20) [ (cid:8)(cid:9) (cid:4)(cid:7)(cid:4) (cid:12) F (cid:8)(cid:7)(cid:1) (cid:8)(cid:7)(cid:9) (cid:8)(cid:3)(cid:1) )LUVW RUGHU WUDQVLWLRQ (cid:4)(cid:7)(cid:4) 6& (cid:11)T(cid:31)(cid:19)(cid:17)(cid:24)(cid:12) (cid:1)(cid:2)(cid:3) (cid:8)(cid:3)(cid:9) (cid:1)(cid:2)(cid:1) (cid:1)(cid:2)(cid:3) (cid:1)(cid:2)(cid:4) (cid:1)(cid:2)(cid:5) (cid:1)(cid:2)(cid:6) (cid:7)(cid:2)(cid:1) µ (cid:13) (cid:1)(cid:14)(cid:15)(cid:6)(cid:3)(cid:16) T (cid:1)(cid:2)(cid:3) (cid:7)(cid:2)(cid:1) (cid:7)(cid:2)(cid:1) (cid:16) 6& (cid:16) (cid:1)(cid:2)(cid:6) F (cid:16) 6+ (cid:1)(cid:2)(cid:5) (cid:1)(cid:2)(cid:6) (cid:1)(cid:2)(cid:4) (cid:1)(cid:2)(cid:3) (cid:4)(cid:2)(cid:3)(cid:5)(cid:17) (cid:1)(cid:2)(cid:1) µ (cid:1)(cid:2)(cid:1) (cid:1)(cid:2)(cid:7) (cid:1)(cid:2)(cid:3) (cid:1)(cid:2)(cid:8) (cid:1)(cid:2)(cid:4) (cid:1)(cid:2)(cid:9) (cid:15) (cid:1)(cid:2)(cid:5) (cid:14) (cid:4) (cid:13) (cid:12) (cid:1)(cid:2)(cid:4) (cid:11) (cid:4) (cid:10) (cid:1)(cid:2)(cid:3) (cid:4)(cid:2)(cid:3)(cid:5)(cid:6) (cid:4)(cid:2)(cid:3)(cid:5)(cid:7) (cid:4)(cid:2)(cid:3)(cid:5)(cid:9) (cid:4)(cid:2)(cid:3)(cid:5)(cid:8) (cid:4)(cid:2)(cid:6)(cid:5)(cid:3) (cid:1)(cid:2)(cid:1) (cid:1)(cid:2)(cid:1) (cid:1)(cid:2)(cid:3) (cid:1)(cid:2)(cid:4) (cid:1)(cid:2)(cid:5) (cid:1)(cid:2)(cid:6) (cid:7)(cid:2)(cid:1) (cid:7)(cid:2)(cid:3) (cid:16)