ebook img

Magnetic field induced phase transitions in spin ladders with ferromagnetic legs PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetic field induced phase transitions in spin ladders with ferromagnetic legs

Magnetic field induced phase transitions in spin ladders with ferromagnetic legs T. Vekua,1 G.I. Japaridze,2 and H.-J. Mikeska1 1Institut fu¨r Theoretische Physik, Universit¨at Hannover, 30167 Hannover, Germany 2Andronikashvili Institute of Physics, Tamarashvili 6, 0177, Tbilisi, Georgia We study the phase diagram of spin ladders with ferromagnetic legs under the influence of a symmetry breaking magnetic field in the weak coupling effective field theory by bosonization. For 4 antiferromagnetic interleg coupling we identify two phase transitions introduced by the external 0 magnetic field. In order to establish theuniversality of the phases we supplement the bosonization 0 approach by results from a strong coupling (rung) expansion and from spin wave analysis. 2 n PACSnumbers: 75.10.JmQuantizedspinmodels a J 6 I. INTRODUCTION erties of the two-leg ladder systems is known from the 1 investigation by Schulz17 for the case of the correspond- ing spin S = 1 Heisenberg chain model: In the case of Recently there has been considerable interest in the ] the gapless XY1 phase an external magnetic field leads l studyofmagneticfield-inducedeffectsinlow-dimensional e to the appearance of a magnetization in z direction for - quantum spin systems, in particular devoted to the r critical properties of spin S = 1/2 isotropic antiferro- arbitrarysmallmagneticfields. Inthecaseofthegapped st magnetic two-leg ladders in an external magnetic field. rung-singlet phase the magnetization appears only at a . finite critical value of the magnetic field which is equal t In parallel, there was remarkable progress in recent a to the spin gap8,17. This behavior is generic for the spin m years in the fabrication of such ladder compounds1. gappedU(1)symmetricsystemsinamagneticfield: The Since antiferromagnetic two-leg ladder systems with - magnetic field leaves the in-plane rotational invariance d S = 1/2 have a gap in the spin excitation spectrum, unchanged21 and the transition belongs to the univer- n they reveal an extremely rich behavior, dominated by salityclassofthecommensurate-incommensurate(C-IC) o quantum effects, in the presence of a magnetic field. c These quantum phase transitions were intensively in- transitions22,23. [ On the other side, for the U(1) symmetric phase such vestigated both theoretically, using different analytical 1 and numerical techniques8,9,10,11,12,13,14,15,16, and also astheXY1phase,theeffectofauniformtransversefield v experimentally2,3,4,5,6,7. is highly nontrivial. In the case of classical anisotropic 1 spin chains this effect has been studied more than two Laddermodelswithferromagneticlegshavebeenmuch 0 decades ago24. However, in the case of the antiferro- less studied, although they exhibit many interesting 3 magnetic XXZ quantum chain this problem is still the 1 aspects17,18,19. It is true that up to now no materials subject of intensive recent studies25,26,27,28. 0 are available which realize these models. However, from In this paper, we study the effect of a uniform trans- 4 thetheoreticalpointofviewthesesystemsareextremely verse magnetic field on the ground state phase diagram 0 interesting, since they open up a new large class of sys- / of a two-leg ladder with anisotropic, ferromagnetically at temsforthestudyofcomplicatedquantumbehavior,un- interactinglegscoupledbyantiferromagneticinterlegex- expected in more conventional spin systems. The vari- m change. ety of possibilities is seen already from Fig. 1: here the The outline of the paper is as follows: In section II - groundstate phase diagram19 of a two-legferromagnetic d we review the model and its bosonized version in the ladder is presented in the variables intraleg exchange n continuum limit. We discuss the phases and phase tran- o anisotropy (∆) and (isotropic) interleg coupling (J⊥). sitions emerging from the XY1 and rung-singlet phases c The ground state phase diagram contains, besides the inatransversemagneticfieldinsectionsIII (intheweak : fullygappedrung-singletandHaldanephases(commonly v coupling approach) and IV (in the limit of strong rung i known from the case of antiferromagnetic ladders17,20), X exchange). We shortly summarize our results in section the spin-liquid phase with easy-plane anisotropy(XY1), V. In appendix A we present the spin-wave approach to r the ferromagnetic and the stripe-ferromagnetic phases a locatetheferromagnetictransitionline startingfromthe which are realized only in the case of ferromagnetic legs saturated phase. (0 ∆ 1). ≤ ≤ In this paper we study the effect of an external mag- netic field on the phase diagram of this system. In par- II. MODEL ticular, we focus our attention on the study of new field induced effects in the case of the easy-plane XY1 phase Here we present a brief introduction to the model and andinthe rung-singletphase inthe vicinity ofthe single in particular to its bosonized version in the continuum chain ferromagnetic instability point ∆=1. limit. The Hamiltonian we consider is given by: Theeffectoftheuniformmagneticfield,appliedparal- lel to the anisotropy (z) axis, on the ground state prop- H =H(1)+H(2)+H , (1) leg leg ⊥ 2 ∆ Now we introduce the symmetric and antisymmetric "Stripe" FERROMAGNET FM combinationsofthe bosonic fields φ± = 1/2(φ1±φ2), 1 RUNG oθ±bta=in fin1/a2lly(θa1s±effθ2e)ctaivnedbaofstoenrirceHscaamlinilgtpotnhieasne fields we p Spin−Liquid XY1 SINGLETS = ++ −+ ±, (8) H H H H where Anisotropic Haldane RUNG J + = u+[(∂xθ+)2+(∂xφ+)2] SINGLETS H 2 Phase + M cos 8πK φ (x), (9) + + + u FIG. 1: Schematic picture of the ground state phase dia- − = −[(∂xθp−)2+(∂xφ−(x))2] gram of thetwo-leg ladder in thevariables intraleg exchange H 2 anisotropy (∆) and isotropic interleg coupling (J⊥). The 2π limiting case of isotropic ferromagnetic legs corresponds to + cos θ (x), (10) ⊥ − ∆=1. J sK− π π ± = hcos θ (x)cos θ (x) (11) − + where the Hamiltonian for leg α is H − 2K− 2K+ r r N Here H(α) = J Sx Sx +Sy Sy leg − α,j α,j+1 α,j α,j+1 J 2K 1 Xj=1(cid:16) K± K 1 ⊥ − , (12) N ≃ ∓ 2πJ sin(π/2K) (cid:18) (cid:19) + ∆Sz Sz hext Sx , (2) α,j α,j+1 − α,j J , h hext and u are the velocities of the (cid:17) Xj=1 Jsy⊥mm∼etr⊥ic and∼antisymmetri±c modes. and the interleg coupling is given by In deriving (8), several terms which are strongly ir- N relevant in our case of a ladder with ferromagnetic legs H =J S~ S~ . (3) andappliedtransversemagneticfield, wereomitted. For ⊥ ⊥ j,1 j,2 details of the full Hamiltonian we refer the reader to19. j=1 X We note that at hext = 0 the effective theory Here Sx,y,z are spin S =1/2 operatorson the j-th rung, α,j of the original ladder model is given by two decou- and the index α = 1,2 denotes the ladder legs. The pled quantum sine-Gordon models which describe, re- intraleg coupling constant is ferromagnetic, J > 0, and spectively, the symmetric and antisymmetric degrees thereforethelimiting caseofisotropic ferromagneticlegs of freedom. The infrared properties of the antisym- corresponds to ∆ = 1. We will restrict ourselves to the metric field are governed by the strongly relevant op- case 0 ∆ 1. ≤ ≤ erator ⊥cos 2π/K−θ− with the scaling dimension We use the following bosonizationexpressionsfor spin (2K )−J1 1/2. Therefore, the antisymmetric sector − operators,adaptedtothecaseofferromagneticexchange ≤ p is gapped at arbitrary J = 0. Fluctuations of the field (for details see19): ⊥ 6 θ (x) are completely suppressed and the field θ gets − − c π ordered with expectation values Sx :cos θ : j,α ≃ √2π K α r K π/2 at >0 + ( 1)j ib :sin√4πKφαsin π θα :, (4) hθ−i=(cid:26)0p − atJJ⊥⊥ <0 . (13) − √2π K r Theinfraredpropertiesofthe symmetricfieldaregov- c π Sjy,α ≃ √2π :sinrKθα : eshrnoewdnbiny19th,ethmeasrygminmaletorpicermaotodreMre+mcaoinss g8aπpKles+sφf+or. feArs- p ib π romagnetic interleg exchange and arbitrary 0 ∆ 1, ( 1)j :sin√4πKφ cos θ :, (5) ≤ ≤ − − √2π α K α while in the case of antiferromagnetic interleg exchange r it is gapless in a finite regime in ∆,J parameter space ⊥ K Sjz,α = ra π ∂xφα + Hgievreenγa1papnrodxiγm2aatreelypboysitγiv1eJ⊥co/nJst≤ant∆s (≤mor1e−rigγo2Jro⊥u/sJly. ( 1)j :sin√4πKφ (x): . (6) smoothfunctionsoftheanisotropy)oftheorderofunity. α − π Following Schulz17 who has discussed a similar phase in Here, φ(x) and θ(x) are dual bosonic fields, ∂ φ = u∂ θ the context of the spin S = 1 chain we denoted this t x and K is the Luttinger liquid parameter phase as spin liquid XY1 phase for the spin ladder. At π J⊥ > 0, outside of this regime, the symmetric mode is K = . (7) also gapped and the field φ gets ordered and pinned in 2arccos∆ + 3 one ofits possible minima. We denoted the fully gapped (cid:0)(cid:1) h (cid:0)(cid:1) phase, realized in the case of antiferromagnetic interleg (cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)π(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)2(cid:0)(cid:1)π (cid:0)(cid:1)(cid:0)(cid:1)3(cid:0)(cid:1)π (cid:0)(cid:1)(cid:0)(cid:1)4(cid:0)(cid:1)π exchange as rung-singlet phase. In this phase spins on h(cid:0)(cid:0)(cid:1)(cid:1)c(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) the same rung tend to form a singlet and the ground (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) statecorrespondstothe statewithasingletpaironeach (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) rung. The ground state phase diagram of the system at (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) hexBte=low0 wisegsivtuendyscthheemgarotiucnadllystianteFpigh.a1s.ediagramofthe (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) tpwreos-elengcelaodfdaermwaigtnheatincisfioetlrdo.pic ferromagnetic legs in the (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)0(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)π(cid:0)(cid:1)/(cid:0)(cid:1)2(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)3(cid:0)(cid:1)(cid:0)(cid:1)π(cid:0)(cid:1)/2(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)5(cid:0)(cid:1)π(cid:0)(cid:1)(cid:0)(cid:1)/2(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)7(cid:0)(cid:1)(cid:0)(cid:1)π(cid:0)(cid:1)/2(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)Θ(cid:0)(cid:1)(cid:0)(cid:1) III. THE SPIN LADDER IN THE PRESENCE OF AN IN-PLANE MAGNETIC FIELD FIG.2: Evolutionofthesetofminimaoftheantisymmetric field with increase of the applied transverse magnetic field. In this Section we consider the effect of a transverse magnetic field on the ground state phase diagram of the spin-liquid XY1 phase. Since the magnetic field breaks At h = 0 only the antisymmetric field is gapped and the in-plane rotational symmetry of the XY1 phase, it its set of availablevacua is givenby Θ =π/2,(mod π). − is clear that it will eliminate the gaplessXY1 phase and At h = 0 the symmetric field gets pinned and the set 6 thatthe systemwillacquireagapintheexcitationspec- of possible vacua of the symmetric field does not change trumforarbitrarysmallhext. Bothfields(symmetricand withfield. Ontheotherhand,atarbitrary0<h<4 , ⊥ J antisymmetric)willbepinnedintheirrespectiveminima. eachminimumintheantisymmetricsectorsplitsintotwo In this case the very first direct approach to study the degenerate minima (see Fig. 2). At h h , ϑ π/2 c 0 → → ground state phase diagram of the model is to use the the split minima join each other and form a new set of quasiclassical Ginzburg-Landau type analysis. This ap- possible vacua for the antisymmetric field which is fixed proach does not cover the limiting case ∆ = 1 where for arbitrary h > h . At the critical point the effective c bosonization does not apply. The ∆ = 1 case will be potential transforms into the (Θ )4 potential, which is − discussed in section IV. common in describing the Ising universality class. Since the location of the minima in the symmetric sector does notchange,weconcludethatthetransitioninvolvesonly A. Quasiclassical Ginzburg-Landau analysis the antisymmetric sector. An analogous quasiclassical analysis was carried out In the presence of an in-plane magnetic field the effec- by Fabrizio et al.29 in connection with the ionic Hub- tive Hamiltonian (8) reduces to two free Gaussian fields bard model. There two transitions were identified for coupled by the following effective potential finite values of alternating on-site energies. We note as an important difference that assuming a vanishing order eff(Θ−,Θ+)= ⊥cos2Θ− hcosΘ−cosΘ+, (14) parameter along the direction of an infinitesimally small U J − appliedmagnetic field wouldbe self-contradictoryin our where Θ± = π/2K±θ±. To find the vacuum expecta- case,becauseherenoappropriatemarginaloperatorsare tionvaluesofthepinnedfieldwesearchfortheminimaof present. p the effective potential eff with respect to Θ− and Θ+. Note that in the case of ferromagnetic interleg ex- U The straightforward analysis gives the following sets of change(J <0),thesetofminimaoftheeffectivepoten- ⊥ vacua: tialforarbitraryhext =0isgivenbytheset(15). There- 6 fore, no transitions with increasing field are expected in h>h =4 • c J⊥ this case. I. Θ = π, Θ =π, (mod 2π) + − II. Θ = 0, Θ =0, (mod 2π) (15) B. Phase diagram + − h<h =4 c ⊥ The quasi-classicalanalysisperformed aboveallowsto • J sketch qualitatively the ground state phase diagram of I. Θ = π Θ =π ϑ , (mod 2π) the model under consideration. + − 0 ± As soon as we switch on an infinitesimally small mag- II. Θ = 0, Θ = ϑ , (mod 2π) (16) + − 0 ± netic field in X direction, breaking the in-plane rotation where symmetry, the XY1 phase is expelled, the system be- comesgappedandacquiresafinite orderparameter. Us- ϑ =arccos(h/4 ). ing the bosonized expressions for the smooth parts of 0 ⊥ J 4 Y C. Double sine-Gordon analysis 0 < h < hc (a) h According to the quasiclassical analysis the magnetic fieldinducedtransitionintheXY1phasefromthepartly polarized stripe-ferromagnetic phase into the ferromag- X Z netic phase takes place along the critical line h = 4 c ⊥ J andbelongstotheIsinguniversalityclass. Inthissubsec- tion we investigate the stability against quantum fluctu- ationsofthe results obtainedsofar. For this purpose we Y h > hc decoupletheinitialtheoryofinteractingquantummulti- (b) frequency sine-Gordon fields (8) to get h = ++ −, (20) X Z HMF H H u + = +[(∂ θ )2+(∂ φ )2] x + x + H 2 h cosβ θ (x), (21) FIG.3: Crossover from stripe-ferromagnetic (a)toferromag- + + + − u netic (b) states. − = −[(∂ θ )2+(∂ φ (x))2] x − x − H 2 h cosβ θ (x)+ cos2β θ (x), (22) − − − ⊥ − − the spinoperatorsEqs.(4)-(5),expressedintermsofthe − J symmetric and antisymmetric fields and the vacuum ex- where pectationvaluesofthecorrespondingfields(15)-(16)one easilyobtainsthatat0<h<h thespinladderacquires β± = π/2K± (23) c uniform magnetization in the direction of applied and p • field M x h =h cos π/2K θ (24) ± + ∓ h i M = Sx (x) = Sx (x) x j,1 j,2 Thusthesymmetricsectoprisdescribedbytheordinary ≃ (cid:10)hcosΘ+i(cid:11)hcos(cid:10)Θ−i=(cid:11)h/4J⊥ (17) sine-Gordon theory with β+2 ≤ π/2 for 0 ≤ ∆ ≤ 1, and therefore with a strongly relevant massive term. On the opposite magnetization of legs in the in-plane di- • other hand, in the antisymmetric sector we arrive at the rection perpendicular to the field: double frequency sine-Gordonmodel with β2 π/2 and − ≤ M = Sy (x) = Sy (x) therefore strongly relevant basic and double-field opera- y j,1 − j,2 tors. (cid:10)cosΘ (cid:11) sinΘ(cid:10) = (cid:11)1 (h/4 )2. (18) In the double frequency sine-Gordon model the quan- + − ⊥ ≃ h ih i − J tumphasetransitioninthegroundstatetakesplacewhen q This phase we denote as the ”stripe-ferromagnetic” the vacuum configurations of the two cosines compete phase. with each other30, corresponding to the crossover from Whenthemagneticfieldexceedsthe criticalvalueh> doublewelltosinglewellpotentialinquasiclassicalanal- h , the new set of vacua (15) is reached and the system ysis. One easily verifies that this criterion can be ap- c passes into the ferromagnetic phase, where plied analogously to the case of antiferromagnetic rung exchange (J > 0). The dimensional arguments based ⊥ on equating physical masses produced by the two cosine M cosΘ =1and M sinΘ =0. (19) x ≃h −i y ≃h −i termsseparatelyisusuallyusedtodefinethecriticalline: Thus, the quasiclassical analysis of the ground state m = (h)1/(2−dim[h]) phase diagram of the XY1 phase in the presence of a h (25) transverse magnetic field shows a phase transition from (cid:26) mJ⊥ = J⊥1/(2−dim[J⊥]) the stripe-ferromagnetic to the ferromagnetic phase (we Equating these two masses we obtain the following ex- denoteby’ferromagneticphase’the phasewiththemag- pression for the critical line external magnetic field vs. netizationparalleltotheexternalfieldasonlynonvanish- interchain coupling: ing order parameter). This analysis also indicates, that the transition belongs to the Ising universality class. h =ηJµ(∆). (26) Fromtheaboveitisalsoclearthatinthecaseofferro- cr ⊥ magnetic interleg exchange ( < 0) the ferromagnetic J⊥ where phase is realized for arbitrary h=0: This is so, since in 6 this case the vacua of two terms in (14) do not exclude 2 dim[h] µ= − =(8K2 K)/2K (4K 1) (27) each other. 2 dim[J ] − + −− ⊥ − 5 h /J (∆=1) V(ϑ ) F e r r o m a g n e t i c Luttinger O r d e r Liquid Rung Singlets ϑ J / J 0 FIG. 5: Phase diagram of a spin ladder with the SU(2) sym- FIG.4: Appearanceofanadditionalminimum(dashedline) metric ferromagnetic legs in a uniform magnetic field. which could changethesecond orderphasetransition tofirst order, depending on the sign of the higher order harmonic generated. laddercanbe mapped ontoa singleS =1/2chain3,10,33. Forcompletenesswe brieflydiscussthe mapping here: A given rung may be in the singlet or in the triplet state and η is some numerical constant of the order of unity. with energies given by The self consistency of the mean field separation insures that(27)followsfromequatingmassesproducedbymag- J J 3J neticfieldandinterchaincouplingsseparately,beforethe Et,± = ⊥ hext, Et,0 = ⊥, Es = ⊥. 4 ± 4 − 4 mean field separation. From (27) we see h J in cr ⊥ ≃ the limit K , i.e. for the single chain ferromagnetic At hext J , one component of the triplet becomes instability po→in∞t. This will be seen to be consistent with closer to≤the⊥singlet ground state such that for a suffi- thelargerungcouplingaswellaswithspinwaveanalysis ciently strong magnetic field we have a situation where (see respectively eqs. (34) and (A3)). the singlet and the S = +1 component of the triplet z Finally we want to mention that the operator prod- form a new effective spin 1/2 system. One can easily uct expansion of the two lowest frequencies of the sine- project the original ladder Hamiltonian (1) on the new Gordon theory for the range of anisotropy parameter singlet-triplet subspace 0 ∆ 1 does not close, i.e. higher relevant harmonics ar≤e gen≤erated in the RG procedure. In some situations t+ = (28) |⇑i ≡ | i |↑↑i it is knownthat higher harmonicscandestabilize second 1 order phase transitions and make it weakly first order31. s = [ ] |⇓i ≡ | i √2 |↑↓i−|↓↑i This happens when generated harmonics introduce new minima (e.g. the dashed minimum in Fig. (4)) which This leads to the definition of the effective spin 1/2 op- at the phase transition point coexists with the minima erators before the transition. 1 For example in the case of only the third harmonic S+ = ( 1)α τ+ (29) retained, the position of the new minimum depends on n,α=1,2 − √2 n the sign of the generated harmonics. We have followed 1 Sz = [I+2τz] (30) thesignofthegeneratedharmonicalongtheoneloopRG n,α=1,2 4 n flows and checked that in our case there is no indication When expressed in terms of the effective spin operators ofanupsettingofthesecondorderphasetransition. The (29)-(30), the original Hamiltonian (1) becomes newminimagetpinnedinbetweentheminimaofthefirst two harmonics; they thus may shift the critical line (26) 1 to larger values of the magnetic field but otherwise do Heff = −J [2τizτiz+1+τiyτiy+1+∆τixτix+1] not introduce any qualitatively new effects. i X h τz +Constant, (31) − eff i i X IV. LARGE RUNG COUPLING RESULTS where the effective magnetic field Inthissectionweconsidertheeffectofanappliedmag- 1 netic fieldonthe groundstatephasediagramofthe two- heff =hext J⊥ J. (32) − − 2 leg ladder system with ferromagnetic legs (1) in the lim- iting case of strong rung coupling J J. In this limit Note that in writing (31) for convenience we have ex- ⊥ ≫ it is convenient to discuss the model by representing the changed X and Z axis in effective spin space. site-spinalgebraintermsofon-bond-spinoperators32. In The Hamiltonian (31) describes a spin 1/2 fully particular, in the case of isotropic interleg exchange the anisotropic XYZ chain in an effective magnetic field. 6 There exists a special case, ∆ = 1, which allows for rig- h / J (0< ∆< 1) orousanalysis. Inthis casethe effective problemreduces to the theory of the XXZ chain with a fixed ferromag- netic XY anisotropyof1/2inaneffectivemagneticfield Ferro magnetic h . The gapped phase at h < hc1 for the ladder eff eff eff Order Rung corresponds to the fully saturated magnetization phase for the effective spin chain pointing in the direction op- Singlets Stripe posite to the applied field, whereas the massless phase FM for the ladder corresponds to the finite magnetization J / J phase of the effective spin-1/2 chain3. The critical field 0 hc2 where the ladder is fully magnetized corresponds eff to the fully magnetized phase of the effective spin chain XY1 Spin−Liquid Phase pointingalongthedirectionofappliedfield. Fromtheex- act groundstate phase diagramof the anisotropicXXZ FIG.6: Phasediagramofaladderwithanisotropicferromag- chain in a magnetic field34 using (32) we get that the netic legs in transverse magnetic field. isotropic ferromagnetic ladder in a magnetic field shows two second order phase transitions: at we obtain the result that the phases appearing in large hext =J J (33) c1 ⊥− rung coupling and in weak rung coupling are identical. On general grounds one expects an Ising transition to a transition occurs from the rung dimer to a Luttinger take place at critical strengths of the magnetic field also liquid phase and at for large couplings. Thus for ∆ = 1 the Luttinger liq- 6 hext =J (34) uid phase will be replaced by the striped ferromagnetic c2 ⊥ phase (as in the weak coupling limit), and the transi- tions become of Ising type due to the reduced symmetry a transition from a Luttinger liquid phase into the fully (Fig. 6). polarized phase. The transition from the rung-singlet phase into the Inordertodeterminethenatureofthetransitionfrom Luttingerliquidphaseinthecaseoftheisotropic antifer- rung singlets to the striped ferromagnetic state in the romagnetic ladder was studied in detail in several recent weak coupling limit we can use the fact that in the rung publications10,11,12,33. It was shown that in the case of singlet phase the operator thegappedrung-singletphasethemagnetizationappears onlyatafinitecriticalvalueofthemagneticfieldequalto J cos 8πK φ (x) ⊥ + + the spin gap. Since this behavior is generic for isotropic systems with spin gap21, and the gap in the ladder sys- is relevant and the grounpdstate consists of nonmagnetic tem is governedby J⊥ we conclude that the rung-singlet singlets situated along the rungs of the ladder. On the toLuttingerliquidphasetransitionlinesmoothlyreaches other hand, while the in-plane magnetic field couples to zero at J⊥ 0 (see Fig.5). the dual fields (disorder operators) we expect an Ising → Notethatthislargerungcouplinganalysisrevealsthat phasetransitiontotakeplacewiththeappearanceofthe the phase transitions in the antiferromagnetically cou- magnetization perpendicular to the applied field (stripe- pled ladder with ferromagnetic legs in uniform magnetic FM) as dominant order parameter. field are connected with those in a ladder with antiferro- magnetic legs but in staggered magnetic field16. In both casesthemagneticfieldtriestopromotetripletsonrungs, V. CONCLUSIONS while the antiferromagnetically coupled ladder supports on-rung singlets. Away from the isotropic point ∆ = 1 the effective WehaveinvestigatedthephasediagramoftheS =1/2 Hamiltonian (31) describes the fully anisotropic ferro- ladder with ferromagnetic legs under the influence of a magnetic XYZ chainin a magnetic fieldthat is directed uniform magnetic field breaking the in-plane rotational perpendicular to the easy axes. For the particular value symmetry. Incaseofantiferromagneticcouplingbetween of magnetic field heff = 0, the effective XYZ chain is legs we identified two phase transitions in the plane of long range orderedin Y direction,correspondingto the magnetic field vs interchaincoupling. We have extended − originalladdersystembeingorderedinthedirectionper- our analysis to the strong rung coupling limit and have pendicular to the applied magnetic field with opposite identified a Luttinger liquid phase which replaces the magnetization on the legs (stripe-ferromagnetic phase). stripe-ferromagneticphaseinthecaseofSU(2)symmet- For larger values of the effective field it is clear that this ric legs. The phase transition line in the case of SU(2) stripedferromagneticorderwillbereplacedeitherbythe ferromagnetic legs was confirmed also by the spin wave rung singlet phase or the phase with only one order pa- calculation starting from the saturated limit. rameter - magnetization along the applied field. Thus 7 VI. ACKNOWLEDGEMENTS without magnetic field. In the case of SU(2) symmetric legs it is straightforwardto add the magnetic field term, TVisgratefultoA.A.Nersesyanforinterestingdiscus- sinceitcouplestothe diagonaloperator. Inthiscasethe sions. GIJ acknowledges support by the SCOPES grant two sets of spin wave excitation frequencies19 read: N7GEPJ62379. This workwassupportedinpartbythe J J DFG-Graduiertenkolleg No. 282, ”Quantum Field The- ω−(q) = hext ⊥ Jcosq ⊥ (A1) ory Methods in Particle Physics, Gravitational Physics, − 2 − − 2 J J and Statistical Physics”. ω+(q) = hext ⊥ Jcosq+ ⊥ . (A2) − 2 − 2 For J >0 we have ⊥ APPENDIX A: FERROMAGNETIC INSTABILITY ω−(q)<ω+(q) Inthis appendix we use the spin waveapproachto de- and from the instability condition ω−(q = 0) = 0 we termine the critical line corresponding to the ferromag- obtain neticinstabilityforthecaseofSU(2)symmetriclegs. We refer the reader to the appendix of (19) where we have hext =J⊥ (A3) considered in detail the analogous analysis of a ladder 1 For a review see E. Dagotto, Rep. Prog. Phys. 62, 1525 18 A.K.KolezhukandH.-J.Mikeska,Int.J.Mod.Phys.12, (1999); E. Dagotto and T.M. Rice, Science 271, 618 2325 (1998). (1996). 19 T. Vekua, G.I. Japaridze, and H.-J. Mikeska, Phys. Rev. 2 G. Chaboussant and P. A. Crowell, L. P. L´evy, O. Pi- B 67, 064419, (2003). ovesana, A. Madouri, and D. Mailly, Phys. Rev. B 55, 20 D.G. Shelton, A.A. Nersesyan and A.M. Tsvelik, Phys. 3046 (1997). Rev.B 53, 8521 (1996). 3 G.Chaboussant,M.-H.Julien,Y.Fagot-Revurat,M.Han- 21 G.I.Japaridze,A.A.NersesyanandP.B.Wiegmann,Nucl. son,L.P.L´evy,C.Berthier,M.Horvatic,andO.Piovesana, Phys. B 230 (FS 4), 511-547 (1984). Europ. Phys. J. B 6, 167 (1998). 22 G. I. Japaridze and A. A. Nersesyan, Pis’ma Zh. Eksp. 4 G. Chaboussant, Y. Fagot-Revurat, M.-H. Julien, M. E. Teor. Fiz. 27, 356 (1978) [Sov. Phys. JETP Lett. 27, 334 Hanson, C. Berthier, M. Horvatic, L. P. L´evy, and O. Pi- (1978)]. ovesana, Phys.Rev.Lett. 80, 2713 (1998). 23 V.L.PokrovskyandA.L.Talapov,Phys.Rev.Lett.42,65 5 D. Arcon, A. Lappas, S. Margadonna, K. Prassides, E. (1979). Ribera, J. Veciana, C. Rovira, R. T. Henriques, and M. 24 H.-J.Mikeska,J.Phys.C:SolidSt.Phys.11,L29,(1978); Almeida, Phys.Rev.B 60, 4191 (1999). H.-J. Mikeska and M. Steiner, Advances in Physics, 40, 6 H. Mayaffre, M. Horvatic, C. Berthier, M.-H. Julien, P. 191, (1991). S´egransan, L. L´evy, and O. Piovesana, Phys. Rev. Lett. 25 Y.Hieida, K.Okunishi, and Y.Akutsu,Phys.Rev.B 64, 85, 4795 (2000). 224422 (2001). 7 B. C. Watson, V. N. Kotov, M. W. Meisel, D. W. Hall, 26 D.V. Dmitriev, V.Ya. Krivnov,and A.A. Ovchinnikov, G. E. Granroth, W. T. Montfrooij, S. E. Nagler, D. A. Phys. Rev.B 65, 172409 (2002); D.V. Dmitriev, V.Ya. Jensen,R.Backov,M.A.Petruska,G.E.Fanucci,andD. Krivnov, A.A. Ovchinnikov, and A. Langari, JETP 95, R. Talham, Phys. Rev.Lett. 86, 5168 (2001). 538 (2002). 8 R.ChitraandT.Giamarchi,Phys.Rev.B55,5816(1997). 27 J-S. Caux, F.H.L. Essler, and U. L¨ow, Phys. Rev. B 68, 9 D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. Lett. 134431 (2003). 79, 5126 (1997); ibidPhys. Rev.B 58, 6241 (1998). 28 A. Duttaand D.Sen, Phys.Rev. B 67, 094435 (2002). 10 K. Totsuka, Phys.Rev.B 57 3454 (1998). 29 M.Fabrizio,A.O.Gogolin,andA.A.Nersesyan,Phys.Rev. 11 M. Usami and S. I.Suga, Phys. Rev.B 58, 14401 (1998.) Lett.83,2014, (1999); ibidNucl.Phys.B580, 647(2000). 12 T. Giamarchi and A. M. Tsvelik, Phys. Rev. B 59, 11398 30 G. Delfino and G. Mussardo, Nucl. Phys. B 516, 675 (1999). (1998). 13 M. Hagiwara, H. A. Katori, U. Schollw¨ock, and H.-J. 31 Z. Bajnok, L. Palla, G. Takacs, F. Wagner, Nucl. Phys. B Mikeska, Phys. Rev.B 62, 1051 (2000). 601 503, (2001). 14 X. Wangand L. Yu,Phys. Rev.Lett. 84, 5399 (2000). 32 S.SachdevandR.N.Bhatt,Phys.Rev.B41,9323(1990). 15 S. Wessel, M. Olshanii, and S. Haas, Phys. Rev.Lett. 87, 33 F. Mila, Eur. Phys. J. B 6, 201 (1998). 206407 (2001) 34 M. Takahashi, Thermodynamics of one-dimensional solv- 16 Y.-J. Wang, F. H.L. Essler, M. Fabrizio, and A. A. Ners- able models, Cambridge University Press (1999), Chapter esyan, Phys. Rev. B 66, 024412 (2002). IV. 17 H.J. Schulz,Phys.Rev.B 34, 6372, (1986).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.