Magnetic chemically peculiar stars MarkusScho¨llerandSwetlanaHubrig 5 1 0 2 n a J 7 1 Abstract Chemicallypeculiar(CP)starsaremain-sequenceAandBstarswithab- ] normallystrongor weak linesforcertain elements.Theygenerallyhavemagnetic R fields and all observablestend to vary with the same period. Chemically peculiar S stars providea wealth of information;they are naturalatomic and magnetic labo- . h ratories. After a briefhistoricaloverview,we discuss the generalpropertiesof the p magneticfieldsinCPstars, describetheobliquerotatormodel,explainthedepen- - denceofthemagneticfieldstrengthontherotation,andconcentrateatthe endon o r HgMnstars. t s a [ 1 Introduction 1 v 5 ApandBpstarsaremainsequenceAandBstars,inthespectraofwhichlinesof 2 2 some elementsare abnormallystrong or weak (e.g.,Si, Sr, Cr, Eu, He, ...). They 4 generallyhavemagneticfieldsthatcanbedetectedthroughobservationsofcircular 0 polarizationinspectrallines.Observables,suchasthemagnitudesinvariousphoto- 1. metricbands,thespectrallineequivalentwidths,andthemagneticfield,varywith 0 thesameperiod,whichcanrangefromhalfadaytoseveraldecades.Abnormalline 5 strengthscorrespondtoelementoverabundances(byupto5−6dexwithrespectto 1 theSun)andareconfinedtothestellarouterlayers.Theclassofchemicallypeculiar : v (CP)starsisroughlyrepresentedbythreesubclasses:themagneticApandBpstars, i themetallic-lineAmstars,andtheHgMnstars.Anoverviewofthedifferentgroups X ofCPstarscanbefoundinTable1. r a MarkusScho¨ller European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany, e-mail: [email protected] SwetlanaHubrig Leibniz-Institut fu¨r Astrophysik, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] 1 2 MarkusScho¨llerandSwetlanaHubrig Table1 Differentgroupsofchemicallypeculiarstars. Peculiarity Spectral T magnetic spots eff Type Type range He-strong B1-B4 17000−21000 yes yes He-weak B4-B8 13000−17000 yes yes Si B7-A0 9000−14000 yes yes HgMn B8-A0 10000−14000 yes? yes! SrCrEu A0-F0 7000−10000 yes yes Am A0-F0 7000−10000 yes? no 2.5 HD101065 Normalized Flux + Constant1.521 CeII NdIIINdII NdPIIrIINdPIrICIIeII FeI HHDD291675522 0.5 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 Wavelength (A) Fig.1 UVESobservationsofHD101065,HD217522,andHD965.Themagneticallyinsensitive FeIlineatl 5434A˚ issharpandhasasimilarwidthinallthreespectra.–Credit:Hubrigetal. (2002). Chemically peculiar stars provide a wealth of information. E.g., Castelli & Hubrig (2004) analyzed a spectrum of the HgMn star HD175640, observed with UVES at a spectral resolutionof R∼90000−100000and a spectral coverageof 3040−10000A˚). TheyusedanATLAS12modelatmosphere(Kurucz1997)with theSYNTHEcode(Kurucz1993)tomodelthisspectrum.Theywereabletoobtain abundancesfor49ions,using200linesforabundancesoflightelements,230lines for abundances of ion group elements, and 130 lines for abundances of elements with Z ≥31. They identified 80 TiII emission lines, 40 CrII emission lines, and used100linestostudytheMnIIhyperfinestructure,140linesfortheGaIIisotopic structure, 15 lines for the BaII hyperfinestructure, and 30 lines for HgII isotopic andhyperfinestructure.Still,thereremained170unidentifiedabsorptionlinesand 30unidentifiedemissionlines. Thedifferencebetweenanon-peculiarstarandaCPstarcanbestriking.Look- ingatthespectrumofVega,intheregionbetween5000and6000A˚ thereareonlya fewlinesofNaI,MgI,SiII,andFeII.Ontheotherhand,CPstarscanhaveadozen lines within a spectral range of 10A˚, which can be seen in Fig 1. The overabun- dancesseeninCPstarsaretheresultofselectivediffusionofthedifferentelements (Michaud1970).SeealsoChapter“Diffusionanditsmanifestationinstellaratmo- spheres”. Magneticchemicallypeculiarstars 3 2 A brief historicaloverview The first detection of a magnetic field in a star other than the Sun was achieved inCSVirbyBabcock(1947).Heessentiallydeterminedthelongitudinalmagnetic fieldinthisstar.Today,meanlongitudinalmagneticfieldmeasurementsthroughout thevariationperiodhavebeenobtainedfornomorethan100stars.Theresolutionof magneticallysplitlinesrequiresastrongenoughmagneticfieldandsufficientlyslow rotation.Resolvedmagneticallysplitlineswere firstdiscoveredin Babcock’sstar, HD215441(Babcock1960),forwhichhemeasuredameanmagneticfieldmodulus ofhBi∼34kG,andwhichisthestrongestmagneticfieldmodulusmeasuredinan Apstartodate.In1987,twelvestarswithmagneticallyresolvedlineswereknown, onlyfourofthosewerestudiedthroughouttheirvariationperiod.In2001,44stars with magnetically resolved lines were known, 24 of those were studied through- outtheir variationperiod(Mathyset al. 1997;Mathyset al.,inpreparation).First systematicdeterminationsofthecrossovereffectandthemeanquadraticmagnetic fieldwerepublishedbyMathys(1995a,b).Afullphasecoveragewasachievedfor abouttwodozenstars.Thebulkofthepublishedmaterialonbroad-bandlinearpo- larization(BBLP)wasgatheredbyLeroybetween1990and1995(Leroy1995,and references therein). Variations in BBLP were well studied for about 15 stars. See Chapter“Magneticfields”onadetaileddiscussionofstellarmagneticfields. 3 General properties ofmagneticfields inApstars Thestrongestmagneticfieldstendtobefoundinmoremassivestars.Theyarealso foundonlyinfast-rotatingstars(Hubrigetal.2000).Allstarswithrotationperiods exceeding1000dayshavemagneticfieldsbelow6.5kG.Fromthe findingthatthe longitudinalmagneticfieldaveragedoverthestellardiskisnotzero,onecandirectly conclude that the magnetic field needs to be organized on a larger scale, i.e. it is a dipoleora superpositionofadipoleanda quadrupole.Thecircularpolarization fromtangled,solar-likemagneticfieldsmostlycancelsoutinadiskintegration.The magneticfieldofApstarsthushasasignificantdipole-likecomponent.Foradipole, the ratio between the longitudinal magnetic field and the magnetic field modulus hB i/hBi is 0.3, for a quadrupoleit is 0.05. If toroidalor higher-ordermultipolar z componentsweresufficienttoaccountfortheobservedlongitudinalmagneticfield, thesewouldinducestrongdistortionsofthespectrallineprofilesinStokesI,i.e.in integrallight,whichwedonotsee. Themagneticfieldcoversthewholestellarsurfacehomogeneously,i.e.thedis- tributionofthefieldstrengthoverthestarisfairlynarrow.Evidenceforthiscomes from the fact that the magnetic field is observed at all phases, the continuum is reachedbetweenthesplitcomponentsofresolvedlines,andthattheresolvedmag- neticallysplitcomponentsarerathernarrow(Mathysetal.1997). Magneticfieldshavesevereeffectsonthestructureofstellarouterlayers.They areresponsibleformagneticallycontrolledwindsandelementalabundancestratifi- 4 MarkusScho¨llerandSwetlanaHubrig cation.Evidenceforabnormalatmosphericstructurecomesfromthefactthatpro- files of hydrogen Balmer lines in cool Ap stars can not be fitted by conventional models (Ryabchikova et al. 2002). This has also a potential impact on the longi- tudinal magnetic field determination by Balmer line polarimetry. The core-wing anomaly (Cowley et al. 2001) of the hydrogen Balmer lines leads to the impos- sibility of fitting the Balmer lines with one effective temperature. E.g., to fit the Hb lineinHD965,oneneedstoassumeT =5500Kforthecoreofthelineand eff T =7000Kforthewings. eff 4 The oblique rotatorand thegeometric structure ofthe magnetic field Themagneticfieldisnotsymmetricwithrespecttothestellarrotationaxis.Other surface features, e.g. the abundance distribution, are determined by the magnetic field.Observedvariationsresultfromchangingaspectsofthevisiblehemisphereas thestarrotates.Thus,thevariationperiodistherotationperiodofthestar.Nointrin- sicvariationsofthemagneticfieldhavebeenobservedinApstarsovertimescales ofdecades. In early models of the magnetic field, a quasi-sinusoidal variation of the lon- gitudinalmagnetic field was assumed. In the simplest model, a dipole centered at the star’s center and with an axis inclined with respect to the stellar rotation axis, wasemployed.Fromstarswithmagneticallyresolvedlines,itcanbeseenthatthe mean magnetic field modulusgenerally has one maximum and one minimum per rotationperiod,evenforstarswithareversinglongitudinalmagneticfield(Mathys etal. 1997).Fromthese observations,a centereddipolecanberuledout.Alterna- tive models include a dipole that is offset along its axis (parameters:i, b , B , a), d or a collineardipole plusa quadrupole(parameters:i, b , B , B ), with i the incli- d q nationangleof thestar withrespecttothe lineofsight,b the inclinationangleof themagneticfieldwithrespecttoi,B thestrengthofthedipole,B thestrengthof d q thequadrupole,andatheoffsetofthedipolewithrespecttothestar’scenter.The models have to make a good match with four observables: the maximum and the minimumof both the longitudinalmagnetic field and the magnetic field modulus. Bothmodelsareequivalenttofirstorder. Additionalconstraintsonthemagneticfieldgeometrycancomefromthecross- over and the mean quadratic magnetic field. A collinear dipole plus a quadrupole and an octupole give good first approximations in many cases (Landstreet & Mathys 2000). The dipole primarily accounts for the longitudinal magnetic field, thequadrupolegivesthefieldstrengthcontrastbetweenthepoles,andtheoctupole isresponsiblefortheequator-to-polefieldstrengthcontrast.Asymmetricvariation curves can be determined from some magnetic field moments. They exist, if the magneticfieldisnotsymmetricaboutanaxispassingthroughthecenterofthestar (Mathys1993)andcanbedescribedwithageneralizedmultipolarmodel(Bagnulo etal.2000,andreferencestherein).Theinputobservablesforthesemodelsareall Magneticchemicallypeculiarstars 5 availableobservablesofthemagneticfield:hBzi,hxBzi,phB2i+hB2zi,hBi,andthe BBLP. A c 2 minimization between the predicted and the observed values of the observablesatphasesdistributedthroughouttherotationperiodwilldeterminethe finalmodelforthegeometricstructureofthemagneticfield. Ultimately,adirectinversionofthelineprofilesrecordedinallfourStokespa- rameters will allow one to derive magnetic field maps without a priori assump- tions. Since the inversion is an ill-posed problem, a regularization condition is needed.Thisis achievedwith the magneticDopplerimagingtechnique(Piskunov &Kochukhov2002).Itisverydemandingintermsofthesignal-to-noiseratiointhe data,spectralresolution,andphasecoverage.Sofar,theseinversionsarerestricted toafewindividualstars(e.g.,Lu¨ftingeretal.2010;Kochukhovetal.2004). 5 Fieldstrength distribution and rotation Themeanlongitudinalmagneticfielddistributionextendsallthe waydowntothe detectionlimitof100Gorless(Landstreet1982).Thermsmeanlongitudinalmag- neticfieldaveragedoverastellarrotationperiodisoftheorderof300Gfor“clas- sical” Ap stars, and larger (∼1kG) for hotter He weak and He strong Bp stars (Landstreet1982). The mean magnetic field modulus much better characterizes the intrinsic stel- lar magneticfield than the mean longitudinalmagnetic field, which is muchmore dependentonthegeometryoftheobservation.MostApstarswithmagneticallyre- solvedlineshaveameanmagneticfieldmodulus(averagedoverthestellarrotation period)comprisedbetween3and9kG.Butthereisalowercutoffofthedistribution at2.8kG.Oneexpectstobeabletoresolvelinesdownto1.7kGorloweratsome rotationphasesofsomestars,butonlyforonetargetitisobserveddownto2.2kG. The lower limit of the magneticfield distributionis roughlytemperatureindepen- dent;hotterstarsmayhavestrongermagneticfieldsthancoolerstars(Mathysetal. 1997). Ap star variation periods span five orders of magnitude. Until recently, there seemedtobenosystematicdifferencesbetweenshortandlongperiodstars.Acon- firmation that very long periods are indeed rotation periods has been brought by BBLP (Leroy et al. 1994). The systematic study of Ap stars with resolved mag- neticallysplitlineshasdoubledthenumberofknownstarswith P>30days.The distribution of periodslonger than 1year is compatible with an equipartitionon a logarithmicscale. No star with P>150d has a mean magnetic field modulusex- ceeding7.5kG.Morethan50%ofthestarswithresolvedlinesandshorterperiods haveamagneticfieldmodulusabovethisvalue(Mathysetal.1997).Inthecollinear dipoleplusquadrupoleandoctupolemodel,theanglebetweenthemagneticandro- tationaxisb isgenerallysmallerthan20◦ forstarswithP>30d,unlikeforshort periodmagneticApstars,forwhichthisangleisusuallylarge(Landstreet&Mathys 2000). 6 MarkusScho¨llerandSwetlanaHubrig 0.4 HMJDD 523139763.036 0.4 HMJDD 523179003.134 4 HD 27376 0.4 HD 28217 2 HD 32964 0.4 HD 33647 2 HD 33904 2 HD 35548 0.2 0.2 2 0.2 1 0.2 1 1 (arcsec)0.0 (arcsec)0.0 (arcsec)0 (arcsec)0.0 (arcsec)0 (arcsec)0.0 (arcsec)0 (arcsec)0 --00..42 -0 .4 -0 .2 (ar0c .s0ec) 0 .2E0 .4N --00..42 -0 .4 -0 .2 (ar0c .s0ec) 0 .2E0 .4N --42 - 4 - 2 (arc0 sec) 2 E N4 --00..42 -0 .4 -0 .2 (ar0c .s0ec) 0 .2E0 .4N --21 - 2 - 1 (arc0 sec) 1 E N2 --00..42 -0 .4 -0 .2 (ar0c .s0ec) 0 .2E0 .4N --21 - 2 - 1 (arc0 sec) 1 E N2 --21 - 2 - 1 (arc0 sec) 1 E N2 4 HD 36881 0.4 HD 41040 2 HD 42657 2 HD 53244 4 HD 53929 2 HD 59067 2 HD 72208 2 HD 73340 2 0.2 1 1 2 1 1 1 (arcsec)0 (arcsec)0.0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 --42 - 4 - 2 (arc0 sec) 2 E N4 --00..42 -0 .4 -0 .2 (ar0c .s0ec) 0 .2E0 .4N --21 - 2 - 1 (arc0 sec) 1 E N2 --21 - 2 - 1 (arc0 sec) 1 E N2 --42 - 4 - 2 (arc0 sec) 2 E N4 --21 - 2 - 1 (arc0 sec) 1 E N2 --21 - 2 - 1 (arc0 sec) 1 E N2 --21 - 2 - 1 (arc0 sec) 1 E N2 2 HD 75333 2 HD 78316 2 HD 90264 2 HD 101189 2 HD 110073 4 HD 120709 4 HD 129174 4 HD 165493 1 1 1 1 1 2 2 2 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 -1 N -1 N -1 N -1 N -1 N -2 N -2 N -2 N -2 - 2 - 1 (arc0 sec) 1 E 2 -2 - 2 - 1 (arc0 sec) 1 E 2 -2 - 2 - 1 (arc0 sec) 1 E 2 -2 - 2 - 1 (arc0 sec) 1 E 2 -2 - 2 - 1 (arc0 sec) 1 E 2 -4 - 4 - 2 (arc0 sec) 2 E 4 -4 - 4 - 2 (arc0 sec) 2 E 4 -4 - 4 - 2 (arc0 sec) 2 E 4 0.4 HD 216494 2 HD 221507 4 HD 34880 2 HD 158704 4 HD 178065 4 HD 66259 0.4 HD 66259 0.2 1 2 1 2 2 0.2 (arcsec)0.0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0 (arcsec)0.0 --00..42 -0 .4 -0 .2 (ar0c .s0ec) 0 .2E0 .4N --21 - 2 - 1 (arc0 sec) 1 E N2 --42 - 4 - 2 (arc0 sec) 2 E N4 --21 - 2 - 1 (arc0 sec) 1 E N2 --42 - 4E N- 2 (arc0 sec) 2 4 --42 - 4 - 2 (arc0 sec) 2 E N4 --00..42 -0 .4 -0 .2 (ar0c .s0ec) 0 .2E0 .4N Fig.2 CompanioncandidatestoHgMnstars,detectedwithNACObyScho¨lleretal.(2010). – Credit:Scho¨lleretal.,A&A,522,A85,2010,reproducedwithpermission(cid:13)cESO. 6 HgMnstars HgMn stars are chemically peculiar stars with spectral type B8 to A0 and T = eff 10000−14000K. They show extreme overabundanceof Hg (up to 6dex) and/or Mn (up to 3dex).They display the most obviousdeparturesfrom abundancesex- pectedwithinthecontextofnucleosynthesis(Cowley&Aikman1975).Morethan 150HgMnstarsareknown,manyofwhicharefoundinyoungassociations(Sco- Cen,OrionOB1).Theyareamongthemostslowlyrotatingstarsontheuppermain sequenceandhaveexceptionallystableatmosphereswithanaveragerotationalve- locityofhvsinii=29km/s,whichleadstoextremelysharp-linedspectra.Theyare the best suited targets to study isotopic and hyperfine structure. More than 2/3 of the HgMn stars belongto SB systems with a prevalenceof P ≈3−20d. Many orb HgMn stars are in multiple systems. The spectrum variabilityseen in HgMn stars isduetothepresenceofchemicalspots.Theydonothavestronglarge-scaleorga- nized magnetic fields, but tangled magnetic fields are possible. They do not have enhancedstrengthsofrareearthelements,butoftheheavyelementsW,Re,Os,Ir, Pt,Au,Hg,Tl,Pb,andBi,whichmakesthemanaturallaboratoryforthestudyof heavy elements. They also show anomalous isotopic abundancesfor the elements He,Hg,Pt,Tl,Pb,andCa. Scho¨lleretal.(2010)studiedthemultiplicityoflate-typeBstarswithHgMnpe- culiarity.Fromobservationsof57HgMnstarsobtainedattheVLTwiththeNACO instrumentin Ks withthe S13 camera,theyfound34companioncandidatesin 25 binaries,threetriples, andonequadruple(see Fig. 2).Nine companioncandidates were foundfor the first time, five objectsare verylikely chanceprojections.Only fivestarsinthetotalsampleshownoindicationofmultiplicity,takingintoaccount that 44 systems are confirmed or suspected spectroscopic binaries. On the other hand,inastudyofrapidlyoscillatingAp(roAp)stars,Scho¨lleretal.(2012)found Magneticchemicallypeculiarstars 7 Table2 Multiplicityofdifferentstellartypes. Type Percentage Reference SB NormalA ∼35% Kouwenhovenetal.2005 NormalB ∼30% Kouwenhovenetal.2005 MagneticAp 43% Carrieretal.2002 VeryfewSB2 MagneticBp ∼20% Renson&Manfroid2009 VeryfewSB2 HgMn >90% Scho¨lleretal.2010 2/3 Am >90% Renson&Manfroid2009 >90% roAp 24% Scho¨lleretal.2012 2outof∼45 90 -5.00 90 -5.00 90 3.69 -5.00 457.25 -5.75 454.19 4.19 -5.75 45 -5.75 Latitude 0 7.25 -6.50 Latitude 0 4.56 4.564.56 -6.50 Latitude 0 4.44 3.69 -6.50 --94050 7.75 8.2590 8.258.75 180 7.75 8.25270 7.75360--87..0205 --940504.19 4.194.194.56 94.560 4.945.31 1804.94 2704.19 360--87..0205 --940503.69 4.06 4.44 94.810 4.06 4.064.44184.814.440 4.064.062704.064.44 360--87..0205 Longitude Longitude Longitude phase=0.0 phase=0.25 phase=0.0 phase=0.25 phase=0.0 phase=0.25 phase=0.50 phase=0.75 phase=0.50 phase=0.75 phase=0.50 phase=0.75 Fig.3 MapsoftheabundancedistributionforFe(left),Sr(middle),andY(right)onthesurface oftheprimaryinthesystemARAur.–Credit:Hubrigetal.,A&A,547,A90,2012,reproduced withpermission(cid:13)cESO. a total of six high probabilitycompanioncandidatesin a surveyof 28 roAp stars. roAp stars pulsate in high-overtone,low-degree, nonradial p-modes, with periods in the range from 5.6 to 21min and typical amplitudes of a few millimagnitudes (e.g.Kurtzetal.1982).Theyareidealtargetsforasteroseismology.Theintriguing questionisifandhowmultiplicitycanshapetheappearanceofchemicallypeculiar stars.AnoverviewabouttheprevalenceofbinariesindifferentclassesofCPstars andnormalstarscanbefoundinTable2. One of the most exciting objects containing a HgMn star is the triple system ARAur.Theinnertwostarsconstitutetheonlyknowneclipsingbinaryencompass- ing a HgMn star. This binaryhas an orbital periodof 4.13d and an age of 4Myr. The two stars are of spectral typesB9V andB9.5V, andwhile the primaryHgMn star is exactly on the ZAMS, the secondary is still contracting(e.g. Nordstro¨m& Johansen1994).Hubrigetal.(2012)usedobservationswithSOFIN attheNordic OpticalTelescopetostudythedistributionofdifferentelementsoverthesurfaceof the primary HgMn star, using the Doppler mapping technique (see Fig. 3). From thesamedataset,theyalsodeterminedthemagneticfieldinbothprimaryandsec- ondary(Fig.4).ARAurshowsasimilarbehaviortootherHgMnsystemsdiscussed 8 MarkusScho¨llerandSwetlanaHubrig 400 G] 200 B> [z 0 <-200 -400 Y 400 G] 200 B> [z 0 <-200 -400 Fe 400 G] 200 B> [z 0 <-200 -400 Ti -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Fig.4 Measurementsofthemeanlongitudinalmagneticfieldpresentedasafunctionofthero- tationphaseforARAur.Theywerecarriedoutseparately fortheelementsTi,Fe,andY(from bottomtotop).Thesolidlinedenotestheprimarycomponent,whilethedashedlinedenotesthe secondarycomponent.Filledcirclesindicate3s measurements.–Credit:Hubrigetal.,A&A,547, A90,2012,reproducedwithpermission(cid:13)cESO. byHubrigetal.(2012).Theresultssuggesttheexistenceofacorrelationbetween themagneticfield,theabundanceanomalies,andthebinaryproperties.Forthesyn- chronouslyrotatingcomponentsoftheSB2systemARAur,itlooksasifthestellar surfaces facing the companion star usually display low-abundance element spots and negativemagnetic field polarity.The surface of the oppositehemisphere,as a rule,iscoveredbyhigh-abundanceelementspotsandthemagneticfieldispositive atthe rotationphasesof thebest-spotvisibility (Hubrigetal. 2010).Still, thedis- cussionaboutthe presenceofweakmagneticfieldsin HgMnstarsisstill ongoing (seeKochukhovetal.2013). 7 Summary Chemicallypeculiarstarsareprobablythemostchallengingmainsequencestarsto modeldue to their magnetic fields, and the element segregationand stratification. Theyareidealatomicphysicslaboratories.Theyarethebestobjectstolearnabout magneticfieldmodels,tobeappliedtootherclassesofstars.Binarityandmultiplic- ityforthedifferentclassesisdifferent,whichpotentiallyleadstonewinsightsinto starformationmechanisms. Magneticchemicallypeculiarstars 9 References 1. H.W.Babcock1947,ApJ105,105 2. H.W.Babcock1960,ApJ132,521 3. S.Bagnulo,M.Landolfi,G.Mathys,M.LandiDegl’Innocenti2000,A&A358,929 4. F.Carrier,P.North,S.Udry,J.Babel2002,A&A394,151 5. F.Castelli,S.Hubrig2004,A&A425,263 6. C.R.Cowley,G.C.L.Aikman1975,ApJ196,521 7. C.R.Cowley,S.Hubrig,T.A.Ryabchikova,etal.2001,A&A367,939 8. S.Hubrig,P.North,G.Mathys2000,ApJ539,352 9. S.Hubrig,C.R.Cowley,S.Bagnulo2002,inExoticStarsasChallengestoEvolution,ASP Conf.Ser.279,ed.byC.A.Tout,W.vanHamme,p.365 10. S.Hubrig,I.Savanov,I.Ilyin,etal.2010,MNRAS408,L61 11. S.Hubrig,J.F.Gonza´lez,I.Ilyin,etal.2012,A&A547,A90 12. O.Kochukhov,S.Bagnulo,G.A.Wade,etal.2004,A&A414,613 13. O.Kochukhov,V.Makaganiuk,N.Piskunov,etal.2013,A&A554,A61, 14. M.B.N.Kouwenhoven,A.G.A.Brown,H.Zinnecker,etal.2005,A&A430,137 15. D.W.Kurtz1982,MNRAS200,807 16. R.L.Kurucz1993,SYNTHESpectrumSynthesisProgramsandLineData,CD-ROM,No.18 17. R.L.Kurucz1997,inThe3rdConf.onFaintBlueStars,ed.byA.G.D.Philip,J.Liebert, R.A.Saffer(Schenectady:L.DavisPress),p.33 18. J.D.Landstreet1982,A&AR4,35 19. J.D.Landstreet,G.Mathys2000,A&A359,213 20. J.L.Leroy,S.Bagnulo,M.Landolfi,E.LandiDegl’Innocenti1994,A&A284,174 21. J.L.Leroy1995,A&AS114,79 22. T.Lu¨ftinger,O.Kochukhov,T.Ryabchikova,etal.2010,A&A509,A71 23. G.Mathys1993,ASPC44,232 24. G.Mathys1995a,A&A293,733 25. G.Mathys1995b,A&A293,746 26. G.Mathys,S.Hubrig,J.D.Landstreet,etal.1997,A&AS123,353 27. G.Michaud1970,ApJ160,641 28. B.Nordstro¨m,K.T.Johansen1994,A&A282,787 29. N.Piskunov,O.Kochukhov2002,A&A381,736 30. P.Renson,J.Manfroid2009,A&A498,961 31. T.Ryabchikova,N.Piskunov,O.Kochukhov,etal.2002,A&A384,545 32. M.Scho¨ller,S.Correia,S.Hubrig,N.Ageorges2010,A&A522,A85 33. M.Scho¨ller,S.Correia,S.Hubrig,D.W.Kurtz2012,A&A545,A38