Lecture Notes in Applied Mathematics and Mechanics Adrian Muntean Jens D.M. Rademacher Antonios Zagaris Editors Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity Lecture Notes in Applied Mathematics and Mechanics Volume 3 Series editors Alexander Mielke, Humboldt-Universität zu Berlin, Berlin, Germany e-mail: [email protected] Bob Svendsen, RWTH Aachen University, Aachen, Germany e-mail: [email protected] Associate editors Helmut Abels, University of Regensburg, Regensburg, Germany Marek Behr, RWTH Aachen University, Aachen, Germany Peter Eberhard, University of Stuttgart, Stuttgart, Germany Klaus Hackl, Ruhr University Bochum, Bochum, Germany Axel Klawonn, Universität zu Köln, Köln, Germany Karsten Urban, University of Ulm, Ulm, Germany About this Series The Lecture Notes in Applied Mathematics and Mechanics LAMM are intended for an interdisciplinaryreadershipinthefieldsofappliedmathematicsandmechanics.Thisseriesis published under the auspices of the International Association of Applied Mathematics and Mechanics(IAAMM; German GAMM). TopicsofinterestincludeforexamplefocusareasoftheIAAMMsuchas:foundationsof mechanics, thermodynamics, materialtheory and modeling,multibodydynamics, structural mechanics, solid mechanics, biomechanics, damage, fracture, multiscale modeling and homogenization,fluidmechanics,gasdynamics,laminarflowsandtransition,turbulenceand reactive flows, interface flows, acoustics, waves, applied analysis, mathematical modeling, calculusofvariations,variationalprinciplesappliedoperatortheory,evolutionaryequations, applied stochastics, systems with uncertainty, dynamical systems, control theory, optimiza- tion, applied and numerical linear algebra, analysis and numerics of ordinary and partial differential equations. Eachcontributiontotheseriesisintendedtobeaccessibletoresearchersinmathematics andmechanicsandiswritteninEnglish.Theaimoftheseriesistoprovideintroductorytexts for modern developments in applied mathematics and mechanics contributing to crossfer- tilization.TheLectureNotesareaimedatresearchersaswellasadvancedmastersandPhD students in both mechanics and mathematics. Contributions to the series are self-contained andfocusedonafewcentralthemes.Thegoalofeachcontributionisthecommunicationof modern ideas and principles rather than on completeness or detailed proofs. Like lecture notesfromacourse,awell-chosenexampleispreferabletoanabstractframeworkthatcan- not be comprehended without deeper involvement. The typical length of each contribution is between 100 and 300 pages. If the lecture notes represent the proceedings of a summer schoolwithseveralcontributors,aunified,consistentpresentationandstylearerequired(e.g., commonnotation).Inexceptional cases,doctoralthesesmaybeaccepted,iftheyfulfillthe above-mentionedcriteria. Potentialcontributorsshouldcontacttheappropriateeditorwithatitle,tableofcontents, andasample chapter. Fullmanuscripts accepted bythe editors will then bepeer-reviewed. More information about this series at http://www.springer.com/series/11915 Adrian Muntean Jens D.M. Rademacher (cid:129) Antonios Zagaris Editors Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity 123 Editors Adrian Muntean AntoniosZagaris Department ofMathematics andComputer Faculteit Elektrotechniek, Wiskundeen Science, Centerfor Analysis, Scientific Informatica computingandApplications (CASA) Universiteit Twente Eindhoven University of Technology Enschede,Overijssel Eindhoven TheNetherlands TheNetherlands Jens D.M.Rademacher Fachbereich 3 - MathematikundInformatik UniversitätBremen Bremen Germany ISSN 2197-6724 ISSN 2197-6732 (electronic) Lecture Notesin AppliedMathematics andMechanics ISBN978-3-319-26882-8 ISBN978-3-319-26883-5 (eBook) DOI 10.1007/978-3-319-26883-5 LibraryofCongressControlNumber:2015956114 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface This book is the offspring of the summer school “Macroscopic and Large Scale Phenomena: Coarse Graining,Mean Field Limits andErgodicity.”The school was held in 2012 at the University of Twente, the Netherlands, under the aegis of the national cluster Nonlinear Dynamics in Natural Systems (NDNS+). We assumed the initiative to organize that school to bring certain aspects of particle systems theory to the attention of junior applied mathematicians at large and to applied analystsinparticular.Tothateffect,themainfocuswasonthemodeling,multiscale analysis, and continuum limits of particle systems. This emphasis is reflected in the book at hand, which collects in print an extensionofthematerialpresentedinthatsummerschool.Eachofthefourchapters here is based on a set of lectures delivered at the school, yet all authors have expandedandrefinedtheircontributions.Thefirstthreeofthesediscussmeanfield limits and (evolutionary) C-convergence as methods to derive macroscopic model equationsfrommicroscopicdescriptions.Thechapterconcludingthevolumeoffers a more abstract perspective, discussing the statistical properties of large-scale dynamics from the standpoint of ergodic and dynamical systems theory. Each chapterconcernsoneparticularaspectoftheoverallthemeandreflectstheauthor’s specific viewpoint and focus. We hope that this book can continue to stimulate interaction between these somewhat separate fields, in the spirit of the school that generated it. François Golse delivers a chapter on the dynamics of large particle systems in the mean field limit. In doing so, he deals with a central issue in statistical mechanics: the derivation of reduced dynamical descriptions of large systems composedofidenticalmicroscopicconstituents.Insuchsystems,theeffectofeach individual particle is weak, but the collective action of the particle ensemble gen- eratesanontrivialmeanfieldactingoneachandeveryparticle.Anearlyexampleof such a reduced description is the kinetic theory of gases, which is the mean field limit of molecular dynamics. According to that theory, the state of a system of a large number of identical gas molecules is reflected in the statistical behavior of one typical particle in the system. Golse surveys the most significant tools and v vi Preface methods employed to date to establish mean field limits with mathematical rigor. Heillustratestheirapplicationactivelybymeansofavarietyofexamplesrootedin physical reality, such as regularized variants of the Vlasov–Poisson or Vlasov– Maxwell systems from plasma physics. Lucia Scardia focuses on the derivation of continuum limits of discrete models using variational methods. The specific focus is on C-convergence, a more recent method that has proved very powerful in tackling problems in material science. Fracture mechanics, spin systems, magneto-mechanics, and dislocations are coun- ted among the many successes of this approach. A common feature of all these problems is that good models are known at the discrete level of atoms and dislo- cations (microscale), but they are missing at the continuum level (macroscale) which is relevant for engineering applications. The notion of C-convergence furnishes a mathematically rigorous way to bridge those scales effectively. Scardia starts with an introduction to this concept, illustrated by concrete examples of discrete-to-continuum upscalings for simple systems. The latter part of the chapter deals with a more advanced application in dislocation theory. Alexander Mielke’s contribution focuses on the multiscale modeling and rig- orous analysis of generalized gradient systems. Specifically, he examines the new concept of evolutionary C-convergence for systems driven by a dissipation mechanismforafunctional,suchasanenergyorentropy.Thefocusinthisworkis on one-parameter families of such vector fields, where the (small) parameter quantifies the multiscale structure of the system in question. In this setting, the central challenge is to describe the limiting behavior of solutions to the detailed modelintermsofsolutionstoasimplified,appropriatelychosen,macroscopicone. Inthiscontext,thestaticconceptofC-convergenceprovidesaframeworkinwhich to understand and perform such upscalings. The presentation connects to physical and engineering reality by numerous evocative examples relating, for instance, to periodic homogenization or to the passage from viscous to dry friction. MartinGöllandEvgenyVerbitskiyconcludethisvolumewithareviewofrecent advances in a modern branch of ergodic theory. Statistically motivated approaches lieattheheartofergodictheoryandthestudyofcomplexdynamicalsystems.Their numerousoffshootshaveembracedadiversearrayofmathematicalfieldsincluding numbertheory,algebraandgeometry.Therelevantportionofthesummerschoolin Twente discussed fundamental notions of ergodic theory and demonstrated appli- cationsofergodicityinnonlineardynamics.Thechapterinthisvolumegoesmuch further and reviews recent developments in the study of homoclinic points for certain classes of discrete dynamical systems. From our point of view, the most striking feature is that these relate certain particle systems to algebraic dynamical systemsviaergodicpropertiesof,e.g.,latticesconfigurations.Theauthorsmotivate the abstract notions and theory by numerous examples, in particular, spatial dynamical systems. Having defined homoclinic points arising through principal algebraicactions,theyreviewexistingresultsanddemonstratetheuseofthetheory in computing the entropy and in studying probabilistic properties of these discrete systems. Preface vii WeexpressourgratitudetotheNetherlandsOrganisationforScientificResearch (NWO), the Dutch Applied Mathematics Institute (3TU.AMI), and the Dutch Research School in Mathematics (WONDER) for supporting the summer school financially. We also thank the authors, who kindly agreed to contribute to this volume, as well as the school participants who proved eager to learn about these different approaches. Last but not least, we thank the series editors and publishers for realizing this book. Eindhoven Adrian Muntean Bremen Jens D.M. Rademacher Twente Antonios Zagaris June 2015 Contents 1 On the Dynamics of Large Particle Systems in the Mean Field Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 François Golse 1.1 Examples of Mean Field Models in Classical Mechanics . . . . . 3 1.1.1 The Liouville Equation . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 The Vlasov-Poisson System . . . . . . . . . . . . . . . . . . . 5 1.1.3 The Euler Equation for Two-Dimensional Incompressible Fluids . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.4 The Vlasov-Maxwell System . . . . . . . . . . . . . . . . . . 10 1.2 A General Formalism for Mean Field Limits in Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 The Mean Field Characteristic Flow . . . . . . . . . . . . . . . . . . . 16 1.4 Dobrushin’s Stability Estimate and the Mean Field Limit. . . . . 24 1.4.1 The Monge-Kantorovich Distance. . . . . . . . . . . . . . . 24 1.4.2 Dobrushin’s Estimate. . . . . . . . . . . . . . . . . . . . . . . . 25 1.4.3 The Mean Field Limit . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.4 On the Choice of the Initial Data . . . . . . . . . . . . . . . 31 1.5 The BBGKY Hierarchy and the Mean Field Limit . . . . . . . . . 35 1.5.1 N-Particle Distributions . . . . . . . . . . . . . . . . . . . . . . 36 1.5.2 Marginal Distributions of Symmetric N-Particle Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.5.3 The N-Particle Liouville Equation. . . . . . . . . . . . . . . 41 1.5.4 The BBGKY Hierarchy. . . . . . . . . . . . . . . . . . . . . . 44 1.5.5 The Mean Field Hierarchy and Factorized Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.6 Chaotic Sequences, Empirical Measures and BBGKY Hierarchies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 1.6.1 Chaotic Sequences and Empirical Measures . . . . . . . . 56 1.6.2 From Dobrushin’s Theorem to the BBGKY Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ix x Contents 1.7 Further Results on Mean Field Limits in Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1.7.1 Propagation of Chaos and Quantitative Estimates . . . . 65 1.7.2 Infinite Hierarchies and Statistical Solutions. . . . . . . . 67 1.7.3 Symmetric Functions of Infinitely Many Variables . . . 74 1.7.4 The Case of Singular Interaction Kernels. . . . . . . . . . 77 1.7.5 From Particle Systems to the Vlasov-Maxwell System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 1.8 The Mean Field Problem in Quantum Mechanics . . . . . . . . . . 82 1.8.1 The N-Body Problem in Quantum Mechanics. . . . . . . 82 1.8.2 The Target Mean Field Equation. . . . . . . . . . . . . . . . 87 1.8.3 The Formalism of Density Matrices. . . . . . . . . . . . . . 88 1.9 Elements of Operator Theory . . . . . . . . . . . . . . . . . . . . . . . . 94 1.10 The BBGKY Hierarchy in Quantum Mechanics . . . . . . . . . . . 100 1.10.1 The Quantum BBGKY Hierarchy . . . . . . . . . . . . . . . 101 1.10.2 The Infinite Quantum Mean Field Hierarchy. . . . . . . . 105 1.11 The Mean Field Limit in Quantum Mechanics and Hartree’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 1.11.1 Mathematical Statement of the Mean Field Limit . . . . 110 1.11.2 A Tool for Studying Infinite Hierarchies . . . . . . . . . . 113 1.11.3 Application to the Hartree Limit in the Bounded Potential Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 1.12 Other Mean Field Limits in Quantum Mechanics . . . . . . . . . . 122 1.12.1 Derivation of the Schrödinger-Poisson Equation . . . . . 122 1.12.2 Derivation of the Nonlinear Schrödinger Equation. . . . 124 1.12.3 The Time-Dependent Hartree-Fock Equations. . . . . . . 125 1.12.4 Pickl’s Approach to Quantum Mean Field Limits . . . . 130 1.13 Afterword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 2 Continuum Limits of Discrete Models via C-Convergence. . . . . . . 145 Lucia Scardia 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2.2.1 C-Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2.2.2 Coerciveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 2.2.3 Lower Semicontinuity and Relaxation . . . . . . . . . . . . 152 2.3 Discrete Systems: Short-Range Interactions . . . . . . . . . . . . . . 155 2.3.1 One-Dimensional Discrete Setting. . . . . . . . . . . . . . . 155 2.3.2 Nearest-Neighbour Interactions. . . . . . . . . . . . . . . . . 156 2.3.3 Non-convex and Superlinear Interaction. . . . . . . . . . . 162 2.3.4 Lennard-Jones Interactions. . . . . . . . . . . . . . . . . . . . 164