ebook img

Macroscopic Aharonov--Bohm Effect in Type-I Superconductors PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Macroscopic Aharonov--Bohm Effect in Type-I Superconductors

Europhysi s Letters PREPRINT 5 0 Ma ros opi Aharonov(cid:21)Bohm E(cid:27)e t in Type-I Super ondu tors 0 2 Catrin Ellenberger, Florian Gebhard, Wolfgang Bestgen n a Fa hberei h Physik, Philipps(cid:21)Universität Marburg, D(cid:21)35032 Marburg, Germany J 6 2 PACS. 73.23.-b (cid:21) Ele troni transport in mesos opi systems. PACS. 74.25.Sv (cid:21) Criti al urrents. ] n PACS. 74.25.Op (cid:21) Mixed states, riti al (cid:28)elds, and surfa e sheaths. o PACS. 74.40.+k (cid:21) Flu tuations (noise, haos, nonequilibrium super ondu tivity, lo alization, c et .). - r p u s . Abstra t. (cid:21) In type-I super ondu ting ylinders bulk super ondu tivity is destroyed above t a the (cid:28)rst riti al urrent. Below the se ond riti al urrent the `type-I mixed state' displays m (cid:29)u tuation super ondu tivity whi h ontributes to the total urrent. A magneti (cid:29)ux on the - axis of the ylinder an hange the se ond riti al urrent by as mu h as 50 per ent so that d half a (cid:29)ux quantum an swit h the ylinder from normal ondu tion to super ondu tivity: n the Aharonov(cid:21)Bohm e(cid:27)e t manifests itself in ma ros opi ally large resistan e hanges of the o ylinder. c [ 1 v 4 Introdu tion. (cid:21) The super ondu ting ondensate an be used as a `quantum ampli(cid:28)er'. 2 6 Forexample,mi ros opi e(cid:27)e tssu hasquantuminterferen eofele tronwavesbe omema ro- 1 s opi ally measurable as (cid:29)ux quantization. In this work the ma ros opi ondensate is used 0 to make the Aharonov(cid:21)Bohme(cid:27)e t prominent on ma ros opi s ales. R J 5 Considerawireofradius witha urrent paralleltothewireaxis. Thesuper ondu tiv- 0 J / ity of a type-I super ondu torbreaksdown when the urrentex eeds the Silsbee urrent 1. t The Silsbee urrent is determined from the ondition that the magneti (cid:28)eld at the surfa e a H J = c0RH /2 c0 m of the wire is equal to the upper riti al (cid:28)eld , 1 , where is the speed of J >J - light. For 1, the so- alledintermediate state forms in the wire with alternatindg normal d and super ondu ting domains [1℄. The diameter of the super ondu ting domains shrinks d n and (cid:28)nally the intermediate state ollapses when be omes of the order of the oheren e o ξ length . However,super ondu tivitystill remainsin theformofsmalltemporal(cid:29)u tuations. c : In this `mixed state' for type-I super ondu tors, super ondu ting (cid:29)u tuations and ele tri al v and magneti (cid:28)elds o-exist. The mixed state was (cid:28)rst predi ted by L.D. Landau in 1938 [2℄ i X as asurfa e statefor hollowsuper ondu ting ylinders. Its existen ewaslater veri(cid:28)edexper- r imentally by I.L. Landau and Yu.V. Sharvin [3℄. As later shown by Andreev and Bestgen [4℄ a the (cid:29)u tuation indu ed super ondu tivity is destroyed when the thi kness of the (cid:29)u tuation ξ layer be omes smaller than the oheren e length , and super ondu tivity is ultimately de- J stroyed at the se ond riti al urrent 2 whi h was (cid:28)rst al ulated by Andreev [5℄. An H externally applied magneti (cid:28)eld a parallel to the wire axis ontributes to the suppression J J of the super ondu ting phase and redu es 1 and 2 a ordingly [6,7℄. (cid:13) EDPS ien es 2 EUROPHYSICSLETTERS In this work we investigate the stability of the mixed state in type-I super ondu tors for R ≪R H a hollow ylinder of inner radius i in a magneti (cid:28)eld a with an additional magneti Φ (cid:29)ux line of strength a on the ylinder axis. We showJth(Φat)the Aharonov(cid:21)BohmΦ e/(cid:27)Φe0 t leads to strong os illations of the se ond riti al urrent 2 a as a fun tion of a where Φ0 =hc0/(2e) isthe(cid:29)uxquantum. Thee(cid:27)e tisparti ularlymarkedforthe`one-dimensional' R ≪ ξ J (Φ ) mixed state for whi h i . In this ase, 2 a anJvar<y Jby(aΦlm0/o2s)t <50Jpe<r Jent(.0)If the applied urrent through the wire is (cid:28)xed at some value 1 2 2 , the Φ modulation of between integer (cid:29)ux quanta will lead to a periodi onset and breakdown of J Φ Ω V the super ondu ting urrent s as a fun tion of . The resistan e at applied voltage be omes V V Jz Ω= = ≈Ω 1− . s J J +Jz n J (1) n s (cid:18) (cid:19) Therefore,theAharonov(cid:21)Bohme(cid:27)e tleadstoperiodi (cid:29)u tuationsin theresistan eoftype-I super ondu tors in the mixed state. J ≃ J Model and super ondu ting urrent. (cid:21) In the mixed state with 2, the dynami s of the super ondu ting (cid:29)u tuations at the inner ylinder surfa e is des ribed by the time- dependent, linear Ginzburg(cid:21)Landau equations with Langevin for es. In dimensionless ylin- ρ,φ,z dri al oordinates they read [7(cid:21)9℄ ∂Ψ −Ψ+LΨ=f(ρ,ϕ,z,t) ∂t , (2) with the di(cid:27)erential operator 2 2 1 ∂ ∂ 1 ∂ iγ iδ ∂ iβ 2 L=− ρ − − ρ− − + ρ +iǫt ρ∂ρ ∂ρ ρ∂ρ 2 ρ ∂z 2 (3) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) and the Gaussian (cid:29)u tuations 1 hf(ρ,ϕ,z,t)f∗(ρ′,ϕ′,z′,t′)i= δ(ρ−ρ′)δ(ϕ−ϕ′)δ(z−z′)δ(t−t′) ρ (4) ǫ β γ δ The dimensionless parameters , , and are given by 2eξ 2eH ξ2 H ǫ= E γ = a = a ¯hν , ¯hc0 H , 4eξ3J eΦ Φ 2 β = ¯h 2R2 , δ = ¯hc0aπ = Φa0 . (5) 0 ξ = ξ(T) ν = 8k (T −T)/(π¯h) e is the oheren e length, B is the relaxation frequen y, and m E and aretheele tron hargeandmass,respe tively. istheele tri al(cid:28)eldwhi hdrivesthe J = J +Jz z ǫto≪tal1 urrent n s in -dire tion. For type-I super ondu torsJwza≪s sJhown in [4℄ that . Using the linearized Ginzburg(cid:21)Landau equations implies that s . Thegeneralexpressionforthetotallongitudinal(cid:29)u tuation urrentis al ulatedalongthe lines of [4,9℄ and gives the result ∞ 2eTk ∂λ nmk Jzs = πǫ¯hB dk ∂k Fnm(k), (6) nm Z X−∞ Catrin Ellenberger et al.: Ma ros opi Aharonov(cid:21)Bohm Effe t 3 with ∞ k 2 Fnm(k)= dτ exp τ − λnmk′ dk′ ǫ   . (7) Z0 k−Zτ    λ L k = k +ǫt k nmk z z is the lowest eigenvalue of as a fun tion of where is the wavenumber z λ nmk ve tor in -dire tion. The spe trum Rn=0 ,mank b∼eρo|bmt|aei−nαedρ2with the help of a variψational method, whi h starts from the ansatz for the radial part of . We n=0 α may restri t ourselves to the dominant ontribution, [10℄; is a variational parameter whi hdeterminestheradialextensionofthesuper ondu tingregion[4,9℄. Fromthevariation prin iple we then (cid:28)nd for λm,km =λo0p,mt,k β2 λ =−(m−δ)γ+4α(|m−δ|+1)− (|m−δ|+1), mkm 16α2 (8) with γ2+4k β β2(|m−δ|+2) m 2− − =0 8α2 8α3 , (9) −β(|m−δ|+1) k = m 4α . (10) The riti al urrent an be evaluated analyti ally in the vi inity of the riti al urve [8℄ Jz but for our further analysis expli it expressions for s are not required. We merely state that the experimental parameters an be tuned in su h a way that the (cid:29)u tuation urrent is severalper entofthe total urrent,i.e., the resistan e(cid:29)u tuationsa ordingto (1) shouldbe measurable. J (H ,Φ ) Se ond riti al urrent. (cid:21) Inourtheory, the riti al urrent 2 a a abovewhi hthe super ondu ting (cid:29)u tuations vanish is determined by the ondition [λ (β,γ,δ)]=1. Mmin m,km (11) λ If the minimum over all m,km was noti eably smaller than unity the orresponding super- urrentwouldbe omesolargethat theuseofalinearizedGinzburg(cid:21)Landauequationswould λ not have been justi(cid:28)ed. If the minimum over all m,km was substantially larger than unity Jz s wouldbe tiny. Our theory appliesto the transition regionwhere the super urrentis small but measurable. J Solving (11) for 2 leads to the se ond riti al urrent as a fun tion of the external magneti (cid:28)eld and applied (cid:29)ux in the interior of the ylinder. In SI units we (cid:28)nd: H Φ c2R2¯h 0 J 2 Ha Φ0 = β 2 4eξ3 (cid:18) 2 (cid:19) 3 c2R2¯h H 2 1 0 3 = eξ3 "A 1+s1−(cid:18)H a2(cid:19) 48A2 (12) 2 2  1/2 H A H 1 −(cid:18)H a2(cid:19) 161+s1−(cid:18)H a2(cid:19) 48A2# ,   where 1+(m−δ)γ A= 6(|m−δ|+1) . (13) 4 EUROPHYSICSLETTERS δ m J For a given (cid:29)ux , in (13) is the integer whi h gives the minimal 2 [8℄. Figure 1 gives a J γ δ three-dimensional plot of 2 as a fun tion of (external (cid:28)eld) and ( entral (cid:29)ux). β (γ,δ) R ≪ξ Figure 1 (cid:21) The normalizedse ond riti al urrent 2 for i . The se ond riti al urrent an be almost halved by the appli ation of a suitable ve - tor potential even if no magneti (cid:28)eld is present. This is a ma ros opi realization of the Aharonov-Bohm e(cid:27)e t. Con lusions. (cid:21) In this work we have studied the super urrent in a hollow ylinder of type-I super ondu ting material in the presen e of an external magneti (cid:28)eld and a (cid:29)ux line onthe ylinderaxis. We haveshownthat the se ond riti al urrent, abovewhi h(cid:29)u tuation super ondu tivity breaks down, periodi ally hanges as a fun tion of the applied (cid:29)ux, by as mu h as 50 per ent in the absen e of an external (cid:28)eld. These Aharonov(cid:21)Bohm os illations lead to a periodi hange of the resistan e of the ylinder, see (1). The latter are measur- able be ause the urrents due to the super ondu ting (cid:29)u tuations are sizable, of the order of a few per ent of the total urrent. Therefore, a suitably tuned experiment with type-I super ondu ting ylindersshouldbeabletoverifytheAharonov(cid:21)Bohme(cid:27)e tbyma ros opi resistan e measurement. ∗∗∗ We thank F. Rothen and M. Pae h for useful dis ussions. Referen es [1℄ London F., Super(cid:29)uids I.(Wiley, New York)1950. [2℄ LandauL.D.,private ommuni ationwithD.Shoenberg;see: D.ShoenbergSuper ondu tivity. Cambridge: Cambridge UniversityPress, 1938; page 59. Catrin Ellenberger et al.: Ma ros opi Aharonov(cid:21)Bohm Effe t 5 [3℄ Landau I.L.andSharvin Yu.V.,Pis'maZh.Eksp.Teor.Fiz.,10(1969)192andJETPLett., 10 (1969) 121. [4℄ Andreev A.F. and Bestgen W., Zh. Eksp. Teor. Fiz., 10 (1973) 453 and Sov. Phys. JETP, 37 (1973) 942. [5℄ Andreev A.F., Pis'ma Zh. Eksp. Teor. Fiz., 10 (1969) 453 and JETP Lett., 10 (1969) 291. [6℄ Bestgen W., Zh. Eksp. Teor. Fiz.,76 (1979) 566 and Sov. Phys. JETP, 49 (1979) 285. [7℄ Bestgen W., Sol. State Commun.,36 (1980) 441. [8℄ Ellenberger C., Ph.D. Thesis, Marburg 2001. [9℄ Bestgen W., Z. Phys., 269 (1974) 73. [10℄ Bestgen W. and Rothen F., Low. T. Phys., 77 (1989) 257.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.