NeuroImage104(2015)398–412 ContentslistsavailableatScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg MachinelearningframeworkforearlyMRI-basedAlzheimer'sconversion prediction in MCI subjects ElahehMoradia,AntoniettaPepeb,ChristianGaserc,HeikkiHuttunena,JussiTohkaa,⁎, fortheAlzheimer'sDiseaseNeuroimagingInitiative1 aDepartmentofSignalProcessing,TampereUniversityofTechnology,P.O.Box553,33101,Tampere,Finland bAixMarseilleUniversité,CNRS,ENSAM,UniversitédeToulon,LSISUMR7296,13397,Marseille,France cDepartmentofPsychiatry,UniversityofJena,Jahnstr3,D-07743,Jena,Germany a r t i c l e i n f o a b s t r a c t Articlehistory: Mildcognitiveimpairment(MCI)isatransitionalstagebetweenage-relatedcognitivedeclineandAlzheimer's Accepted1October2014 disease(AD).FortheeffectivetreatmentofAD,itwouldbeimportanttoidentifyMCIpatientsathighriskforcon- Availableonline12October2014 versiontoAD.Inthisstudy,wepresentanovelmagneticresonanceimaging(MRI)-basedmethodforpredicting theMCI-to-ADconversionfromonetothreeyearsbeforetheclinicaldiagnosis.First,wedevelopedanovelMRI Keywords: biomarkerofMCI-to-ADconversionusingsemi-supervisedlearningandthenintegrateditwithageandcognitive Lowdensityseparation measuresaboutthesubjectsusingasupervisedlearningalgorithmresultinginwhatwecalltheaggregate Mildcognitiveimpairment biomarker.Thenovelcharacteristicsofthemethodsforlearningthebiomarkersareasfollows:1)Weuseda Featureselection Supportvectormachine semi-supervisedlearningmethod(lowdensityseparation)fortheconstructionofMRIbiomarkerasopposed Magneticresonanceimaging tomoretypicalsupervisedmethods;2)WeperformedafeatureselectiononMRIdatafromADsubjectsand Classification normalcontrolswithoutusingdatafromMCIsubjectsviaregularizedlogisticregression;3)Weremovedthe Semi-supervisedlearning agingeffectsfromtheMRIdatabeforetheclassifiertrainingtopreventpossibleconfoundingbetweenADand Alzheimer'sdisease agerelatedatrophies;and4)WeconstructedtheaggregatebiomarkerbyfirstlearningaseparateMRIbiomarker ADNI andthencombiningitwithageandcognitivemeasuresabouttheMCIsubjectsatthebaselinebyapplyingaran- Earlydiagnosis domforestclassifier.Weexperimentallydemonstratedtheaddedvalueofthesenovelcharacteristicsin predictingtheMCI-to-ADconversionondataobtainedfromtheAlzheimer'sDiseaseNeuroimagingInitiative (ADNI)database.WiththeADNIdata,theMRIbiomarkerachieveda10-foldcross-validatedareaunderthe receiveroperatingcharacteristiccurve(AUC)of0.7661indiscriminatingprogressiveMCIpatients(pMCI) fromstableMCIpatients(sMCI).OuraggregatebiomarkerbasedonMRIdatatogetherwithbaselinecognitive measurementsandageachieveda10-foldcross-validatedAUCscoreof0.9020indiscriminatingpMCIfrom sMCI.TheresultspresentedinthisstudydemonstratethepotentialofthesuggestedapproachforearlyADdiag- nosisandanimportantroleofMRIintheMCI-to-ADconversionprediction.However,itisevidentbasedonour resultsthatcombiningMRIdatawithcognitivetestresultsimprovedtheaccuracyoftheMCI-to-ADconversion prediction. ©2014ElsevierInc.Allrightsreserved. Introduction dramaticincreaseintheprevalenceofAD,theidentificationofeffective biomarkersfortheearlydiagnosisandtreatmentofADinindividualsat Alzheimer'sdisease(AD),acommonformofdementia,occursmost highrisktodevelopthediseaseiscrucial.Mildcognitiveimpairment frequentlyinagedpopulation.Morethan30millionpeopleworldwide (MCI)isatransitionalstagebetweenage-relatedcognitivedeclineand sufferfromADand,duetotheincreasinglifeexpectancy,thisnumberis AD,andtheearliestclinicallydetectablestageofprogressiontowards expectedtotripleby2050(BarnesandYaffe,2011).Becauseofthe dementiaorAD(Markesbery,2010).Accordingtopreviousstudies (Petersenetal.,2009),asignificantproportionofMCIpatients,approx- ⁎ Correspondingauthor. imately10%to15%fromreferralsourcessuchasmemoryclinicsandAD E-mailaddress:jussi.tohka@tut.fi(J.Tohka). centers,willdevelopintoADannually.ADischaracterizedbytheforma- 1 DatausedinpreparationofthisarticlewereobtainedfromtheAlzheimer'sDisease tionofintracellularneurofibrillarytanglesandextracellularβ-amyloid NeuroimagingInitiative(ADNI)database(http://adni.loni.usc.edu).Assuch,theinvestiga- plaquesaswellasextensivesynapticlossandneuronaldeath(atrophy) torswithintheADNIcontributedtothedesignandimplementationofADNIand/orpro- withinthebrain(Mosconietal.,2007).Theprogressionoftheneuropa- videddatabutdidnotparticipateinanalysisorwritingofthisreport.Acompletelisting thologyinADcanbeobservedmanyyearsbeforeclinicalsymptomsof ofADNIinvestigatorscanbefoundathttp://adni.loni.usc.edu/wp-content/uploads/how_ to_apply/ADNI_Acknowledgement_List.pdf. thediseasebecomeapparent(BraakandBraak,1996;Delacourteetal., http://dx.doi.org/10.1016/j.neuroimage.2014.10.002 1053-8119/©2014ElsevierInc.Allrightsreserved. E.Moradietal./NeuroImage104(2015)398–412 399 Table1 Semi-supervisedclassificationofADusingADNIdatabase.AUC:areaunderthereceiveroperatingcharacteristiccurve,ACC:accuracy,SEN:sensitivity,SPE:specificity. Author Data Task Result(supervised) Result(semi-supervised) Yeetal.(2011) MRI, sMCIvs.pMCI AUC=71% AUC=73% 53AD,63NC, ACC=55.3% ACC=56.1% 237MCI SEN=88.2% SEN=94.1% SPE=42% SPE=40.8% FilipovychandDavatzikos(2011) MRI, sMCIvs.pMCI AUC=61% AUC=69% 54AD,63NC, SEN=78.8% SEN=79.4% 242MCI SPE=51% SPE=51.7% ZhangandShen(2011) MRI,PET,CSF ADvs.NC AUC=94.6% AUC=98.5% 51AD,52NC, 99MCI Batmanghelichetal.(2011) MRI, sMCIvs.pMCI AUC=61.5% AUC=68% 54AD,63NC, 238MCI 1999;Morrisetal.,1996;Serrano-Pozoetal.,2011;Mosconietal., techniquesoverthepastfewyears(Zhu,andGoldberg,2009)isrelated 2007).ADpathologyhasbeenthereforehypothesizedtobedetectable tothewidespreadofapplicationdomainswhereprovidinglabeleddata usingneuroimagingtechniques(Markesbery,2010).Amongdifferent ishardandexpensivecomparedtoprovidingunlabeleddata.Theprob- neuroimagingmodalities,MRIhasattractedasignificantinterestin lemstudiedinthiswork,predictingtheAD-conversioninMCIsubjects, ADrelatedstudiesbecauseofitscompletelynon-invasivenature,high isagoodexampleofthisscenariosinceMCIsubjectshavetobefollowed availability,highspatialresolutionandgoodcontrastbetweendifferent for several years after the data acquisition to obtain a sufficiently softtissues.Overthepastfewyears,numerousMRIbiomarkershave reliable diseaselabel (pMCI orsMCI).Fewrecentstudies(listedin beenproposedinclassifyingADpatientsindifferentdiseasestages Table1)haveinvestigatedtheuseofdifferentsemi-supervisedap- (Fanetal.,2008;Duchesneetal.,2008;Chupinetal.,2009;Querbes proaches for diagnosis of AD in different stages of the disease. In etal.,2009;Wolzetal.,2011;Hinrichsetal.,2011;Westmanetal., ZhangandShen(2011),MCIsubjects'datawereusedasunlabeled 2011a,b;Westmanetal.,2012;Choetal.,2012;Coupéetal.,2012; datatoimprovetheclassificationperformanceindiscriminatingAD Grayetal.,2013;Eskildsenetal.,2013;Guerreroetal.,2014;Wang versusNCsubjects.Theyachievedasignificantimprovement,theAUC etal.,2014).Despiteofmanyefforts,identifyingefficientAD-specific scoreincreasedfrom0.946to0.985,whichishighfordiscriminating biomarkersfortheearlydiagnosisandpredictionofdiseaseprogression ADvs.NCsubjects.Yeetal.(2011),FilipovychandDavatzikos(2011), isstillchallengingandrequiresmoreresearch. andBatmanghelichetal.(2011)usedADandNCsubjectsaslabeled Inthecurrentstudy,wepresentanovelMRI-basedtechniqueforthe dataandMCIsubjectsasunlabeleddataandpredicteddisease-labels earlydetectionofADconversioninMCIpatientsbyusingadvancedma- fortheMCIsubjects.Inallthesestudies,theimprovementinthepredic- chinelearningalgorithmsandcombiningMRIdatawithstandardneu- tiveperformanceofthemodelwassignificantoversupervisedlearning. ropsychologicaltestresults.Inmoredetail,weaimtopredictwhether ThebestclassificationperformanceindiscriminatingsMCIversuspMCI anMCIpatientwillconverttoADovera3yearperiod(thisisreferred usingonlyMRIdatawasachievedbyYeetal.(2011)withthearea asprogressiveMCIorpMCI)ornot(thisisreferredasstableMCIor underthereceiveroperatingcharacteristiccurve(AUC)equalto0.73 sMCI)usingonlydataatthebaseline.Thedatausedinthisworkis forpredictionofconversionwithin0–18monthperiod.Wehypothe- obtainedfromtheAlzheimer'sDiseaseNeuroimagingInitiative(ADNI) sizethattheclassificationperformanceofsemi-supervisedlearning database(www.loni.usc.edu/ADNI)anditincludesMRIscansandneu- approachescouldbeimprovedifMCIsubjectswhohavebeenfollowed ropsychologicaltestresultsfromnormalcontrols(NC),AD,andMCI upforlongenoughwouldbeusedaslabeleddata.Inthiswork,we subjectswithamatchedagerange.Recently,severalcomputational developasemi-supervisedclassifierforADconversionpredictionin neuroimagingstudieshavefocusedonpredictingtheconversionto MCIpatients based on lowdensityseparation (LDS) (Chapelle and ADinMCIpatientsbyutilizingvarioustypesofADNIdatasuchasMRI Zien,2005)andbyusingMRIdataofMCIsubjects.Ourresultsdemon- (e.g.Yeetal.,2011;FilipovychandDavatzikos,2011;Batmanghelich strateapplicabilityoftheproposedsemi-supervisedmethodinMRI etal.,2011),positronemissiontomography(PET)(ZhangandShen, basedADconversionpredictioninMCIpatientsbyachievingasignifi- 2011, 2012; Cheng et al., 2012; Shaffer et al., 2013), cerebrospinal cantimprovementcomparedtoastateoftheartsupervisedmethod fluid(CSF)biomarkers(Zhang andShen,2011;Cheng et al.,2012; (supportvectormachine(SVM)). Davatzikos etal.,2011; Shaffer et al., 2013),anddemographic and Weperformtwoprocessingstepsinbetweenourvoxelbasedmor- cognitiveinformation(seeTables1and7).Ourmethodisamulti-step phometrystylepreprocessing(Gaseretal.,2013)andthelearningof procedurecombiningseveralideasintoacoherentframeworkforAD theLDSclassifier.First,weremoveage-relatedeffectsfromMRIdata conversionprediction: beforetrainingtheclassifiertopreventtheconfoundingbetweenAD andage-relatedeffectstobrainanatomy.Previously,asimilartechnique 1. Semi-supervisedlearning,usingdatafromADandNCsubjectsto hasbeenusedfortheclassificationbetweenADandNCsubjects,but helpthesMCI/pMCIclassification thisstudyhasnotconsideredAD-conversionpredictioninMCIsubjects 2. Novelrandomforestbaseddataintegrationscheme (Dukartetal.,2011).Inaddition,theimpactofagewasstudiedrecently 3. Removalofagerelatedconfound. fordetectingAD(Coupéetal.,2012)aswellasforpredictingADinMCI Intheexperimentalsectionswewilldemonstratethatallthese patients(Eskildsenetal.,2013).Second,weperformfeatureselection provideasignificantcontributiontowardstheaccuracyofthecombined onMRIdataindependentlyoftheclassificationprocedureusingthe predictionmodel.Ourmethoddiffersinthefollowingaspectsfrom auxiliarydatafromADandNCsubjects.Featureselectionisanessential earlierstudies. partofthecombinedproceduresincethenumberoffeatures(29,852) Most of the earlier studies were based on supervised learning available after the image preprocessing significantly exceeds the methods,whereonlylabeleddatasamplesareusedforlearningthe numberofsubjects.WeassumethatADvs.NCclassificationisasimpli- model.Semi-supervisedlearning(SSL)approachesareabletouseunla- fiedversionofthepMCIvs.sMCIandthesamefeaturesthataremost beleddatainconjunctionwithlabeleddatainalearningprocedurefor usefulforthesimpleproblemareusefulforthecomplexone.Thisidea improving the classification performance. The great interest in SSL is implemented by applying regularized logistic regression (RLR) 400 E.Moradietal./NeuroImage104(2015)398–412 (Friedmanetal.,2010)onMRIdataofADandNCsubjectsforfinding recruitedfrom over50sitesacrosstheU.S.andCanada.Theinitial the image voxels that are best discriminated between AD and NC goalofADNIwastorecruit800subjectsbutADNIhasbeenfollowed subjects.Next,weusetheseselectedvoxelsforpredictingconversion byADNI-GOandADNI-2. to AD within MCI patients. Most of existing studies incorporating Todatethesethreeprotocolshaverecruitedover1500adults,ages featureselectionrelyonlyonadatasetofMCIsubjectsbyusingitfor 55to90,toparticipateintheresearch,consistingofcognitivelynormal featureselectionandclassificationtask.Inparticular,previousstudies olderindividuals,peoplewithearlyorlateMCI,andpeoplewithearly (Yeetal.,2011,2012;Janoušováetal.,2012)haveconsideredfeature AD.Thefollow-updurationofeachgroupisspecifiedintheprotocols selectionbasedonRLRforMCI-to-ADconversionprediction,butthe for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for featureselectionwasperformedwiththedatafromMCIsubjectsnot ADNI-1andADNI-GOhadtheoptiontobefollowedinADNI-2.For utilizingdatafromADandNCsubjects.AuxiliarydatafromADandNC up-to-dateinformation,seewww.adni-info.org. subjectstoaidtheclassificationofMCIsubjectshavebeenconsidered DatausedinthisworkincludeallsubjectsforwhombaselineMRIdata byChengetal.(2012)inadomaintransferlearningmethod.Briefly, (T1-weightedMP-RAGEsequenceat1.5T,typically256×256×170voxels themethodutilizescross-domainkernelbuildfromtargetdata(MCI withthevoxelsizeofapproximately1mm×1mm×1.2mm),atleast subjects)andauxiliarydata(AD andNC)subjectstolearnalinear moderatelyconfidentdiagnoses(i.e.confidenceN2),hippocampusvol- supportvectormachineclassifier.AsChengetal.reducedthenumber umes(i.e.volumesofleftandrighthippocampi,calculatedbyFreeSurfer offeaturesto93bypartitioningeachMRIinto93regionsofinterest Version 4.3), and test scores in certain cognitive scales (i.e. ADAS: anddidnotconsiderfeatureselection,theapproachtousetheauxiliary Alzheimer's Disease Assessment Scale, range 0–85; CDR-SB: Clinical dataisdifferentfromourapproach. DementiaRating‘sumofboxes’,range0–18;MMSE:Mini-MentalStateEx- WeintegrateMRIdatawithageandcognitivemeasurements,also amination,range0–30)wereavailable. acquiredatthebaseline,forimprovingthepredictiveperformanceof For the diagnostic classification at baseline, 825 subjects were MCI-to-ADconversion.Asopposedtoseveralotherstudiescombining groupedas(i)AD(Alzheimer'sdisease),ifdiagnosiswasAlzheimer's MRIwithothertypesofdata(Davatzikosetal.,2011;ZhangandShen, diseaseatbaseline(n=200);(ii)NC(normalcognitive),ifdiagnosis 2012;Shafferetal.,2013;Chengetal.,2012;Wangetal.,2013),wepur- wasnormalatbaseline(n=231);(iii)sMCI(stableMCI),ifdiagnosis poselyavoidusingCSForPETbasedbiomarkers,theformerbecauseit wasMCIatallavailabletimepoints(0–96months),butatleastfor requireslumbarpuncture,whichisinvasiveandpotentiallypainfulfor 36months(n=100);(iv)pMCI(progressiveMCI),ifdiagnosiswas thepatient,andthelatterbecauseofitslimitedavailabilitycompared MCIatbaselinebutconversiontoADwasreportedafterbaselinewithin toMRI,aswellasitscostandradiationexposure(Musieketal.,2012). 1,2or3years,andwithoutreversiontoMCIorNCatanyavailable Previously,thecombinationofMRIderivedinformationandcognitive follow-up(0–96months)(n=164);(v)uMCI(unknownMCI),ifdiag- measurementshasbeenconsideredbyYeetal.(2012)whotrainedan nosiswasMCIatbaselinebutthesubjectsweremissingadiagnosisat RLRclassifierwithstandardcognitivemeasurementsandvolumesof 36monthsfromthebaselineorthediagnosiswasnotstableatallavail- certainregionsofinterestasfeaturesandCasanovaetal.(2013)who abletimepoints(n=100).From164pMCIsubjects,68subjectswere combinedoutputsoftwoclassifiers,onetrainedbasedonMRIandthe convertedtoADwithinthefirst12months,69subjectswereconverted othertrainedbasedoncognitivemeasurements,basedonasum-rule toADbetween12and24monthsoffollow-upandtheremaining27 fortheclassifiercombination.InordertousemoreefficientlyMRIand subjectswereconvertedtoADbetween24and36monthfollow-up. basic(ageandcognitive)measures,wedevelopwhatwecallanaggre- DetailsofthecharacteristicsoftheADNIsampleusedinthisworkare gatebiomarkerbyutilizingtwodifferentclassifiers,i.e.LDSandrandom presentedinTable2.ThesubjectIDstogetherwiththegroupinforma- forest(RF),indifferentstagesoftheprocess.Wefirstderiveasinglereal tionisprovidedinthesupplement(TablesS2-S5,seealsohttps:// valuedbiomarkerbasedonMRIdatausingLDS(ourbiomarker)and sites.google.com/site/machinelearning4mcitoad/ for MATLAB files). thereafterusethisasafeaturefortheaggregateclassifier(RF).We TheconversiondatawasdownloadedonApril2014. will highlight the importance of using a transductive classifier (e.g.,LDS)insteadofaninductiveone(e.g.,astandardSVM)during thefirststageofthelearningprocessandprovideevidenceoftheeffec- Imagepreprocessing tivenessoftheaggregatebiomarkerfortheADconversionpredictionin AsdescribedinGaseretal.(2013),preprocessingoftheT1-weighted MCIpatientsbasedonMRI,ageandcognitivemeasuresatthebaseline. imageswasperformedusingtheSPM8package(http://www.fil.ion.ucl. ac.uk/spm)andtheVBM8toolbox(http://dbm.neuro.uni-jena.de),run- Materialsandmethods ningunderMATLAB.AllT1-weightedimageswerecorrectedforbias-field inhomogeneities,thenspatiallynormalizedandsegmentedintogray ADNIdata matter(GM),whitematter,andcerebrospinalfluid(CSF)withinthe samegenerativemodel(AshburnerandFriston,2005).Thesegmenta- DatausedinthisworkisobtainedfromtheAlzheimer'sDiseaseNeu- tionprocedurewasfurtherextendedbyaccountingforpartialvolume roimagingInitiative(ADNI)database(http://adni.loni.usc.edu/).The effects(Tohkaetal.,2004),byapplyingadaptivemaximumaposteriori ADNIwaslaunchedin2003bytheNationalInstituteonAging(NIA), estimations(Rajapakseetal.,1997),andbyusinganhiddenMarkov the National Institute of Biomedical Imaging and Bioengineering random field model (Cuadra et al., 2005) as described previously (NIBIB),theFoodandDrugAdministration(FDA),privatepharmaceuti- calcompaniesandnon-profitorganizations,asa$60million,5-year (Gaser,2009).Thisprocedureresultedinmapsoftissuefractionsof public–privatepartnership.TheprimarygoalofADNIhasbeentotest WMandGM.OnlytheGMimageswereusedinthiswork.Following whetherserialMRI,PET,otherbiologicalmarkers,andclinicalandneu- ropsychologicalassessmentcanbecombinedtomeasuretheprogres- sion of MCI and early AD. Determination of sensitive and specific Table2 markersofveryearlyADprogressionisintendedtoaidresearchers Characteristicsofdatasetsusedinthiswork.Therewasnostatisticallysignificantdiffer- enceinage(permutationtest,pN0.05)norgender(proportiontest,pN0.05)between andclinicianstodevelopnewtreatmentsandmonitortheireffective- differentMCIgroups. ness,aswellaslessenthetimeandcostofclinicaltrials. TheprincipalinvestigatorofthisinitiativeisMichaelW.Weiner,MD, AD NC pMCI sMCI uMCI VAMedicalCenterandUniversityofCalifornia—SanFrancisco.ADNIis No.ofsubjects 200 231 164 100 130 theresultofeffortsofmanyco-investigatorsfromabroadrangeofaca- Males/females 103/97 119/112 97/67 66/34 130/81 Agerange 55–91 59–90 55–89 57–89 54–90 demicinstitutionsandprivatecorporations,andsubjectshavebeen E.Moradietal./NeuroImage104(2015)398–412 401 Fig.1.Semi-supervisedclassificationscheme.Dashedarrowsindicatedatafedtoclassificationprocesswithoutanylabelinformation(incontrasttosolidarrowsindicatingtrainingdata withlabelinformation).Thetestsubsetisusedintheclassificationprocesswithoutanylabelinformation. thepipelineproposedbyFrankeetal.(2010),theGMimageswere (Huttunenetal.,2012,2013;Ryalietal.,2010)forthemulti-voxelpat- processed with affine registration and smoothed with 8-mm full- ternanalysesoffunctionalneuroimagingdataaswellasforADrelated width-at-half-maximumsmoothingkernels.Aftersmoothing,images studies using structural MRI data (Ye et al., 2012; Casanova et al., wereresampledto4mmisotropicspatialresolution.Thisprocedure 2011a,b,2012;Shenetal.,2011;Janoušováetal.,2012).AstheRLRpro- generated,foreachsubject,29,852alignedandsmoothedGMdensity cedureisasupervisedlearningmethod,theinputhastobefullylabeled valuesthatwereusedasMRIfeatures. data.Tothisaim,weappliedRLRonMRIdataofADandNCsubjectsfor determiningasubsetoffeatures(voxels)withthehighestaccuracyin MRIbiomarker discriminatingthetwoclasses.Theselectedvoxels(andonlythem) werethenusedforpredictingconversiontoADinMCIpatients.Note Asapreprocessingoperation,weremovedtheeffectsofnormal thatthiswayweavoidedusingdataaboutMCIsubjectsforfeature agingfromtheMRIdata.Therationaleforthisisrelatedtothefact selectionandthereforewecanusealltheMCIdataforlearningtheclas- thattheeffectsofnormalagingonthebrainarelikelytobesimilar sifier.Thecardinalityoftheselectedsubsetalongtheregularization (equallydirected)withtheeffectsofAD,whichcanleadtoanoverlap pathwasdeterminedusing10-foldcrossvalidation,whichestimated between the brain atrophies caused by age and AD. This, in turn, themostdiscriminativesubsetamongthecandidatesfoundbythe would bring a possible confounding effect on the estimation of RLR.ThedetailsoftheRLRapproacharedescribedinAppendixB. disease-specificdifferences(Frankeetal.,2010;Dukartetal.,2011). Thesecondstagetrainsthefinalsemi-supervisedLDSclassifier.At Weestimatedtheage-relatedeffectsontheGMdensitiesofNCsubjects thisstage,alsotheunlabeleduMCIsampleswerefedtotheclassifier, byusingalinearregressionmodelthatissimilartoamethodappliedin after the extraction of the most discriminative features. Since the earlierstudies(Dukartetal.,2011;Scahilletal.,2003).Onceestimated, LDS approach is based on the transductive SVM classifier, also the theage-relatedeffectswereremovedfromtheMRIdataofeachsubject hyperparameters of the transductive SVMhave to be selected.The beforetrainingtheclassifiers.Formoredetails,seethealgorithmic choiceoftheSVMparameterswasdoneusinganestedcrossvalidation descriptioninAppendixB. approach,whereeachofthecrossvalidationsplitsofthefeatureselec- Theoverallstructureoftheproposedclassificationmethodisillus- tionstagewasfurthersplitintosecondlevelof10crossvalidationfolds. tratedinFig.1.Themethodconsistsoftwofundamentalstages:afea- Inthiswaywewereabletoestimatetheperformanceofthecomplete tureselectionstage,thatusesaregularizedlogisticregression(RLR) frameworkandsimulatethefinaltrainingprocesswithalldataafter algorithm to select a good subset of MRI voxels for AD conversion thehyperparametershavebeenselected. prediction;andaclassificationstagethatappliesasemi-supervised TheLDSapproachforsemi-supervisedlearning(seeAppendixAand lowdensityseparation(LDS)methodtoproducethefinalprediction. ChapelleandZien,2005)integratesunlabeleddataintothetraining The LDS relies on a transductive support vectormachineclassifier, procedure. The algorithm assumes that the classes (e.g., pMCI and whosehyperparametersarealsolearnedfromthedata.Notethat,for sMCIsubjects)formhighdensityclustersinthefeaturespace,and eachtestsubject,insteadofthediscreteclass,anLDSreturnsthevalue thattherearelowdensityareasbetweentheclasses.Thiswaythe ofthecontinuousdiscriminantfunctiond∈ℝthatwecallMRIbiomark- labeledsamplesdeterminetheroughshapeofthedecisionrule,while er.Ifdb0thenthesubjectispredictedassMCIandotherwisepMCI; the unlabeled samples fine-tune the decision rule to improve the moredetailsarepresentedinAppendixA. performance.Atypicalgainduetointegratingunlabeleddatavaries More specifically, the first stage of the classification framework fromafewpercenttomanifolddecreaseinpredictionerror.TheLDS selectsthemostinformativevoxels(features)amongallMRIvoxels isatwostepalgorithm,whichfirstderivesagraph-distancekernelfor (features)whilediscardingnon-informativeones.Thefeatureselection enhancing the cluster separability and then it applies transductive usestheregularizedlogisticregressionframework(Friedmanetal., supportvectormachine(TSVM)forclassifierlearning.SSLmethodspre- 2010)thatproducesapathoffeaturesubsetswithdifferentcardinalities viously applied to MCI-to-AD conversion prediction have included (calledregularizationpath),andhasbeenusedwidelyinpreviousworks TSVM(FilipovychandDavatzikos,2011)andLaplacianSVM(Yeetal., 402 E.Moradietal./NeuroImage104(2015)398–412 2011).BasedonexperimentalresultsbyChapelleandZien(2005),LDS permutingthevaluesofeachvariableatatime,andestimatingthede- canbeseenasanimprovedversionofTSVMandrelatedtoLaplacian creaseinaccuracyonoutofbagsamples(Breiman,2001;Liawand SVM.Moreover,wehaveprovidedevidencethattheLDSoverperforms Wiener,2002).Theoverviewoftheaggregatebiomarkeranditsevalu- thesemi-superviseddiscriminantanalysis(Caietal.,2007)inMCI-to- ationisshowninFig.2.PreviousapplicationsofRFsinthecontextofAD AD conversion prediction in our recent conference paper (Moradi classificationincludeLlanoetal.(2011)whoappliedRFstogeneratea etal.,2014).Finally,wenotethatasthemajorityofthesemi-supervised newweightingofADASsubscores. classifiersincludingTSVMs,LDSappliestransductivelearning,practical- lymeaningthattheMRIdata(butnotthelabels)ofthetestsubjectscan Performanceevaluation beusedforlearningtheclassifier.Wepointoutthatthisisperfectly validanddoesnotleadtodouble-dippingasthetestlabelsarenot For the evaluation of classifier performance and estimation of usedforlearningtheclassifier.Foraclearexplanationofthedifferences theregularizationparameters,weusedtwonestedcross-validation between transductive and inductive machine learning algorithms, loops(10-foldforeachloop)(Huttunenetal.,2012;Ambroiseand we refer to Gammerman et al. (1998) and relation between semi- Mclachlan,2002).First,anexternal10-foldcross-validationwasimple- supervisedandtransductivelearningisdiscussedindetailbyChapelle mented in which labeled samples were randomly divided into 10 etal.(2006). subsetswiththesameproportionofeachclasslabel(stratifiedcross- Inordertoexaminetheapplicabilityofthesemi-supervisedmethod, validation).Ateachstep,asinglesubsetwasleftfortestingandremain- i.e., LDS, we applied it on the MRI data with and without feature ingsubsetswereusedfortraining.Againthetrainsetwasdividedinto selectionandcompareditsperformancewiththeperformanceofits 10subsetsthatwereusedfortheselectionofclassifierparameterslisted supervisedcounterpart,thesupportvectormachine(SVM).SVMisa below. The optimal parameters were selected according to the maximummarginclassifierthatiswidelyusedinsupervisedclassifica- maximumaverageaccuracyacrossthe10-foldoftheinnerloop.The tionproblems.InSVM,onlylabeledsamplesareusedfordetermining performanceoftheclassifierwasthenevaluatedbasedonAUC(area decisionboundarybetweendifferentclasses. underthereceiveroperatingcharacteristiccurve),accuracy(ACC,the numberofcorrectlyclassifiedsamplesdividedbythetotalnumberof Aggregatebiomarker samples),sensitivity(SEN,thenumberofcorrectlyclassifiedpMCIsub- jectsdividedbythetotalnumberofpMCIsubjects)andspecificity(SPE, InordertoimproveADconversionpredictioninMCIpatients,we thenumberofcorrectlyclassifiedsMCIsubjectsdividedbythetotal developedamethodfortheintegrationofthebaselineMRIdatawith numberofsMCIsubjects)usingthetestsubsetoftheouterloop.The ageandcognitivemeasurementsacquiredatbaseline.Themeasure- poolingstrategywasusedforcomputingAUCs(Bradley,1997).The ments we considered were Rey's Auditory Verbal Learning Test reportedresultsintheResultssectionareaveragesover100nested (RAVLT), Alzheimer's Disease Assessment Scale—cognitive subtest 10-foldCVrunsinordertominimizetheeffectoftherandomvariation. (ADAS-cog),MiniMentalStateExamination(MMSE),ClinicalDementia TocomparethemeanAUCsoftwolearningalgorithms,wecomputeda Rating—SumofBoxes(CDR-SB),andFunctionalActivitiesQuestionnaire p-valueforthe100AUCscoreswithapermutationtest. (FAQ).Thesestandardcognitivemeasurements,whicharewidelyused ToperformthesurvivalanalysisandestimatethehazardrateforAD inassessingcognitiveandfunctionalperformanceofdementiapatients, conversion in MCI subjects, Cox proportional hazard model was areexplainedintheADNIGeneralProceduresManual.2Therationale employed(seeMcEvoyetal.,2011;Gaseretal.,2013;Daetal.,2014 was to include the cognitive assessments that are inexpensive to forpreviousapplicationsofthesurvivalanalysisinthesMCI/pMCIclas- acquireandavailablefortheMCIsubjectsinthisstudy.Weonlyconsid- sification).Thepredictorwastherealvaluedoutputoftheclassifier ered the composite scores of the measurements that often include (i.e., the value of the discriminant function in the case of LDS and severalsubtests.WedidnotconsiderCSForPETmeasurementsfor estimated probability of conversion in the case of RF; see the MRI thereasonsoutlinedintheIntroductionsection.Sincetheeffectsof biomarker and Aggregate biomarker sections) and the conversion normalagingontheMRIdatawereremoved,agewasagainusedasa timetoADinMCIsubjectswastakenasthetime-to-eventvariable. predictor,becauseitisariskfactorforAD. Thedurationoffollow-upwastruncatedat3yearsforsMCIsubjects ThewaythatMRIdataiscombinedwiththecognitivemeasure- anduMCIsubjectswerenotincludedintheanalysis.TheCoxmodels mentsiscrucialtoachieveagoodestimationaccuracyoftheMCI-to- implementedbyMATLAB'scoxphfit-functionwereadjustedforage ADconversionprediction.Thesimplestwaywouldbetocombinethe andgender.TheCox-regressionwasperformedinthecross-validation MRIdata(onlyselectedvoxels)andcognitivemeasurementsasalong frameworksimilarlyasdescribedaboveforAUC. featurevectorwhichisastheinputoftheclassifier.Wewillreferto thisasdataconcatenation.However,thisisnotthebestway,because Implementation ofthedifferentnaturesofMRIdata(closetocontinuous)andcognitive measurements(mainlydiscrete)(Zhangetal.,2011).Therefore,we Theimplementationofelastic-netRLRforfeatureselectionwasdone proposeasimpleclassifierensembleforconstructingtheaggregate by using the GLMNET library (http://www-stat.stanford.edu/~tibs/ biomarker.Ineffect,weusedtheMRIbiomarker,derivedusingLDS glmnet-matlab/).Thesupportvectormachine(SVM) withaRadial classifier,asafeature/predictorfortheaggregatebiomarker.TheMRI BasisFunction(RBF)kernelwasusedassupervisedmethodforacom- featurewascombinedwithageandcognitivemeasurementsandused parisonwithLDS.TheRBFkernelwasusedwiththeSVMasthiswidely asinputfeaturesfortherandomforest(RF)classifier.AnRFconsists usedkernelclearlyoutperformedthelinearkernelinapreliminarytest- ofacollectionofdecisiontreesalltrainedwithdifferentsubsetsofthe ingandlinearkernelscanbeseenasaspecialcaseoftheRBFkernels originaldata.AveragingoftheoutputsofindividualtreesrendersRFs (KeerthiandLin,2003).TheimplementationofSVMwasdoneusing toleranttooverlearning,whichisthereasonfortheirpopularityinclas- LIBSVM(http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html)run- sificationandregressiontasksespeciallyintheareaofbioinformatics. ningunderMATLAB.TheimplementationofLDSwasdonebyusinga Note that anRF is anensemble learning method that outputsvote publiclyavailableMATLABimplementation(http://olivier.chapelle.cc/ countsfordifferentclassessotheaggregatebiomarkervalueapproxi- lds/). The SVM has two parameters, C (soft margin parameter, see matestheprobabilityofconvertingtoAD.Randomforestsareoften AppendixA)andγ(parameterforRBFkernelfunction).Fortuning used for ranking the importance of input variables by randomly theseparameters,agridsearchwasused,i.e.,parametervalueswere variedamongthecandidateset{10−4,10−3,10−2,10−1,100,101, 2 http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual. 102, 103, 104} and each combination was evaluated using cross- pdf. validationasoutlinedabove.LDShasmoreparameterstotune.Since E.Moradietal./NeuroImage104(2015)398–412 403 Fig.2.Workflowfortheaggregatebiomarkeranditscross-validationbasedevaluation.ForcomputingtheoutputofLDSclassifierfortestsubjects,thetestsubsetisusedinthelearning procedurewithoutanylabelinformation(shownwithdashedarrow). tuningmanyparameterswithgridsearchisimpractical,weconsidered Results onlythemostcriticalparameters,i.e.,C(softmarginparameter)andρ (softeningparameterforgraphdistancecomputation)ingridsearch. MRIbiomarker FortuningparameterC,itsvaluewasvariedamongthecandidateset {10−2,10−1,100,101,102}andforparameterρamongthecandidate Inthissection,weconsidertheexperimentalresultsobtainedusing set{1,2,4,6,8,10,12}.Fortheotherparameters,defaultvalueswere the biomarker based on solely MRI data as described in the MRI usedexceptthatthe10-nearestneighborgraphswereusedfortheker- biomarkersection.Thefeatureselectionreducedthenumberofvoxels nelconstruction(insteadoffullyconnectedgraph)andtheparameterδ inMRIdatafrom29,852to309voxels.Fig.3showsthelocationsof in(ChapelleandZien,2005)wassettobe1.TheMRIfeatureswerenor- theselected309voxelsoverlaidonthestandardtemplate.Supplemen- malizedtohaveunitvariancebeforetheclassification.Theimplementa- taryTableS1providestherankingofthebrainregionsofthelociofthe tionofRFwastheMATLABportoftheR-codeofLiawandWiener selectedvoxelsaccordingtotheAutomaticAnatomicalLabeling(AAL) (2002)availableathttp://code.google.com/p/randomforest-matlab/. atlas. It can be observed that the selected voxels were spread all Allparametersweresettotheirdefaultvalues.TheCPUtimefortraining overthebrain(includingthehippocampus,thetemporalandfrontal asingleclassifier(includingparameterselectionandperformanceeval- lobes, the cerebellar areas, as well as the amygdala, insula, and uationusingcross-validation)wasintheorderoftensofminutesonan parahippocampus).Theselocationshavebeenpreviouslyreportedin IntelCore2Duoprocessor,3.00GHz,4GBRAM.Theimageprocessing studiesconcerningthebrainatrophyinAD(Weineretal.,2012).The oftheImagepreprocessingsectionrequiredonaverage8minpersingle neuropathologyofADistypicallyrelatedtochanges(e.g.atrophythat image(3.4GHzIntelCorei7,8GBRAM). reflectsthelossandshrinkageofneurons)intheentorhinalcortex, Fig.3.Thelocationsofselectedvoxelsbyelastic-netRLRwiththehighestaccuracyindiscriminatingADandNCsubjectswithinthebraininMNI(MontrealNeurologicalInstitute)space. Oneofthevoxelsappearstobeslightlyoutsidethebrainduetotheeffectofsmoothingandthelargervoxelsizeofthepre-processeddatacomparedtothevoxelsizeofthetemplate. 404 E.Moradietal./NeuroImage104(2015)398–412 thatprogressthentothehippocampus,thetemporal,frontalandparie- 0.7661to0.6833,pb0.0001).Whenthefeatureselectionwasdone tal areas, before ultimately diffusing to the whole cerebral cortex combining AD and pMCI subjects into one class, and NC and sMCI (Casanovaetal.,2011b;Salawuetal.,2011).Thesebrainstructures, subjectsintoother,theperformancedidnotsignificantlydifferfrom especially the hippocampus, frontal and temporal areas have been thesuggestedapproach(AUCsof0.7661vs.0.7692).Asthisapproach foundtobeeffectiveindiscriminatingbetweenADpatientsandNC necessitates an additional CV loop, the suggested feature selection (forareviewseeCasanovaetal.,2011bandreferencestherein).Also, methodremainedpreferable. patternsofneuropathologyincerebellarareashavebeenreportedin Weinvestigatedhowmuchunlabeleddataimprovedtheclassifica- previousstudies(SjöbeckandEnglund,2001). tionaccuracy.Forthis,wetrainedtheLDSclassifieralsowithoutdata WeappliedLDSontheMRIdatawithandwithoutfeatureselection fromuMCIsubjects.NotethattheLDSisatransductivelearningmethod andcompareditsperformancewiththeperformanceofitssupervised that uses the test MRI data (but not labels) as unlabeled data. As counterpart,thestandardSVM.Wealsoevaluatedtheimpactofremov- explainedintheMRIbiomarkersection,becausethelabelinformation ing age-related effects from the MRI data for the purpose of early ofthetestdatawasnotusedinthelearningprocess,thisdoesnot diagnosisofAD.Becausetheagewasusedasaparameterforremoving leadto‘double-dipping’or‘trainingonthetestingdata’problems,and age-relatedeffects,thebiomarkerwasbasedonMRIandageinforma- morespecifically,toupwardbiasedclassifierperformanceestimates tion.However,theagewasnotusedasafeatureinthelearningprocess. (ChapelleandZien,2005;Chapelleetal.,2006).Fig.4showsthebox Table3showstheresultsoftheMRIbiomarker.First,secondandthird plotsforAUC,ACC,SENandSPEofLDSandSVMmethodsbasedon rowsshowtheperformancemeasuresobtainedusingaSVMwithout MRIdata(withfeatureselectionandage-relatedeffectsremoved).In feature selection, with feature selection, and after removing age- thecaseofLDS,theresultsareshownwithandwithoututilizinguMCI relatedeffects,respectively.Thefourth,fifthandsixthrowsinTable3 dataasunlabeleddatainthelearningprocess.Asitcanbeseenfrom showtheperformancemeasuresobtainedbytheLDS.Theclassification theresults,addinguMCIdatasamplesimprovedclassificationperfor- accuracyofbothmethodswithoutfeatureselectionwasonlyabout manceslightly,buttheimprovementwasnotstatisticallysignificant chancelevel.Afterthefeatureselection,theclassificationperformance (p=0.3072).However,itincreasedthestabilityoftheclassifierby based on AUC and ACC obtained by both methods improved. The decreasingthevarianceinAUCsbetweendifferentcross-validation improvement (in AUC) was statistically significant for both LDS runs. The LDS method works based on the cluster assumption and (pb0.0001)andSVM(pb0.0001).Asaresult,theelastic-netRLR utilizesunlabeleddataforfindingdifferentclustersandplacingthe wasabletoselecttherelevantvoxelscorrespondingtoADinthehigh decisionboundaryinlowdensityregionsofthefeaturespace.When dimensionalMRIdata.Inaddition,featureselectionwasdoneindepen- theclusterassumptiondoesnothold,unlabeleddatapointsdonot dentlyoftheclassificationprocedure.UsingNCandADdatasetsfor carrysignificantinformationandcannotimprovetheresults(Chapelle featureselectionwasastrategythatallowedalargersamplesizefor and Zien, 2005). Also, the number of unlabeled data might be too thetrainingandvalidatingtheMCIclassifier. smallforsignificantperformanceimprovement.Here,thenumberof In order to evaluate the performance of the elastic-net RLR for unlabeleddatawasonly130whichisfewcomparedtonumberofla- feature selection within MRI data, we compared the classification beleddata(264subjects).However,LDSeitherwithorwithoutuMCI performanceofMRIbiomarkerbasedondifferentfeatureselectional- data samples, clearly outperformed the corresponding supervised gorithms.Forthispurposeweusedunivariatet-testandgraph-net method(SVM,AUC0.7430vs.0.7661,pb0.0001).Eventhoughadding (Grosenicketal.,2013)featureselectionmethods.TheAUCofMRI uMCIsamplesdidnotsignificantlyimprovethepredictiveperformance biomarkerwiththeunivariatet-testbasedfeatureselection(1000fea- oftheMCI-to-ADconversion,theuseofLDSmethodinatransductive tures)was0.71andwithgraph-netbasedfeatureselection(354fea- manner led to a higher predictive performance compared to SVM tures)was0.74.Theelastic-netRLRbasedfeatureselectionledtoa method. significantlyimprovedperformanceinMRIbiomarkerascomparedto thet-testandgraph-netbasedfeatureselectionmethods(pb0.0001). Aggregatebiomarker WeexperimentedwiththefeatureselectiondirectlyonMCIsubjects' dataforreducingdimensionalityofMRIdata.Morespecifically,the Inthissection,wepresenttheexperimentalresultsfortheaggregate featureselection(elastic-netRLR)wasperformedintheouterloopof biomarkeroftheAggregatebiomarkersectionbasedonMRI,age,and twonestedcross-validationloopsbyfirstperformingthefeatureselec- cognitivemeasures,allacquiredatthebaseline.Table4showsthecor- tionusingallfeaturesinMRIdata(29,852voxels)andthenusingthese relationbetweencognitivemeasurementsusedinaggregatebiomarker selectedfeaturesforparameterselectionandlearningthemodel.The totheground-truthlabel. performanceofMRIbiomarkerwiththefeatureselectionusingMCI In order to demonstrate the advantage of the selected data- subjects decreased significantly compared to the feature selection aggregationmethodandtheutilityofcombiningageandcognitive using an independent validation set of AD and NC subjects (from measurements withMRIdata,we alsoapplied LDSandRFon data formedbyconcatenatingcognitivemeasurements,ageandMRIdata (309selectedvoxelswithage-relatedeffectsremoved)asalongvector. Table3 Further,weappliedRFontheageandcognitivemeasurementstopre- AcomparisonoftheperformancesofSVMandLDSmethodswithandwithoutfeature selection,andwithandwithoutage-relatedeffectsbyusingMRIdata.Theresultsare dictADinMCIpatientsintheabsenceofMRIdataandcombinedSVM averagesover100computationtimes.Fortheclassificationaccuracy(ACC),thechance withRF(abbreviatedasSVM+RF)inthesamewayasLDSiscombined levelis62.12%. toRFintheaggregatebiomarker.Theboxplotsfortheperformance Classifier Feature Agerelated AUC ACC SEN SPE measuresofaggregatebiomarker(LDS+RF),SVM+RFaswellasRF selection effect andLDSappliedontheconcatenateddataandtheRFwithoutMRIare showninFig.5. SVM No Notremoved 66.37% 64.86% 87.90% 27.09% SVM Yes Notremoved 69.49% 66.01% 78.88% 44.91% TheaggregatebiomarkerachievedmeanAUCof0.9020,whichwas SVM Yes Removed 74.30% 69.15% 86.73% 40.34% significantlybetterthantheAUCofLDSwithaggregateddata(0.7990, LDS No Notremoved 67.60% 66.05% 85.67% 33.90% pb0.0001)andtheAUCofRFwithonlycognitivemeasures(0.8819, LDS Yes Notremoved 72.88% 72.60% 84.16% 53.66% pb0.001).WithLDS,therewasasignificantimprovementwheninte- LDS Yes Removed 76.61% 74.74% 88.85% 51.59% gratingcognitivemeasurementsandMRIdata(meanAUCincreased Asexpected,applyingLDSontheMRIdataafterremovingage-relatedeffectsincreased from0.7661to0.7990,pb0.0001).However,inthecaseofRFadding theAUCscorefrom0.7288to0.7661,whichwassignificantaccordingtothepermutation test(pb0.0001).Removingage-relatedeffectsfromMRIdataimprovedtheclassification cognitivemeasurementswithMRIdatadecreaseditsperformancesig- performancesignificantlyalsointhecaseofSVM(AUC0.6949vs.0.7430,pb0.0001). nificantlywhencomparingtoRFwithonlycognitivemeasurements E.Moradietal./NeuroImage104(2015)398–412 405 Fig.4.BoxplotsforAUC,ACC,SENandSPEofSVMandLDSmethodsbasedonMRIdatawithselectedfeaturesandremovedage-relatedeffects,within100computationtimes.Inthecaseof LDS,thedepictedresultsareobtainedwith(LDS-labeled+unlabeled)andwithout(LDS-onlylabeled)utilizinguMCIsubjectsinthelearning.Oneachbox,thecentralmarkisthemedian (redline),theedgesoftheboxarethe25thand75thpercentiles,thewhiskersextendtothemostextremedatapointsnotconsideredoutliers,andoutliersareplottedwitha+. (meanAUCdecreasedfrom0.8819to0.8313,pb0.0001).Theseresults biomarkers.ResultsareshowninFig.7.Fig.7shows,asexpected,that seemtosuggestthatRFhaddifficultiesinaggregatingMRIdatawith thepredictionwasmoreaccuratetheclosertheconversionsubject cognitive measures and supports our decision to use two different was.Additionally,weevaluatedtheclassificationperformanceofthe learningalgorithmswhendesigningtheaggregatebiomarker.Also, MRIandaggregatebiomarkersagainstarandomclassifier,whereabio- theperformanceofSVM+RFwasclearlyworsethantheperformance markervalueforeachsubjectwasdrawnrandomlyfromastandard LDS + RF (p b0.001) and even RF with only cognitive measures normal distribution. The mean AUC of the random classifier was (pb0.001).WehypothesizethatthisisbecauseSVMoverlearnedand 0.5016,whichwassignificantlylowerthantheAUCoftheMRIbiomark- failedtoprovideausefulinputtorandomforestwhiletheimagesin er(AUC=0.7661,pb0.0001)aswellastheAUCofaggregatebiomark- thetestsetregularizeLDSinausefulway.Fig.6showstheROCcurves er(AUC=0.9020,pb0.0001). of one computation time (of the median AUC within 100 cross- Random forests can (without too much extra computational validationruns)ofMRIbiomarker(LDSwithonlyMRIdata),RFwith burden)produceofanestimateoffeatureimportanceviaout-of-bag onlyageandcognitivemeasures,LDSandRFmethodstrainedonthe errorestimate(Breiman,2001;LiawandWiener,2002).Fig.9shows concatenateddatafromMRI,ageandcognitivemeasurements,andof theimportanceofeachfeatureoftheaggregatebiomarkercalculated theaggregatebiomarkerwithMRI,ageandcognitivemeasurements. bytheRFclassifier.TheMRIfeaturewasthecombinedfeaturegenerat- TheROCcurveoftheaggregatebiomarkerdominatestheotherROC edbyLDSclassifierasdescribedintheMRIbiomarkersection.Accord- curvesnearlyeverywhere.WealsocalculatedthestratifiedAUCfor ingtoFig.9,theMRIbiomarkerandRAVLTwerethemostimportant differentpMCIsubgroups,i.e.,pMCIsubjectsthatareconvertedtoAD featuresfollowedbyADAS-cogtotal,FAQ,ADAS-cogtotalMod,age, indifferenttimepoints(1,2or3years),forbothMRIandaggregate CDR-SB,andMMSE.WecomputedAUCsforeachfeature,considered one-by-one,using10-foldCV.AUCsforMRI,RAVLT,ADAS-cogscores andFAQwerehighwhileage,CDR-SBandMMSEwerelesssignificant. ThesurvivalcurvefortheaggregatebiomarkerisshowninFig.8. AccordingtoFig.8subjectsinthefirstquartilehavethelowestriskfor Table4 conversiontoADandsubjectsinthelastquartilehavethehighest Thecorrelationbetweencognitivemeasurestotheground-truthlabels.Thenegative correlationindicatesthatthehigherthevaluetheloweristheriskforAD. risk.Table5showsthehazardratiosforthecontinuouspredictorand fordifferentquartilescomparedtothefirstquartile.Theseareshown Age MMSE FAQ CDR-SB ADAS-cog ADAs-cog RAVLT fortheaggregatebiomarker,theMRIbiomarkerandtheRFtrained total-11 totalMod withageandcognitivemeasures.Highbiomarkervalueswereassociat- Correlation −0.06 −0.28 0.40 0.34 0.43 0.43 −0.46 edwiththeelevatedriskforAlzheimer'sconversion(pb0.001forall 406 E.Moradietal./NeuroImage104(2015)398–412 Fig.5.BoxplotsforAUC,ACC,SENandSPEofRF,LDSandaggregatebiomarkerwithLDS+RFandwithSVM+RF,usingMRIwithcognitivemeasurementswithin100computationtimes. Oneachbox,thecentralmarkshowninredisthemedian,theedgesoftheboxarethe25thand75thpercentiles,thewhiskersextendtothemostextremedatapointsnotconsidered outliers,andoutliersareplottedwitha+.TheabbreviationCMreferstocognitivemeasurements.ThedataforLDS(MRI+age+CM)andRF(MRI+age+CM)wasformedbysimple dataconcatenation. threebiomarkers).Theaggregatebiomarkershowedover10times biomarkerandtheRFwithageandcognitivemeasures(withoutMRI) higherriskofconversiontoADforthesubjectsinthelastquartile thisriskwas3.5and5.83timeshigher,respectively. as compared to the subjects in the first quartile while for the MRI Comparisonstoothermethods Cuingnetetal.(2011)testedtendifferentmethodsforclassification ofpMCIandsMCIsubjects.Onlyfourofthesemethods,listedinTable6 usingthenamingofCuingnetetal.(2011),performedbetterthanthe randomclassifierforthetask.However,noneofthemobtainedsignifi- cantlybetterresultsthantherandomclassifier,accordingtoMcNemar test.Inordertocomparetheperformanceofourbiomarkerswiththe workpresentedbyCuingnetetal.(2011)weperformedtheexperi- mentsusingtrainingandtestingsetusedontheirmanuscript.The SupplementaryTablesS7andS8explainthedifferencesbetweenours andCuingnet'slabelingofthesubjects.Withaggregatebiomarker,one subjectwasexcludedfromthetrainingsetandtwosubjectsfromthe testingsetinsMCIgroupsduetomissingcognitivemeasurements. TheresultsarereportedinTable6.TheMcNemar'schisquaretests withsignificancelevel0.05wereperformedtocomparetheperfor- mance of each method with random classifier, as it was done in Cuingnetetal.(2011).WealsolisttheresultsofWolzetal.(2011) withthedatasetusedinCuingnetetal.(2011)inTable6.According to McNemar tests, both MRI and aggregate biomarkers performed significantlybetterthanrandomclassifierforthisdata.Also,withthis Fig.6.ROCcurvesofsubject'sclassificationtosMCIorpMCIusingclassificationmethods, dataset,theaggregatebiomarkerprovidedbetterAUCthantheMRIbio- LDS,SVMandaggregatebiomarkerusingonlyMRIandMRIwithageandcognitive marker.Interestingly,themarginofdifferencebetweentheAUCsofthe measurements.EachROCcurveisfromacross-validationrunwiththemedianAUCwithin 100cross-validationruns. twobiomarkerswassmallerthanwithourlabeling.Thisisprobably E.Moradietal./NeuroImage104(2015)398–412 407 Fig.7.TheAUCofMRIbiomarkerandaggregatebiomarkerforclassificationofdifferentpMCIgroups.pMCI1:ifdiagnosiswasMCIatbaselinebutconvertedtoADwithinthefirst 12months,pMCI2:ifdiagnosiswasMCIatbaselineandconversiontoADoccurredwithinthe2ndyearoffollow-up(24months),pMCI3:ifdiagnosiswasMCIatbaselineandconversion toADwasreportedat36monthsfollow-up. causedbythedifferenceinthelabelingofsubjectsdetailedinSupple- andapproachesthatusethevolumesofpre-definedregionsofinterest mentaryTablesS7andS8. (ROIs)(asinYeetal.,2012)asMRIfeatures.Forthefeatureselection, weappliedelastic-netRLRbyselectingallthefeaturesthathadanon- Discussion zero coefficient value along the regularization path up to a point whichmaybeconsideredtoprovideminimalapplicableamountof For the early identification of MCI subjects who are in risk of regularization.Thisallowedustodetectallthevoxelswhichmaybe convertingtoAD,wedevelopedanewmethodbyapplyingadvanced thoughttoproviderelevantinformationfortheclassificationtaskwith machinelearningalgorithmsforcombiningMRIdatawithstandard concreteevidencethattheyindeedareusefulforthediscrimination. cognitivetestresults.First,wepresentedanewbiomarkerutilizing Theregularizedlogisticregressionwaschosenasamodelselection onlyMRIdatathatwasbasedonasemi-supervisedlearningapproach methodbecauseithasbeenwidelyusedinmulti-voxelpatternanalyses termedlowdensityseparation(LDS).TheuseofLDSinplaceofmore offunctionalneuroimagingdataaswellasMRIbasedADclassification typical supervised learning approaches based on support vector approachesandshowntooutperformmanyotherfeatureselection machineswasshowntoprovideadvantagesasdemonstratedbysignif- methods (Huttunen et al., 2012, 2013; Ryali et al., 2010; Ye et al., icantlyincreasedcross-validatedAUCscores.Second,wepresenteda 2012;Casanovaetal.,2011a,b;Janoušováetal.,2012).Accordingto newmethodforcombiningMRI-biomarkerwithageandcognitive theresultspresentedhere(seeTable3),elastic-netRLRwasabletose- measurements.ThismethodcombinesthescoreprovidedbytheMRI- lectrelevantvoxelscorrespondingtoADinthehighdimensionalMRI biomarkerandappliesitasafeatureforthelearningalgorithm(RFin data.Wenotethatthenumberofselectedvoxelsisnotsufficientto thiscase).Thisaggregatebiomarkerprovidedacross-validatedAUC fullycapturetheADatrophy.Theelasticnetsucceededinthistask scoreof0.9020averagedacross100differentcross-validationruns. betterthanthetestedcompetingmethodsandprovidesavoxelset Sincethecross-validationwasproperlynested,i.e.,thetestingdata that,althoughbeingsparse,waswelldistributedalloverthebrain.If wasnotusedforfeaturenorparameterselection,thisAUCcanbeseen ouraimwouldbetocapturethefullextentofatrophyinAD,amorespe- aspromisingfortheearlypredictionofADconversion. cializedfeatureselectionmethodwouldprobablybemoreadequate ThemainnoveltiesoftheMRI-biomarkerwere1)featureselection (Fanetal.,2007;Cuingnetetal.,2013;Grosenicketal.,2013;Michel usingonlythedatafromADandNCsubjectswithoutusinganydata etal.,2011). fromMCIsubjects,thusreservingallthedataaboutMCIsubjectsfor AsnormalagingandADhavesimilareffectsoncertainbrainregions learningtheclassifier,and2)removingage-relatedeffectsfromMRI (Desikanetal.,2008;Dukartetal.,2011),weestimatedtheeffectsof databyusingonlydatafromhealthycontrols.Thefeatureselectionin normalagingontheMRIbasedonthedataofhealthycontrolsina thiswaycanbeseenasamid-waybetweenwhole-brain,voxel-based voxel-wisemannerandthenremoveditfromMRIdataofMCIsubjects MCI-to-ADconversionpredictionapproaches(asinGaseretal.,2013) beforetrainingtheclassifier.Ourresultsindicatedthatremovingage- relatedeffectsfromMRIcouldimprovesignificantlythepredictionof AD,especiallyyoungpMCIsubjectsaswellasoldsMCIsubjectswere Fig.9.TheimportanceofMRI,ageandcognitivemeasurementscalculatedbyRFclassifier. ADAS-cogtotal11andADAS-cogtotalModareweightedaveragesof13ADASsubscores, ADAS-cogsubscoreQ4(delayedwordrecall)andQ14(numbercancelation)arenot includedintheADAS-cogtotal11.RAVLTisRAVLT-immediatethatissumscorefor5 learningtrials.TheAUCofeachindividualfeaturewascalculatedusingRFexceptfor Fig.8.Kaplan–Meiersurvivalcurveforaggregatebiomarkerbysplittingthepredictorinto MRIthatLDSwasused.MRI:0.7661,RAVLT:0.7172,ADAS-cogtotal-11:0.7185,FAQ: quartiles.Thefollow-upperiodistruncatedat36months. 0.7290,ADAS-cogtotalMod:0.6554,age:0.5573,CDR-SB:0.6789,MMSE:0.6154.
Description: