ebook img

Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects PDF

15 Pages·2014·1.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects

NeuroImage104(2015)398–412 ContentslistsavailableatScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg MachinelearningframeworkforearlyMRI-basedAlzheimer'sconversion prediction in MCI subjects ElahehMoradia,AntoniettaPepeb,ChristianGaserc,HeikkiHuttunena,JussiTohkaa,⁎, fortheAlzheimer'sDiseaseNeuroimagingInitiative1 aDepartmentofSignalProcessing,TampereUniversityofTechnology,P.O.Box553,33101,Tampere,Finland bAixMarseilleUniversité,CNRS,ENSAM,UniversitédeToulon,LSISUMR7296,13397,Marseille,France cDepartmentofPsychiatry,UniversityofJena,Jahnstr3,D-07743,Jena,Germany a r t i c l e i n f o a b s t r a c t Articlehistory: Mildcognitiveimpairment(MCI)isatransitionalstagebetweenage-relatedcognitivedeclineandAlzheimer's Accepted1October2014 disease(AD).FortheeffectivetreatmentofAD,itwouldbeimportanttoidentifyMCIpatientsathighriskforcon- Availableonline12October2014 versiontoAD.Inthisstudy,wepresentanovelmagneticresonanceimaging(MRI)-basedmethodforpredicting theMCI-to-ADconversionfromonetothreeyearsbeforetheclinicaldiagnosis.First,wedevelopedanovelMRI Keywords: biomarkerofMCI-to-ADconversionusingsemi-supervisedlearningandthenintegrateditwithageandcognitive Lowdensityseparation measuresaboutthesubjectsusingasupervisedlearningalgorithmresultinginwhatwecalltheaggregate Mildcognitiveimpairment biomarker.Thenovelcharacteristicsofthemethodsforlearningthebiomarkersareasfollows:1)Weuseda Featureselection Supportvectormachine semi-supervisedlearningmethod(lowdensityseparation)fortheconstructionofMRIbiomarkerasopposed Magneticresonanceimaging tomoretypicalsupervisedmethods;2)WeperformedafeatureselectiononMRIdatafromADsubjectsand Classification normalcontrolswithoutusingdatafromMCIsubjectsviaregularizedlogisticregression;3)Weremovedthe Semi-supervisedlearning agingeffectsfromtheMRIdatabeforetheclassifiertrainingtopreventpossibleconfoundingbetweenADand Alzheimer'sdisease agerelatedatrophies;and4)WeconstructedtheaggregatebiomarkerbyfirstlearningaseparateMRIbiomarker ADNI andthencombiningitwithageandcognitivemeasuresabouttheMCIsubjectsatthebaselinebyapplyingaran- Earlydiagnosis domforestclassifier.Weexperimentallydemonstratedtheaddedvalueofthesenovelcharacteristicsin predictingtheMCI-to-ADconversionondataobtainedfromtheAlzheimer'sDiseaseNeuroimagingInitiative (ADNI)database.WiththeADNIdata,theMRIbiomarkerachieveda10-foldcross-validatedareaunderthe receiveroperatingcharacteristiccurve(AUC)of0.7661indiscriminatingprogressiveMCIpatients(pMCI) fromstableMCIpatients(sMCI).OuraggregatebiomarkerbasedonMRIdatatogetherwithbaselinecognitive measurementsandageachieveda10-foldcross-validatedAUCscoreof0.9020indiscriminatingpMCIfrom sMCI.TheresultspresentedinthisstudydemonstratethepotentialofthesuggestedapproachforearlyADdiag- nosisandanimportantroleofMRIintheMCI-to-ADconversionprediction.However,itisevidentbasedonour resultsthatcombiningMRIdatawithcognitivetestresultsimprovedtheaccuracyoftheMCI-to-ADconversion prediction. ©2014ElsevierInc.Allrightsreserved. Introduction dramaticincreaseintheprevalenceofAD,theidentificationofeffective biomarkersfortheearlydiagnosisandtreatmentofADinindividualsat Alzheimer'sdisease(AD),acommonformofdementia,occursmost highrisktodevelopthediseaseiscrucial.Mildcognitiveimpairment frequentlyinagedpopulation.Morethan30millionpeopleworldwide (MCI)isatransitionalstagebetweenage-relatedcognitivedeclineand sufferfromADand,duetotheincreasinglifeexpectancy,thisnumberis AD,andtheearliestclinicallydetectablestageofprogressiontowards expectedtotripleby2050(BarnesandYaffe,2011).Becauseofthe dementiaorAD(Markesbery,2010).Accordingtopreviousstudies (Petersenetal.,2009),asignificantproportionofMCIpatients,approx- ⁎ Correspondingauthor. imately10%to15%fromreferralsourcessuchasmemoryclinicsandAD E-mailaddress:jussi.tohka@tut.fi(J.Tohka). centers,willdevelopintoADannually.ADischaracterizedbytheforma- 1 DatausedinpreparationofthisarticlewereobtainedfromtheAlzheimer'sDisease tionofintracellularneurofibrillarytanglesandextracellularβ-amyloid NeuroimagingInitiative(ADNI)database(http://adni.loni.usc.edu).Assuch,theinvestiga- plaquesaswellasextensivesynapticlossandneuronaldeath(atrophy) torswithintheADNIcontributedtothedesignandimplementationofADNIand/orpro- withinthebrain(Mosconietal.,2007).Theprogressionoftheneuropa- videddatabutdidnotparticipateinanalysisorwritingofthisreport.Acompletelisting thologyinADcanbeobservedmanyyearsbeforeclinicalsymptomsof ofADNIinvestigatorscanbefoundathttp://adni.loni.usc.edu/wp-content/uploads/how_ to_apply/ADNI_Acknowledgement_List.pdf. thediseasebecomeapparent(BraakandBraak,1996;Delacourteetal., http://dx.doi.org/10.1016/j.neuroimage.2014.10.002 1053-8119/©2014ElsevierInc.Allrightsreserved. E.Moradietal./NeuroImage104(2015)398–412 399 Table1 Semi-supervisedclassificationofADusingADNIdatabase.AUC:areaunderthereceiveroperatingcharacteristiccurve,ACC:accuracy,SEN:sensitivity,SPE:specificity. Author Data Task Result(supervised) Result(semi-supervised) Yeetal.(2011) MRI, sMCIvs.pMCI AUC=71% AUC=73% 53AD,63NC, ACC=55.3% ACC=56.1% 237MCI SEN=88.2% SEN=94.1% SPE=42% SPE=40.8% FilipovychandDavatzikos(2011) MRI, sMCIvs.pMCI AUC=61% AUC=69% 54AD,63NC, SEN=78.8% SEN=79.4% 242MCI SPE=51% SPE=51.7% ZhangandShen(2011) MRI,PET,CSF ADvs.NC AUC=94.6% AUC=98.5% 51AD,52NC, 99MCI Batmanghelichetal.(2011) MRI, sMCIvs.pMCI AUC=61.5% AUC=68% 54AD,63NC, 238MCI 1999;Morrisetal.,1996;Serrano-Pozoetal.,2011;Mosconietal., techniquesoverthepastfewyears(Zhu,andGoldberg,2009)isrelated 2007).ADpathologyhasbeenthereforehypothesizedtobedetectable tothewidespreadofapplicationdomainswhereprovidinglabeleddata usingneuroimagingtechniques(Markesbery,2010).Amongdifferent ishardandexpensivecomparedtoprovidingunlabeleddata.Theprob- neuroimagingmodalities,MRIhasattractedasignificantinterestin lemstudiedinthiswork,predictingtheAD-conversioninMCIsubjects, ADrelatedstudiesbecauseofitscompletelynon-invasivenature,high isagoodexampleofthisscenariosinceMCIsubjectshavetobefollowed availability,highspatialresolutionandgoodcontrastbetweendifferent for several years after the data acquisition to obtain a sufficiently softtissues.Overthepastfewyears,numerousMRIbiomarkershave reliable diseaselabel (pMCI orsMCI).Fewrecentstudies(listedin beenproposedinclassifyingADpatientsindifferentdiseasestages Table1)haveinvestigatedtheuseofdifferentsemi-supervisedap- (Fanetal.,2008;Duchesneetal.,2008;Chupinetal.,2009;Querbes proaches for diagnosis of AD in different stages of the disease. In etal.,2009;Wolzetal.,2011;Hinrichsetal.,2011;Westmanetal., ZhangandShen(2011),MCIsubjects'datawereusedasunlabeled 2011a,b;Westmanetal.,2012;Choetal.,2012;Coupéetal.,2012; datatoimprovetheclassificationperformanceindiscriminatingAD Grayetal.,2013;Eskildsenetal.,2013;Guerreroetal.,2014;Wang versusNCsubjects.Theyachievedasignificantimprovement,theAUC etal.,2014).Despiteofmanyefforts,identifyingefficientAD-specific scoreincreasedfrom0.946to0.985,whichishighfordiscriminating biomarkersfortheearlydiagnosisandpredictionofdiseaseprogression ADvs.NCsubjects.Yeetal.(2011),FilipovychandDavatzikos(2011), isstillchallengingandrequiresmoreresearch. andBatmanghelichetal.(2011)usedADandNCsubjectsaslabeled Inthecurrentstudy,wepresentanovelMRI-basedtechniqueforthe dataandMCIsubjectsasunlabeleddataandpredicteddisease-labels earlydetectionofADconversioninMCIpatientsbyusingadvancedma- fortheMCIsubjects.Inallthesestudies,theimprovementinthepredic- chinelearningalgorithmsandcombiningMRIdatawithstandardneu- tiveperformanceofthemodelwassignificantoversupervisedlearning. ropsychologicaltestresults.Inmoredetail,weaimtopredictwhether ThebestclassificationperformanceindiscriminatingsMCIversuspMCI anMCIpatientwillconverttoADovera3yearperiod(thisisreferred usingonlyMRIdatawasachievedbyYeetal.(2011)withthearea asprogressiveMCIorpMCI)ornot(thisisreferredasstableMCIor underthereceiveroperatingcharacteristiccurve(AUC)equalto0.73 sMCI)usingonlydataatthebaseline.Thedatausedinthisworkis forpredictionofconversionwithin0–18monthperiod.Wehypothe- obtainedfromtheAlzheimer'sDiseaseNeuroimagingInitiative(ADNI) sizethattheclassificationperformanceofsemi-supervisedlearning database(www.loni.usc.edu/ADNI)anditincludesMRIscansandneu- approachescouldbeimprovedifMCIsubjectswhohavebeenfollowed ropsychologicaltestresultsfromnormalcontrols(NC),AD,andMCI upforlongenoughwouldbeusedaslabeleddata.Inthiswork,we subjectswithamatchedagerange.Recently,severalcomputational developasemi-supervisedclassifierforADconversionpredictionin neuroimagingstudieshavefocusedonpredictingtheconversionto MCIpatients based on lowdensityseparation (LDS) (Chapelle and ADinMCIpatientsbyutilizingvarioustypesofADNIdatasuchasMRI Zien,2005)andbyusingMRIdataofMCIsubjects.Ourresultsdemon- (e.g.Yeetal.,2011;FilipovychandDavatzikos,2011;Batmanghelich strateapplicabilityoftheproposedsemi-supervisedmethodinMRI etal.,2011),positronemissiontomography(PET)(ZhangandShen, basedADconversionpredictioninMCIpatientsbyachievingasignifi- 2011, 2012; Cheng et al., 2012; Shaffer et al., 2013), cerebrospinal cantimprovementcomparedtoastateoftheartsupervisedmethod fluid(CSF)biomarkers(Zhang andShen,2011;Cheng et al.,2012; (supportvectormachine(SVM)). Davatzikos etal.,2011; Shaffer et al., 2013),anddemographic and Weperformtwoprocessingstepsinbetweenourvoxelbasedmor- cognitiveinformation(seeTables1and7).Ourmethodisamulti-step phometrystylepreprocessing(Gaseretal.,2013)andthelearningof procedurecombiningseveralideasintoacoherentframeworkforAD theLDSclassifier.First,weremoveage-relatedeffectsfromMRIdata conversionprediction: beforetrainingtheclassifiertopreventtheconfoundingbetweenAD andage-relatedeffectstobrainanatomy.Previously,asimilartechnique 1. Semi-supervisedlearning,usingdatafromADandNCsubjectsto hasbeenusedfortheclassificationbetweenADandNCsubjects,but helpthesMCI/pMCIclassification thisstudyhasnotconsideredAD-conversionpredictioninMCIsubjects 2. Novelrandomforestbaseddataintegrationscheme (Dukartetal.,2011).Inaddition,theimpactofagewasstudiedrecently 3. Removalofagerelatedconfound. fordetectingAD(Coupéetal.,2012)aswellasforpredictingADinMCI Intheexperimentalsectionswewilldemonstratethatallthese patients(Eskildsenetal.,2013).Second,weperformfeatureselection provideasignificantcontributiontowardstheaccuracyofthecombined onMRIdataindependentlyoftheclassificationprocedureusingthe predictionmodel.Ourmethoddiffersinthefollowingaspectsfrom auxiliarydatafromADandNCsubjects.Featureselectionisanessential earlierstudies. partofthecombinedproceduresincethenumberoffeatures(29,852) Most of the earlier studies were based on supervised learning available after the image preprocessing significantly exceeds the methods,whereonlylabeleddatasamplesareusedforlearningthe numberofsubjects.WeassumethatADvs.NCclassificationisasimpli- model.Semi-supervisedlearning(SSL)approachesareabletouseunla- fiedversionofthepMCIvs.sMCIandthesamefeaturesthataremost beleddatainconjunctionwithlabeleddatainalearningprocedurefor usefulforthesimpleproblemareusefulforthecomplexone.Thisidea improving the classification performance. The great interest in SSL is implemented by applying regularized logistic regression (RLR) 400 E.Moradietal./NeuroImage104(2015)398–412 (Friedmanetal.,2010)onMRIdataofADandNCsubjectsforfinding recruitedfrom over50sitesacrosstheU.S.andCanada.Theinitial the image voxels that are best discriminated between AD and NC goalofADNIwastorecruit800subjectsbutADNIhasbeenfollowed subjects.Next,weusetheseselectedvoxelsforpredictingconversion byADNI-GOandADNI-2. to AD within MCI patients. Most of existing studies incorporating Todatethesethreeprotocolshaverecruitedover1500adults,ages featureselectionrelyonlyonadatasetofMCIsubjectsbyusingitfor 55to90,toparticipateintheresearch,consistingofcognitivelynormal featureselectionandclassificationtask.Inparticular,previousstudies olderindividuals,peoplewithearlyorlateMCI,andpeoplewithearly (Yeetal.,2011,2012;Janoušováetal.,2012)haveconsideredfeature AD.Thefollow-updurationofeachgroupisspecifiedintheprotocols selectionbasedonRLRforMCI-to-ADconversionprediction,butthe for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for featureselectionwasperformedwiththedatafromMCIsubjectsnot ADNI-1andADNI-GOhadtheoptiontobefollowedinADNI-2.For utilizingdatafromADandNCsubjects.AuxiliarydatafromADandNC up-to-dateinformation,seewww.adni-info.org. subjectstoaidtheclassificationofMCIsubjectshavebeenconsidered DatausedinthisworkincludeallsubjectsforwhombaselineMRIdata byChengetal.(2012)inadomaintransferlearningmethod.Briefly, (T1-weightedMP-RAGEsequenceat1.5T,typically256×256×170voxels themethodutilizescross-domainkernelbuildfromtargetdata(MCI withthevoxelsizeofapproximately1mm×1mm×1.2mm),atleast subjects)andauxiliarydata(AD andNC)subjectstolearnalinear moderatelyconfidentdiagnoses(i.e.confidenceN2),hippocampusvol- supportvectormachineclassifier.AsChengetal.reducedthenumber umes(i.e.volumesofleftandrighthippocampi,calculatedbyFreeSurfer offeaturesto93bypartitioningeachMRIinto93regionsofinterest Version 4.3), and test scores in certain cognitive scales (i.e. ADAS: anddidnotconsiderfeatureselection,theapproachtousetheauxiliary Alzheimer's Disease Assessment Scale, range 0–85; CDR-SB: Clinical dataisdifferentfromourapproach. DementiaRating‘sumofboxes’,range0–18;MMSE:Mini-MentalStateEx- WeintegrateMRIdatawithageandcognitivemeasurements,also amination,range0–30)wereavailable. acquiredatthebaseline,forimprovingthepredictiveperformanceof For the diagnostic classification at baseline, 825 subjects were MCI-to-ADconversion.Asopposedtoseveralotherstudiescombining groupedas(i)AD(Alzheimer'sdisease),ifdiagnosiswasAlzheimer's MRIwithothertypesofdata(Davatzikosetal.,2011;ZhangandShen, diseaseatbaseline(n=200);(ii)NC(normalcognitive),ifdiagnosis 2012;Shafferetal.,2013;Chengetal.,2012;Wangetal.,2013),wepur- wasnormalatbaseline(n=231);(iii)sMCI(stableMCI),ifdiagnosis poselyavoidusingCSForPETbasedbiomarkers,theformerbecauseit wasMCIatallavailabletimepoints(0–96months),butatleastfor requireslumbarpuncture,whichisinvasiveandpotentiallypainfulfor 36months(n=100);(iv)pMCI(progressiveMCI),ifdiagnosiswas thepatient,andthelatterbecauseofitslimitedavailabilitycompared MCIatbaselinebutconversiontoADwasreportedafterbaselinewithin toMRI,aswellasitscostandradiationexposure(Musieketal.,2012). 1,2or3years,andwithoutreversiontoMCIorNCatanyavailable Previously,thecombinationofMRIderivedinformationandcognitive follow-up(0–96months)(n=164);(v)uMCI(unknownMCI),ifdiag- measurementshasbeenconsideredbyYeetal.(2012)whotrainedan nosiswasMCIatbaselinebutthesubjectsweremissingadiagnosisat RLRclassifierwithstandardcognitivemeasurementsandvolumesof 36monthsfromthebaselineorthediagnosiswasnotstableatallavail- certainregionsofinterestasfeaturesandCasanovaetal.(2013)who abletimepoints(n=100).From164pMCIsubjects,68subjectswere combinedoutputsoftwoclassifiers,onetrainedbasedonMRIandthe convertedtoADwithinthefirst12months,69subjectswereconverted othertrainedbasedoncognitivemeasurements,basedonasum-rule toADbetween12and24monthsoffollow-upandtheremaining27 fortheclassifiercombination.InordertousemoreefficientlyMRIand subjectswereconvertedtoADbetween24and36monthfollow-up. basic(ageandcognitive)measures,wedevelopwhatwecallanaggre- DetailsofthecharacteristicsoftheADNIsampleusedinthisworkare gatebiomarkerbyutilizingtwodifferentclassifiers,i.e.LDSandrandom presentedinTable2.ThesubjectIDstogetherwiththegroupinforma- forest(RF),indifferentstagesoftheprocess.Wefirstderiveasinglereal tionisprovidedinthesupplement(TablesS2-S5,seealsohttps:// valuedbiomarkerbasedonMRIdatausingLDS(ourbiomarker)and sites.google.com/site/machinelearning4mcitoad/ for MATLAB files). thereafterusethisasafeaturefortheaggregateclassifier(RF).We TheconversiondatawasdownloadedonApril2014. will highlight the importance of using a transductive classifier (e.g.,LDS)insteadofaninductiveone(e.g.,astandardSVM)during thefirststageofthelearningprocessandprovideevidenceoftheeffec- Imagepreprocessing tivenessoftheaggregatebiomarkerfortheADconversionpredictionin AsdescribedinGaseretal.(2013),preprocessingoftheT1-weighted MCIpatientsbasedonMRI,ageandcognitivemeasuresatthebaseline. imageswasperformedusingtheSPM8package(http://www.fil.ion.ucl. ac.uk/spm)andtheVBM8toolbox(http://dbm.neuro.uni-jena.de),run- Materialsandmethods ningunderMATLAB.AllT1-weightedimageswerecorrectedforbias-field inhomogeneities,thenspatiallynormalizedandsegmentedintogray ADNIdata matter(GM),whitematter,andcerebrospinalfluid(CSF)withinthe samegenerativemodel(AshburnerandFriston,2005).Thesegmenta- DatausedinthisworkisobtainedfromtheAlzheimer'sDiseaseNeu- tionprocedurewasfurtherextendedbyaccountingforpartialvolume roimagingInitiative(ADNI)database(http://adni.loni.usc.edu/).The effects(Tohkaetal.,2004),byapplyingadaptivemaximumaposteriori ADNIwaslaunchedin2003bytheNationalInstituteonAging(NIA), estimations(Rajapakseetal.,1997),andbyusinganhiddenMarkov the National Institute of Biomedical Imaging and Bioengineering random field model (Cuadra et al., 2005) as described previously (NIBIB),theFoodandDrugAdministration(FDA),privatepharmaceuti- calcompaniesandnon-profitorganizations,asa$60million,5-year (Gaser,2009).Thisprocedureresultedinmapsoftissuefractionsof public–privatepartnership.TheprimarygoalofADNIhasbeentotest WMandGM.OnlytheGMimageswereusedinthiswork.Following whetherserialMRI,PET,otherbiologicalmarkers,andclinicalandneu- ropsychologicalassessmentcanbecombinedtomeasuretheprogres- sion of MCI and early AD. Determination of sensitive and specific Table2 markersofveryearlyADprogressionisintendedtoaidresearchers Characteristicsofdatasetsusedinthiswork.Therewasnostatisticallysignificantdiffer- enceinage(permutationtest,pN0.05)norgender(proportiontest,pN0.05)between andclinicianstodevelopnewtreatmentsandmonitortheireffective- differentMCIgroups. ness,aswellaslessenthetimeandcostofclinicaltrials. TheprincipalinvestigatorofthisinitiativeisMichaelW.Weiner,MD, AD NC pMCI sMCI uMCI VAMedicalCenterandUniversityofCalifornia—SanFrancisco.ADNIis No.ofsubjects 200 231 164 100 130 theresultofeffortsofmanyco-investigatorsfromabroadrangeofaca- Males/females 103/97 119/112 97/67 66/34 130/81 Agerange 55–91 59–90 55–89 57–89 54–90 demicinstitutionsandprivatecorporations,andsubjectshavebeen E.Moradietal./NeuroImage104(2015)398–412 401 Fig.1.Semi-supervisedclassificationscheme.Dashedarrowsindicatedatafedtoclassificationprocesswithoutanylabelinformation(incontrasttosolidarrowsindicatingtrainingdata withlabelinformation).Thetestsubsetisusedintheclassificationprocesswithoutanylabelinformation. thepipelineproposedbyFrankeetal.(2010),theGMimageswere (Huttunenetal.,2012,2013;Ryalietal.,2010)forthemulti-voxelpat- processed with affine registration and smoothed with 8-mm full- ternanalysesoffunctionalneuroimagingdataaswellasforADrelated width-at-half-maximumsmoothingkernels.Aftersmoothing,images studies using structural MRI data (Ye et al., 2012; Casanova et al., wereresampledto4mmisotropicspatialresolution.Thisprocedure 2011a,b,2012;Shenetal.,2011;Janoušováetal.,2012).AstheRLRpro- generated,foreachsubject,29,852alignedandsmoothedGMdensity cedureisasupervisedlearningmethod,theinputhastobefullylabeled valuesthatwereusedasMRIfeatures. data.Tothisaim,weappliedRLRonMRIdataofADandNCsubjectsfor determiningasubsetoffeatures(voxels)withthehighestaccuracyin MRIbiomarker discriminatingthetwoclasses.Theselectedvoxels(andonlythem) werethenusedforpredictingconversiontoADinMCIpatients.Note Asapreprocessingoperation,weremovedtheeffectsofnormal thatthiswayweavoidedusingdataaboutMCIsubjectsforfeature agingfromtheMRIdata.Therationaleforthisisrelatedtothefact selectionandthereforewecanusealltheMCIdataforlearningtheclas- thattheeffectsofnormalagingonthebrainarelikelytobesimilar sifier.Thecardinalityoftheselectedsubsetalongtheregularization (equallydirected)withtheeffectsofAD,whichcanleadtoanoverlap pathwasdeterminedusing10-foldcrossvalidation,whichestimated between the brain atrophies caused by age and AD. This, in turn, themostdiscriminativesubsetamongthecandidatesfoundbythe would bring a possible confounding effect on the estimation of RLR.ThedetailsoftheRLRapproacharedescribedinAppendixB. disease-specificdifferences(Frankeetal.,2010;Dukartetal.,2011). Thesecondstagetrainsthefinalsemi-supervisedLDSclassifier.At Weestimatedtheage-relatedeffectsontheGMdensitiesofNCsubjects thisstage,alsotheunlabeleduMCIsampleswerefedtotheclassifier, byusingalinearregressionmodelthatissimilartoamethodappliedin after the extraction of the most discriminative features. Since the earlierstudies(Dukartetal.,2011;Scahilletal.,2003).Onceestimated, LDS approach is based on the transductive SVM classifier, also the theage-relatedeffectswereremovedfromtheMRIdataofeachsubject hyperparameters of the transductive SVMhave to be selected.The beforetrainingtheclassifiers.Formoredetails,seethealgorithmic choiceoftheSVMparameterswasdoneusinganestedcrossvalidation descriptioninAppendixB. approach,whereeachofthecrossvalidationsplitsofthefeatureselec- Theoverallstructureoftheproposedclassificationmethodisillus- tionstagewasfurthersplitintosecondlevelof10crossvalidationfolds. tratedinFig.1.Themethodconsistsoftwofundamentalstages:afea- Inthiswaywewereabletoestimatetheperformanceofthecomplete tureselectionstage,thatusesaregularizedlogisticregression(RLR) frameworkandsimulatethefinaltrainingprocesswithalldataafter algorithm to select a good subset of MRI voxels for AD conversion thehyperparametershavebeenselected. prediction;andaclassificationstagethatappliesasemi-supervised TheLDSapproachforsemi-supervisedlearning(seeAppendixAand lowdensityseparation(LDS)methodtoproducethefinalprediction. ChapelleandZien,2005)integratesunlabeleddataintothetraining The LDS relies on a transductive support vectormachineclassifier, procedure. The algorithm assumes that the classes (e.g., pMCI and whosehyperparametersarealsolearnedfromthedata.Notethat,for sMCIsubjects)formhighdensityclustersinthefeaturespace,and eachtestsubject,insteadofthediscreteclass,anLDSreturnsthevalue thattherearelowdensityareasbetweentheclasses.Thiswaythe ofthecontinuousdiscriminantfunctiond∈ℝthatwecallMRIbiomark- labeledsamplesdeterminetheroughshapeofthedecisionrule,while er.Ifdb0thenthesubjectispredictedassMCIandotherwisepMCI; the unlabeled samples fine-tune the decision rule to improve the moredetailsarepresentedinAppendixA. performance.Atypicalgainduetointegratingunlabeleddatavaries More specifically, the first stage of the classification framework fromafewpercenttomanifolddecreaseinpredictionerror.TheLDS selectsthemostinformativevoxels(features)amongallMRIvoxels isatwostepalgorithm,whichfirstderivesagraph-distancekernelfor (features)whilediscardingnon-informativeones.Thefeatureselection enhancing the cluster separability and then it applies transductive usestheregularizedlogisticregressionframework(Friedmanetal., supportvectormachine(TSVM)forclassifierlearning.SSLmethodspre- 2010)thatproducesapathoffeaturesubsetswithdifferentcardinalities viously applied to MCI-to-AD conversion prediction have included (calledregularizationpath),andhasbeenusedwidelyinpreviousworks TSVM(FilipovychandDavatzikos,2011)andLaplacianSVM(Yeetal., 402 E.Moradietal./NeuroImage104(2015)398–412 2011).BasedonexperimentalresultsbyChapelleandZien(2005),LDS permutingthevaluesofeachvariableatatime,andestimatingthede- canbeseenasanimprovedversionofTSVMandrelatedtoLaplacian creaseinaccuracyonoutofbagsamples(Breiman,2001;Liawand SVM.Moreover,wehaveprovidedevidencethattheLDSoverperforms Wiener,2002).Theoverviewoftheaggregatebiomarkeranditsevalu- thesemi-superviseddiscriminantanalysis(Caietal.,2007)inMCI-to- ationisshowninFig.2.PreviousapplicationsofRFsinthecontextofAD AD conversion prediction in our recent conference paper (Moradi classificationincludeLlanoetal.(2011)whoappliedRFstogeneratea etal.,2014).Finally,wenotethatasthemajorityofthesemi-supervised newweightingofADASsubscores. classifiersincludingTSVMs,LDSappliestransductivelearning,practical- lymeaningthattheMRIdata(butnotthelabels)ofthetestsubjectscan Performanceevaluation beusedforlearningtheclassifier.Wepointoutthatthisisperfectly validanddoesnotleadtodouble-dippingasthetestlabelsarenot For the evaluation of classifier performance and estimation of usedforlearningtheclassifier.Foraclearexplanationofthedifferences theregularizationparameters,weusedtwonestedcross-validation between transductive and inductive machine learning algorithms, loops(10-foldforeachloop)(Huttunenetal.,2012;Ambroiseand we refer to Gammerman et al. (1998) and relation between semi- Mclachlan,2002).First,anexternal10-foldcross-validationwasimple- supervisedandtransductivelearningisdiscussedindetailbyChapelle mented in which labeled samples were randomly divided into 10 etal.(2006). subsetswiththesameproportionofeachclasslabel(stratifiedcross- Inordertoexaminetheapplicabilityofthesemi-supervisedmethod, validation).Ateachstep,asinglesubsetwasleftfortestingandremain- i.e., LDS, we applied it on the MRI data with and without feature ingsubsetswereusedfortraining.Againthetrainsetwasdividedinto selectionandcompareditsperformancewiththeperformanceofits 10subsetsthatwereusedfortheselectionofclassifierparameterslisted supervisedcounterpart,thesupportvectormachine(SVM).SVMisa below. The optimal parameters were selected according to the maximummarginclassifierthatiswidelyusedinsupervisedclassifica- maximumaverageaccuracyacrossthe10-foldoftheinnerloop.The tionproblems.InSVM,onlylabeledsamplesareusedfordetermining performanceoftheclassifierwasthenevaluatedbasedonAUC(area decisionboundarybetweendifferentclasses. underthereceiveroperatingcharacteristiccurve),accuracy(ACC,the numberofcorrectlyclassifiedsamplesdividedbythetotalnumberof Aggregatebiomarker samples),sensitivity(SEN,thenumberofcorrectlyclassifiedpMCIsub- jectsdividedbythetotalnumberofpMCIsubjects)andspecificity(SPE, InordertoimproveADconversionpredictioninMCIpatients,we thenumberofcorrectlyclassifiedsMCIsubjectsdividedbythetotal developedamethodfortheintegrationofthebaselineMRIdatawith numberofsMCIsubjects)usingthetestsubsetoftheouterloop.The ageandcognitivemeasurementsacquiredatbaseline.Themeasure- poolingstrategywasusedforcomputingAUCs(Bradley,1997).The ments we considered were Rey's Auditory Verbal Learning Test reportedresultsintheResultssectionareaveragesover100nested (RAVLT), Alzheimer's Disease Assessment Scale—cognitive subtest 10-foldCVrunsinordertominimizetheeffectoftherandomvariation. (ADAS-cog),MiniMentalStateExamination(MMSE),ClinicalDementia TocomparethemeanAUCsoftwolearningalgorithms,wecomputeda Rating—SumofBoxes(CDR-SB),andFunctionalActivitiesQuestionnaire p-valueforthe100AUCscoreswithapermutationtest. (FAQ).Thesestandardcognitivemeasurements,whicharewidelyused ToperformthesurvivalanalysisandestimatethehazardrateforAD inassessingcognitiveandfunctionalperformanceofdementiapatients, conversion in MCI subjects, Cox proportional hazard model was areexplainedintheADNIGeneralProceduresManual.2Therationale employed(seeMcEvoyetal.,2011;Gaseretal.,2013;Daetal.,2014 was to include the cognitive assessments that are inexpensive to forpreviousapplicationsofthesurvivalanalysisinthesMCI/pMCIclas- acquireandavailablefortheMCIsubjectsinthisstudy.Weonlyconsid- sification).Thepredictorwastherealvaluedoutputoftheclassifier ered the composite scores of the measurements that often include (i.e., the value of the discriminant function in the case of LDS and severalsubtests.WedidnotconsiderCSForPETmeasurementsfor estimated probability of conversion in the case of RF; see the MRI thereasonsoutlinedintheIntroductionsection.Sincetheeffectsof biomarker and Aggregate biomarker sections) and the conversion normalagingontheMRIdatawereremoved,agewasagainusedasa timetoADinMCIsubjectswastakenasthetime-to-eventvariable. predictor,becauseitisariskfactorforAD. Thedurationoffollow-upwastruncatedat3yearsforsMCIsubjects ThewaythatMRIdataiscombinedwiththecognitivemeasure- anduMCIsubjectswerenotincludedintheanalysis.TheCoxmodels mentsiscrucialtoachieveagoodestimationaccuracyoftheMCI-to- implementedbyMATLAB'scoxphfit-functionwereadjustedforage ADconversionprediction.Thesimplestwaywouldbetocombinethe andgender.TheCox-regressionwasperformedinthecross-validation MRIdata(onlyselectedvoxels)andcognitivemeasurementsasalong frameworksimilarlyasdescribedaboveforAUC. featurevectorwhichisastheinputoftheclassifier.Wewillreferto thisasdataconcatenation.However,thisisnotthebestway,because Implementation ofthedifferentnaturesofMRIdata(closetocontinuous)andcognitive measurements(mainlydiscrete)(Zhangetal.,2011).Therefore,we Theimplementationofelastic-netRLRforfeatureselectionwasdone proposeasimpleclassifierensembleforconstructingtheaggregate by using the GLMNET library (http://www-stat.stanford.edu/~tibs/ biomarker.Ineffect,weusedtheMRIbiomarker,derivedusingLDS glmnet-matlab/).Thesupportvectormachine(SVM) withaRadial classifier,asafeature/predictorfortheaggregatebiomarker.TheMRI BasisFunction(RBF)kernelwasusedassupervisedmethodforacom- featurewascombinedwithageandcognitivemeasurementsandused parisonwithLDS.TheRBFkernelwasusedwiththeSVMasthiswidely asinputfeaturesfortherandomforest(RF)classifier.AnRFconsists usedkernelclearlyoutperformedthelinearkernelinapreliminarytest- ofacollectionofdecisiontreesalltrainedwithdifferentsubsetsofthe ingandlinearkernelscanbeseenasaspecialcaseoftheRBFkernels originaldata.AveragingoftheoutputsofindividualtreesrendersRFs (KeerthiandLin,2003).TheimplementationofSVMwasdoneusing toleranttooverlearning,whichisthereasonfortheirpopularityinclas- LIBSVM(http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html)run- sificationandregressiontasksespeciallyintheareaofbioinformatics. ningunderMATLAB.TheimplementationofLDSwasdonebyusinga Note that anRF is anensemble learning method that outputsvote publiclyavailableMATLABimplementation(http://olivier.chapelle.cc/ countsfordifferentclassessotheaggregatebiomarkervalueapproxi- lds/). The SVM has two parameters, C (soft margin parameter, see matestheprobabilityofconvertingtoAD.Randomforestsareoften AppendixA)andγ(parameterforRBFkernelfunction).Fortuning used for ranking the importance of input variables by randomly theseparameters,agridsearchwasused,i.e.,parametervalueswere variedamongthecandidateset{10−4,10−3,10−2,10−1,100,101, 2 http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual. 102, 103, 104} and each combination was evaluated using cross- pdf. validationasoutlinedabove.LDShasmoreparameterstotune.Since E.Moradietal./NeuroImage104(2015)398–412 403 Fig.2.Workflowfortheaggregatebiomarkeranditscross-validationbasedevaluation.ForcomputingtheoutputofLDSclassifierfortestsubjects,thetestsubsetisusedinthelearning procedurewithoutanylabelinformation(shownwithdashedarrow). tuningmanyparameterswithgridsearchisimpractical,weconsidered Results onlythemostcriticalparameters,i.e.,C(softmarginparameter)andρ (softeningparameterforgraphdistancecomputation)ingridsearch. MRIbiomarker FortuningparameterC,itsvaluewasvariedamongthecandidateset {10−2,10−1,100,101,102}andforparameterρamongthecandidate Inthissection,weconsidertheexperimentalresultsobtainedusing set{1,2,4,6,8,10,12}.Fortheotherparameters,defaultvalueswere the biomarker based on solely MRI data as described in the MRI usedexceptthatthe10-nearestneighborgraphswereusedfortheker- biomarkersection.Thefeatureselectionreducedthenumberofvoxels nelconstruction(insteadoffullyconnectedgraph)andtheparameterδ inMRIdatafrom29,852to309voxels.Fig.3showsthelocationsof in(ChapelleandZien,2005)wassettobe1.TheMRIfeatureswerenor- theselected309voxelsoverlaidonthestandardtemplate.Supplemen- malizedtohaveunitvariancebeforetheclassification.Theimplementa- taryTableS1providestherankingofthebrainregionsofthelociofthe tionofRFwastheMATLABportoftheR-codeofLiawandWiener selectedvoxelsaccordingtotheAutomaticAnatomicalLabeling(AAL) (2002)availableathttp://code.google.com/p/randomforest-matlab/. atlas. It can be observed that the selected voxels were spread all Allparametersweresettotheirdefaultvalues.TheCPUtimefortraining overthebrain(includingthehippocampus,thetemporalandfrontal asingleclassifier(includingparameterselectionandperformanceeval- lobes, the cerebellar areas, as well as the amygdala, insula, and uationusingcross-validation)wasintheorderoftensofminutesonan parahippocampus).Theselocationshavebeenpreviouslyreportedin IntelCore2Duoprocessor,3.00GHz,4GBRAM.Theimageprocessing studiesconcerningthebrainatrophyinAD(Weineretal.,2012).The oftheImagepreprocessingsectionrequiredonaverage8minpersingle neuropathologyofADistypicallyrelatedtochanges(e.g.atrophythat image(3.4GHzIntelCorei7,8GBRAM). reflectsthelossandshrinkageofneurons)intheentorhinalcortex, Fig.3.Thelocationsofselectedvoxelsbyelastic-netRLRwiththehighestaccuracyindiscriminatingADandNCsubjectswithinthebraininMNI(MontrealNeurologicalInstitute)space. Oneofthevoxelsappearstobeslightlyoutsidethebrainduetotheeffectofsmoothingandthelargervoxelsizeofthepre-processeddatacomparedtothevoxelsizeofthetemplate. 404 E.Moradietal./NeuroImage104(2015)398–412 thatprogressthentothehippocampus,thetemporal,frontalandparie- 0.7661to0.6833,pb0.0001).Whenthefeatureselectionwasdone tal areas, before ultimately diffusing to the whole cerebral cortex combining AD and pMCI subjects into one class, and NC and sMCI (Casanovaetal.,2011b;Salawuetal.,2011).Thesebrainstructures, subjectsintoother,theperformancedidnotsignificantlydifferfrom especially the hippocampus, frontal and temporal areas have been thesuggestedapproach(AUCsof0.7661vs.0.7692).Asthisapproach foundtobeeffectiveindiscriminatingbetweenADpatientsandNC necessitates an additional CV loop, the suggested feature selection (forareviewseeCasanovaetal.,2011bandreferencestherein).Also, methodremainedpreferable. patternsofneuropathologyincerebellarareashavebeenreportedin Weinvestigatedhowmuchunlabeleddataimprovedtheclassifica- previousstudies(SjöbeckandEnglund,2001). tionaccuracy.Forthis,wetrainedtheLDSclassifieralsowithoutdata WeappliedLDSontheMRIdatawithandwithoutfeatureselection fromuMCIsubjects.NotethattheLDSisatransductivelearningmethod andcompareditsperformancewiththeperformanceofitssupervised that uses the test MRI data (but not labels) as unlabeled data. As counterpart,thestandardSVM.Wealsoevaluatedtheimpactofremov- explainedintheMRIbiomarkersection,becausethelabelinformation ing age-related effects from the MRI data for the purpose of early ofthetestdatawasnotusedinthelearningprocess,thisdoesnot diagnosisofAD.Becausetheagewasusedasaparameterforremoving leadto‘double-dipping’or‘trainingonthetestingdata’problems,and age-relatedeffects,thebiomarkerwasbasedonMRIandageinforma- morespecifically,toupwardbiasedclassifierperformanceestimates tion.However,theagewasnotusedasafeatureinthelearningprocess. (ChapelleandZien,2005;Chapelleetal.,2006).Fig.4showsthebox Table3showstheresultsoftheMRIbiomarker.First,secondandthird plotsforAUC,ACC,SENandSPEofLDSandSVMmethodsbasedon rowsshowtheperformancemeasuresobtainedusingaSVMwithout MRIdata(withfeatureselectionandage-relatedeffectsremoved).In feature selection, with feature selection, and after removing age- thecaseofLDS,theresultsareshownwithandwithoututilizinguMCI relatedeffects,respectively.Thefourth,fifthandsixthrowsinTable3 dataasunlabeleddatainthelearningprocess.Asitcanbeseenfrom showtheperformancemeasuresobtainedbytheLDS.Theclassification theresults,addinguMCIdatasamplesimprovedclassificationperfor- accuracyofbothmethodswithoutfeatureselectionwasonlyabout manceslightly,buttheimprovementwasnotstatisticallysignificant chancelevel.Afterthefeatureselection,theclassificationperformance (p=0.3072).However,itincreasedthestabilityoftheclassifierby based on AUC and ACC obtained by both methods improved. The decreasingthevarianceinAUCsbetweendifferentcross-validation improvement (in AUC) was statistically significant for both LDS runs. The LDS method works based on the cluster assumption and (pb0.0001)andSVM(pb0.0001).Asaresult,theelastic-netRLR utilizesunlabeleddataforfindingdifferentclustersandplacingthe wasabletoselecttherelevantvoxelscorrespondingtoADinthehigh decisionboundaryinlowdensityregionsofthefeaturespace.When dimensionalMRIdata.Inaddition,featureselectionwasdoneindepen- theclusterassumptiondoesnothold,unlabeleddatapointsdonot dentlyoftheclassificationprocedure.UsingNCandADdatasetsfor carrysignificantinformationandcannotimprovetheresults(Chapelle featureselectionwasastrategythatallowedalargersamplesizefor and Zien, 2005). Also, the number of unlabeled data might be too thetrainingandvalidatingtheMCIclassifier. smallforsignificantperformanceimprovement.Here,thenumberof In order to evaluate the performance of the elastic-net RLR for unlabeleddatawasonly130whichisfewcomparedtonumberofla- feature selection within MRI data, we compared the classification beleddata(264subjects).However,LDSeitherwithorwithoutuMCI performanceofMRIbiomarkerbasedondifferentfeatureselectional- data samples, clearly outperformed the corresponding supervised gorithms.Forthispurposeweusedunivariatet-testandgraph-net method(SVM,AUC0.7430vs.0.7661,pb0.0001).Eventhoughadding (Grosenicketal.,2013)featureselectionmethods.TheAUCofMRI uMCIsamplesdidnotsignificantlyimprovethepredictiveperformance biomarkerwiththeunivariatet-testbasedfeatureselection(1000fea- oftheMCI-to-ADconversion,theuseofLDSmethodinatransductive tures)was0.71andwithgraph-netbasedfeatureselection(354fea- manner led to a higher predictive performance compared to SVM tures)was0.74.Theelastic-netRLRbasedfeatureselectionledtoa method. significantlyimprovedperformanceinMRIbiomarkerascomparedto thet-testandgraph-netbasedfeatureselectionmethods(pb0.0001). Aggregatebiomarker WeexperimentedwiththefeatureselectiondirectlyonMCIsubjects' dataforreducingdimensionalityofMRIdata.Morespecifically,the Inthissection,wepresenttheexperimentalresultsfortheaggregate featureselection(elastic-netRLR)wasperformedintheouterloopof biomarkeroftheAggregatebiomarkersectionbasedonMRI,age,and twonestedcross-validationloopsbyfirstperformingthefeatureselec- cognitivemeasures,allacquiredatthebaseline.Table4showsthecor- tionusingallfeaturesinMRIdata(29,852voxels)andthenusingthese relationbetweencognitivemeasurementsusedinaggregatebiomarker selectedfeaturesforparameterselectionandlearningthemodel.The totheground-truthlabel. performanceofMRIbiomarkerwiththefeatureselectionusingMCI In order to demonstrate the advantage of the selected data- subjects decreased significantly compared to the feature selection aggregationmethodandtheutilityofcombiningageandcognitive using an independent validation set of AD and NC subjects (from measurements withMRIdata,we alsoapplied LDSandRFon data formedbyconcatenatingcognitivemeasurements,ageandMRIdata (309selectedvoxelswithage-relatedeffectsremoved)asalongvector. Table3 Further,weappliedRFontheageandcognitivemeasurementstopre- AcomparisonoftheperformancesofSVMandLDSmethodswithandwithoutfeature selection,andwithandwithoutage-relatedeffectsbyusingMRIdata.Theresultsare dictADinMCIpatientsintheabsenceofMRIdataandcombinedSVM averagesover100computationtimes.Fortheclassificationaccuracy(ACC),thechance withRF(abbreviatedasSVM+RF)inthesamewayasLDSiscombined levelis62.12%. toRFintheaggregatebiomarker.Theboxplotsfortheperformance Classifier Feature Agerelated AUC ACC SEN SPE measuresofaggregatebiomarker(LDS+RF),SVM+RFaswellasRF selection effect andLDSappliedontheconcatenateddataandtheRFwithoutMRIare showninFig.5. SVM No Notremoved 66.37% 64.86% 87.90% 27.09% SVM Yes Notremoved 69.49% 66.01% 78.88% 44.91% TheaggregatebiomarkerachievedmeanAUCof0.9020,whichwas SVM Yes Removed 74.30% 69.15% 86.73% 40.34% significantlybetterthantheAUCofLDSwithaggregateddata(0.7990, LDS No Notremoved 67.60% 66.05% 85.67% 33.90% pb0.0001)andtheAUCofRFwithonlycognitivemeasures(0.8819, LDS Yes Notremoved 72.88% 72.60% 84.16% 53.66% pb0.001).WithLDS,therewasasignificantimprovementwheninte- LDS Yes Removed 76.61% 74.74% 88.85% 51.59% gratingcognitivemeasurementsandMRIdata(meanAUCincreased Asexpected,applyingLDSontheMRIdataafterremovingage-relatedeffectsincreased from0.7661to0.7990,pb0.0001).However,inthecaseofRFadding theAUCscorefrom0.7288to0.7661,whichwassignificantaccordingtothepermutation test(pb0.0001).Removingage-relatedeffectsfromMRIdataimprovedtheclassification cognitivemeasurementswithMRIdatadecreaseditsperformancesig- performancesignificantlyalsointhecaseofSVM(AUC0.6949vs.0.7430,pb0.0001). nificantlywhencomparingtoRFwithonlycognitivemeasurements E.Moradietal./NeuroImage104(2015)398–412 405 Fig.4.BoxplotsforAUC,ACC,SENandSPEofSVMandLDSmethodsbasedonMRIdatawithselectedfeaturesandremovedage-relatedeffects,within100computationtimes.Inthecaseof LDS,thedepictedresultsareobtainedwith(LDS-labeled+unlabeled)andwithout(LDS-onlylabeled)utilizinguMCIsubjectsinthelearning.Oneachbox,thecentralmarkisthemedian (redline),theedgesoftheboxarethe25thand75thpercentiles,thewhiskersextendtothemostextremedatapointsnotconsideredoutliers,andoutliersareplottedwitha+. (meanAUCdecreasedfrom0.8819to0.8313,pb0.0001).Theseresults biomarkers.ResultsareshowninFig.7.Fig.7shows,asexpected,that seemtosuggestthatRFhaddifficultiesinaggregatingMRIdatawith thepredictionwasmoreaccuratetheclosertheconversionsubject cognitive measures and supports our decision to use two different was.Additionally,weevaluatedtheclassificationperformanceofthe learningalgorithmswhendesigningtheaggregatebiomarker.Also, MRIandaggregatebiomarkersagainstarandomclassifier,whereabio- theperformanceofSVM+RFwasclearlyworsethantheperformance markervalueforeachsubjectwasdrawnrandomlyfromastandard LDS + RF (p b0.001) and even RF with only cognitive measures normal distribution. The mean AUC of the random classifier was (pb0.001).WehypothesizethatthisisbecauseSVMoverlearnedand 0.5016,whichwassignificantlylowerthantheAUCoftheMRIbiomark- failedtoprovideausefulinputtorandomforestwhiletheimagesin er(AUC=0.7661,pb0.0001)aswellastheAUCofaggregatebiomark- thetestsetregularizeLDSinausefulway.Fig.6showstheROCcurves er(AUC=0.9020,pb0.0001). of one computation time (of the median AUC within 100 cross- Random forests can (without too much extra computational validationruns)ofMRIbiomarker(LDSwithonlyMRIdata),RFwith burden)produceofanestimateoffeatureimportanceviaout-of-bag onlyageandcognitivemeasures,LDSandRFmethodstrainedonthe errorestimate(Breiman,2001;LiawandWiener,2002).Fig.9shows concatenateddatafromMRI,ageandcognitivemeasurements,andof theimportanceofeachfeatureoftheaggregatebiomarkercalculated theaggregatebiomarkerwithMRI,ageandcognitivemeasurements. bytheRFclassifier.TheMRIfeaturewasthecombinedfeaturegenerat- TheROCcurveoftheaggregatebiomarkerdominatestheotherROC edbyLDSclassifierasdescribedintheMRIbiomarkersection.Accord- curvesnearlyeverywhere.WealsocalculatedthestratifiedAUCfor ingtoFig.9,theMRIbiomarkerandRAVLTwerethemostimportant differentpMCIsubgroups,i.e.,pMCIsubjectsthatareconvertedtoAD featuresfollowedbyADAS-cogtotal,FAQ,ADAS-cogtotalMod,age, indifferenttimepoints(1,2or3years),forbothMRIandaggregate CDR-SB,andMMSE.WecomputedAUCsforeachfeature,considered one-by-one,using10-foldCV.AUCsforMRI,RAVLT,ADAS-cogscores andFAQwerehighwhileage,CDR-SBandMMSEwerelesssignificant. ThesurvivalcurvefortheaggregatebiomarkerisshowninFig.8. AccordingtoFig.8subjectsinthefirstquartilehavethelowestriskfor Table4 conversiontoADandsubjectsinthelastquartilehavethehighest Thecorrelationbetweencognitivemeasurestotheground-truthlabels.Thenegative correlationindicatesthatthehigherthevaluetheloweristheriskforAD. risk.Table5showsthehazardratiosforthecontinuouspredictorand fordifferentquartilescomparedtothefirstquartile.Theseareshown Age MMSE FAQ CDR-SB ADAS-cog ADAs-cog RAVLT fortheaggregatebiomarker,theMRIbiomarkerandtheRFtrained total-11 totalMod withageandcognitivemeasures.Highbiomarkervalueswereassociat- Correlation −0.06 −0.28 0.40 0.34 0.43 0.43 −0.46 edwiththeelevatedriskforAlzheimer'sconversion(pb0.001forall 406 E.Moradietal./NeuroImage104(2015)398–412 Fig.5.BoxplotsforAUC,ACC,SENandSPEofRF,LDSandaggregatebiomarkerwithLDS+RFandwithSVM+RF,usingMRIwithcognitivemeasurementswithin100computationtimes. Oneachbox,thecentralmarkshowninredisthemedian,theedgesoftheboxarethe25thand75thpercentiles,thewhiskersextendtothemostextremedatapointsnotconsidered outliers,andoutliersareplottedwitha+.TheabbreviationCMreferstocognitivemeasurements.ThedataforLDS(MRI+age+CM)andRF(MRI+age+CM)wasformedbysimple dataconcatenation. threebiomarkers).Theaggregatebiomarkershowedover10times biomarkerandtheRFwithageandcognitivemeasures(withoutMRI) higherriskofconversiontoADforthesubjectsinthelastquartile thisriskwas3.5and5.83timeshigher,respectively. as compared to the subjects in the first quartile while for the MRI Comparisonstoothermethods Cuingnetetal.(2011)testedtendifferentmethodsforclassification ofpMCIandsMCIsubjects.Onlyfourofthesemethods,listedinTable6 usingthenamingofCuingnetetal.(2011),performedbetterthanthe randomclassifierforthetask.However,noneofthemobtainedsignifi- cantlybetterresultsthantherandomclassifier,accordingtoMcNemar test.Inordertocomparetheperformanceofourbiomarkerswiththe workpresentedbyCuingnetetal.(2011)weperformedtheexperi- mentsusingtrainingandtestingsetusedontheirmanuscript.The SupplementaryTablesS7andS8explainthedifferencesbetweenours andCuingnet'slabelingofthesubjects.Withaggregatebiomarker,one subjectwasexcludedfromthetrainingsetandtwosubjectsfromthe testingsetinsMCIgroupsduetomissingcognitivemeasurements. TheresultsarereportedinTable6.TheMcNemar'schisquaretests withsignificancelevel0.05wereperformedtocomparetheperfor- mance of each method with random classifier, as it was done in Cuingnetetal.(2011).WealsolisttheresultsofWolzetal.(2011) withthedatasetusedinCuingnetetal.(2011)inTable6.According to McNemar tests, both MRI and aggregate biomarkers performed significantlybetterthanrandomclassifierforthisdata.Also,withthis Fig.6.ROCcurvesofsubject'sclassificationtosMCIorpMCIusingclassificationmethods, dataset,theaggregatebiomarkerprovidedbetterAUCthantheMRIbio- LDS,SVMandaggregatebiomarkerusingonlyMRIandMRIwithageandcognitive marker.Interestingly,themarginofdifferencebetweentheAUCsofthe measurements.EachROCcurveisfromacross-validationrunwiththemedianAUCwithin 100cross-validationruns. twobiomarkerswassmallerthanwithourlabeling.Thisisprobably E.Moradietal./NeuroImage104(2015)398–412 407 Fig.7.TheAUCofMRIbiomarkerandaggregatebiomarkerforclassificationofdifferentpMCIgroups.pMCI1:ifdiagnosiswasMCIatbaselinebutconvertedtoADwithinthefirst 12months,pMCI2:ifdiagnosiswasMCIatbaselineandconversiontoADoccurredwithinthe2ndyearoffollow-up(24months),pMCI3:ifdiagnosiswasMCIatbaselineandconversion toADwasreportedat36monthsfollow-up. causedbythedifferenceinthelabelingofsubjectsdetailedinSupple- andapproachesthatusethevolumesofpre-definedregionsofinterest mentaryTablesS7andS8. (ROIs)(asinYeetal.,2012)asMRIfeatures.Forthefeatureselection, weappliedelastic-netRLRbyselectingallthefeaturesthathadanon- Discussion zero coefficient value along the regularization path up to a point whichmaybeconsideredtoprovideminimalapplicableamountof For the early identification of MCI subjects who are in risk of regularization.Thisallowedustodetectallthevoxelswhichmaybe convertingtoAD,wedevelopedanewmethodbyapplyingadvanced thoughttoproviderelevantinformationfortheclassificationtaskwith machinelearningalgorithmsforcombiningMRIdatawithstandard concreteevidencethattheyindeedareusefulforthediscrimination. cognitivetestresults.First,wepresentedanewbiomarkerutilizing Theregularizedlogisticregressionwaschosenasamodelselection onlyMRIdatathatwasbasedonasemi-supervisedlearningapproach methodbecauseithasbeenwidelyusedinmulti-voxelpatternanalyses termedlowdensityseparation(LDS).TheuseofLDSinplaceofmore offunctionalneuroimagingdataaswellasMRIbasedADclassification typical supervised learning approaches based on support vector approachesandshowntooutperformmanyotherfeatureselection machineswasshowntoprovideadvantagesasdemonstratedbysignif- methods (Huttunen et al., 2012, 2013; Ryali et al., 2010; Ye et al., icantlyincreasedcross-validatedAUCscores.Second,wepresenteda 2012;Casanovaetal.,2011a,b;Janoušováetal.,2012).Accordingto newmethodforcombiningMRI-biomarkerwithageandcognitive theresultspresentedhere(seeTable3),elastic-netRLRwasabletose- measurements.ThismethodcombinesthescoreprovidedbytheMRI- lectrelevantvoxelscorrespondingtoADinthehighdimensionalMRI biomarkerandappliesitasafeatureforthelearningalgorithm(RFin data.Wenotethatthenumberofselectedvoxelsisnotsufficientto thiscase).Thisaggregatebiomarkerprovidedacross-validatedAUC fullycapturetheADatrophy.Theelasticnetsucceededinthistask scoreof0.9020averagedacross100differentcross-validationruns. betterthanthetestedcompetingmethodsandprovidesavoxelset Sincethecross-validationwasproperlynested,i.e.,thetestingdata that,althoughbeingsparse,waswelldistributedalloverthebrain.If wasnotusedforfeaturenorparameterselection,thisAUCcanbeseen ouraimwouldbetocapturethefullextentofatrophyinAD,amorespe- aspromisingfortheearlypredictionofADconversion. cializedfeatureselectionmethodwouldprobablybemoreadequate ThemainnoveltiesoftheMRI-biomarkerwere1)featureselection (Fanetal.,2007;Cuingnetetal.,2013;Grosenicketal.,2013;Michel usingonlythedatafromADandNCsubjectswithoutusinganydata etal.,2011). fromMCIsubjects,thusreservingallthedataaboutMCIsubjectsfor AsnormalagingandADhavesimilareffectsoncertainbrainregions learningtheclassifier,and2)removingage-relatedeffectsfromMRI (Desikanetal.,2008;Dukartetal.,2011),weestimatedtheeffectsof databyusingonlydatafromhealthycontrols.Thefeatureselectionin normalagingontheMRIbasedonthedataofhealthycontrolsina thiswaycanbeseenasamid-waybetweenwhole-brain,voxel-based voxel-wisemannerandthenremoveditfromMRIdataofMCIsubjects MCI-to-ADconversionpredictionapproaches(asinGaseretal.,2013) beforetrainingtheclassifier.Ourresultsindicatedthatremovingage- relatedeffectsfromMRIcouldimprovesignificantlythepredictionof AD,especiallyyoungpMCIsubjectsaswellasoldsMCIsubjectswere Fig.9.TheimportanceofMRI,ageandcognitivemeasurementscalculatedbyRFclassifier. ADAS-cogtotal11andADAS-cogtotalModareweightedaveragesof13ADASsubscores, ADAS-cogsubscoreQ4(delayedwordrecall)andQ14(numbercancelation)arenot includedintheADAS-cogtotal11.RAVLTisRAVLT-immediatethatissumscorefor5 learningtrials.TheAUCofeachindividualfeaturewascalculatedusingRFexceptfor Fig.8.Kaplan–Meiersurvivalcurveforaggregatebiomarkerbysplittingthepredictorinto MRIthatLDSwasused.MRI:0.7661,RAVLT:0.7172,ADAS-cogtotal-11:0.7185,FAQ: quartiles.Thefollow-upperiodistruncatedat36months. 0.7290,ADAS-cogtotalMod:0.6554,age:0.5573,CDR-SB:0.6789,MMSE:0.6154.

Description:
Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. Elaheh Moradi a, Antonietta Pepe b, Christian
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.