Machine Learning for Developers Uplift your regular applications with the power of statistics, analytics, and machine learning Rodolfo Bonnin BIRMINGHAM - MUMBAI Machine Learning for Developers Copyright © 2017 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: October 2017 Production reference: 1241017 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK. ISBN 978-1-78646-987-8 www.packtpub.com Credits Author Copy Editor Rodolfo Bonnin Safis Editing Reviewers Project Coordinator Doug Ortiz Nidhi Joshi Md. Mahmudul Hasan Commissioning Editor Proofreader Veena Pagare Safis Editing Acquisition Editor Indexer Vinay Argekar Francy Puthiry Content Development Editor Graphics Aishwarya Pandere Tania Dutta Technical Editor Production Coordinator Karan Thakkar Shraddha Falebhai Foreword Several technological drivers that arose in the last decade that I made big data possible, irreversibly reshaping the world completely. Among these, machine learning plays a singular role, since it provides the main functionalities required for data analysis, mining, knowledge discovery, and many other features that provide actionable autonomous intelligence in a way invisible but pervasive to most of the systems we use in our daily lives. Although not new, the formalisms and methods within machine learning have quickly evolved, driven by the growing demands of e-commerce, social networks, internet- related services and products, and similar enterprises centered on online business. Breakthroughs in machine learning have been fueled by other technological innovations sprouted and matured within the Hadoop ecosystem, including horizontally scalable computational resources and superior warehousing capabilities that have made the real- time analysis of huge datasets feasible. At the same time, community supported initiatives around the Python programming language have made the use and evolution of sophisticated analysis libraries widspread, giving rise to a remarkable amount of knowledge and experience, at the same time fast and easy to deploy and to put into production. Within machine learning, neural networks play a singular role nowadays. Perhaps the first artificial intelligence paradigm to be proposed more than 70 years ago, neural networks have experienced several cycles of being abandoned by the community only to be rediscovered some years later. This was likely due to the lack of computational power to perform really complex analysis adequately, together with the burdensome task of assembling, training, and testing different topologies by trial and error. This has changed dramatically in recent years, mostly due to the availability of cloud computing, GPUs, and programming libraries that allow the set up of networks with simple scripts. Today, a network with hundreds of millions of degrees of freedom can be assembled in minutes, trained in hours, and put into production in a few days, (obviously, if you know the right technologies to so). This is one of the reasons why most of the radical advancements in computer vision, language understanding, and pattern recognition in general are being driven specifically by different flavors of neural networks that have been proposed recently. This exponentially growing set of knowledge, techniques, and programming libraries makes most classical texts on the subject obsolete, at least for the deployment of fast and practical applications. For this reason, a book like this can be celebrated as a quick and to- the-point text that provides all the materials required to successfully implement and understand a machine learning application in a single reading. In this book, you will find: 1. The fundamentals of machine learning tasks (classification, clustering, regression, and data reduction), together with a quick, yet comprehensive introduction to the mathematical and statistical foundations of the subject. 2. A more detailed presentation of Neural Networks as a learning model, together with basics of the training algorithms, convergence crite0ria, and the evaluation of results. 3. An introduction the most advanced learning models using more elaborate networks, including convolutional, recurrent, and adversarial networks. Each of the models is analyzed thoroughly, both in theoretical and in practical considerations. 4. A comprehensive guide to open source software that, together with the previous material, allows the reader to put the concepts into practice very quickly. This book is highly recommended for practitioners in academia who feel their expertise is becoming outdated, for developers who need to deploy sophisticated machine learning features in business applications, and for anyone willing to gain a broad and practical understanding of machine learning. The author transmits his vast experience in the subject in a very clear and systematic manner, making the book easy to follow and put into practice. Claudio Delrieux Full Professor at Electric and Computer Engineering Department - Universidad Nacional del Sur Fellow - National Research and Technology Council of Argentina Chair - Imaging Sciences Laboratory About the Author Rodolfo Bonnin is a systems engineer and Ph.D. student at Universidad Tecnológica Nacional, Argentina. He has also pursued parallel programming and image understanding postgraduate courses at Universität Stuttgart, Germany. He has been doing research on high-performance computing since 2005 and began studying and implementing convolutional neural networks in 2008, writing a CPU- and GPU- supporting neural network feedforward stage. More recently he's been working in the field of fraud pattern detection with Neural Networks and is currently working on signal classification using machine learning techniques. He is also the author of Building Machine Learning Projects with Tensorflow, by Packt Publishing. About the Reviewers Doug Ortiz is a Senior Big Data Architect at ByteCubed who has been architecting, developing, and integrating enterprise solutions throughout his whole career. Organizations that leverage his skillset have been able to rediscover and reuse their underutilized data via existing and emerging technologies such as Amazon Web Services, Microsoft Azure, Google Cloud, Microsoft BI stack, Hadoop, Spark, NoSQL databases, SharePoint along with related toolsets and technologies. He is also, the founder of Illustris, LLC and can be reached at [email protected] Interesting aspects of his profession include: Experience integrating multiple platforms and products Has Big Data, Data Science Certifications, R, and Python Certifications Helping organizations gain a deeper understanding and value of their current investments in data and existing resources turning them into useful sources of information Improving, salvaging and architecting projects by utilizing unique and innovative techniques Reviews regularly books on the topics of Amazon Web Services, Data Science, Machine Learning, R and Cloud Technologies Hobbies: Yoga Scuba diving I would like to thank my wonderful wife Mila for all her help and support as well as Maria and Nikolay and our wonderful children. Md. Mahmudul Hasan is currently serving as a Ph.D. researcher at Anglia Ruskin IT Research Institute (ARITI) at Anglia Ruskin University, UK. He worked as a senior lecturer in the department of CSE at Daffodil International University. He graduated from University of Essex, UK and specialized in games and mobile apps development in different platforms. He has 6+ years of experiences in ICT industry including development to commercialize of small and large software. He is currently serving himself as a country Director and Chair of International Game Developers Association (IGDA) Bangladesh Chapter. Mahmud's research interests include machine learning, data science, decision support system, and personalized learning through games and gamification. He has significant publications in peer-reviewed journals and conferences.