ebook img

Machine Learning Empowered Intelligent Data Center Networking: Evolution, Challenges and Opportunities PDF

123 Pages·2023·2.343 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Machine Learning Empowered Intelligent Data Center Networking: Evolution, Challenges and Opportunities

SpringerBriefs in Computer Science Ting Wang · Bo Li · Mingsong Chen · Shui Yu Machine Learning Empowered Intelligent Data Center Networking Evolution, Challenges and Opportunities SpringerBriefs in Computer Science SeriesEditors StanZdonik,BrownUniversity,Providence,RI,USA ShashiShekhar,UniversityofMinnesota,Minneapolis,MN,USA XindongWu,UniversityofVermont,Burlington,VT,USA LakhmiC.Jain,UniversityofSouthAustralia,Adelaide,SA,Australia DavidPadua,UniversityofIllinoisUrbana-Champaign,Urbana,IL,USA XueminShermanShen,UniversityofWaterloo,Waterloo,ON,Canada BorkoFurht,FloridaAtlanticUniversity,BocaRaton,FL,USA V.S.Subrahmanian,UniversityofMaryland,CollegePark,MD,USA MartialHebert,CarnegieMellonUniversity,Pittsburgh,PA,USA KatsushiIkeuchi,UniversityofTokyo,Tokyo,Japan BrunoSiciliano,UniversitàdiNapoliFedericoII,Napoli,Italy SushilJajodia,GeorgeMasonUniversity,Fairfax,VA,USA NewtonLee,InstituteforEducation,ResearchandScholarships,LosAngeles,CA, USA SpringerBriefs present concise summaries of cutting-edge research and practical applicationsacrossawidespectrumoffields.Featuringcompactvolumesof50to 125pages,theseriescoversarangeofcontentfromprofessionaltoacademic. Typicaltopicsmightinclude: (cid:129) Atimelyreportofstate-of-theartanalyticaltechniques (cid:129) A bridge between new research results, as published in journal articles, and a contextualliteraturereview (cid:129) Asnapshotofahotoremergingtopic (cid:129) Anin-depthcasestudyorclinicalexample (cid:129) Apresentationofcoreconceptsthatstudentsmustunderstandinordertomake independentcontributions Briefsallowauthorstopresenttheirideasandreaderstoabsorbthemwithminimal time investment. Briefs will be published as part of Springer’s eBook collection, withmillionsofusersworldwide.Inaddition,Briefswillbeavailableforindividual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for pub- lication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts areconsideredforpublicationinthisseries. **Indexing:ThisseriesisindexedinScopus,Ei-Compendex,andzbMATH** Ting Wang (cid:129) Bo Li (cid:129) Mingsong Chen (cid:129) Shui Yu Machine Learning Empowered Intelligent Data Center Networking Evolution, Challenges and Opportunities TingWang BoLi SoftwareEngineeringInstitute SoftwareEngineeringInstitute EastChinaNormalUniversity EastChinaNormalUniversity Shanghai,China Shanghai,China MingsongChen ShuiYu SoftwareEngineeringInstitute SchoolofComputerScience EastChinaNormalUniversity UniversityofTechnologySydney Shanghai,China Ultimo,NSW,Australia ISSN2191-5768 ISSN2191-5776 (electronic) SpringerBriefsinComputerScience ISBN978-981-19-7394-9 ISBN978-981-19-7395-6 (eBook) https://doi.org/10.1007/978-981-19-7395-6 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface To support the needs of ever-growing cloud-based services, the number of servers andnetworkdevicesindatacentersisincreasingexponentially,whichinturnresults in high complexities and difficulties in network optimization. To address these challenges, both academia and industry turn to artificial intelligence technology to realize network intelligence. To this end, a considerable number of novel and creativemachinelearning-based(ML-based)researchworkshavebeenputforward in recent few years. Nevertheless, there are still enormous challenges faced by the intelligent optimization of data center networks (DCNs), especially in the scenarioofonlinereal-timedynamicprocessingofmassiveheterogeneousservices and traffic data. To the best of our knowledge, there is a lack of systematic and original comprehensive investigations with in-depth analysis on intelligent DCN. To this end, in this book, we comprehensively investigate the application ofmachinelearningtodatacenternetworkingandprovideageneraloverviewand in-depthanalysisoftherecentworks,coveringflowprediction,flowclassification, load balancing, resource management, energy management, routing optimization, congestion control, fault management, and network security. In order to provide a multi-dimensional and multi-perspective comparison of various solutions, we design a quality assessment criteria called REBEL-3S to impartially measure the strengths and weaknesses of these research works. Moreover, we also present uniqueinsightsintothetechnologyevolutionofthefusionofdatacenternetworks andmachinelearning,togetherwithsomechallengesandpotentialfutureresearch opportunities. Shanghai,P.R.China TingWang March2022 BoLi MingsongChen ShuiYu v Acknowledgments This work was partially supported by the grants from National Key Research and Development Program of China (2018YFB2101300), Natural Science Foundation of China (61872147), the Dean’s Fund of Engineering Research Center of Soft- ware/HardwareCo-designTechnologyandApplication,MinistryofEducation(East ChinaNormalUniversity),andthegrantsfromShenzhenScienceandTechnology PlanProject(CJGJZD20210408092400001). vii Contents 1 Introduction .................................................................. 1 References..................................................................... 5 2 FundamentalsofMachineLearninginDataCenterNetworks......... 9 2.1 LearningParadigm .................................................... 9 2.2 DataCollectionandProcessing....................................... 10 2.2.1 DataCollectionScenarios................................... 11 2.2.2 DataCollectionTechniques ................................. 11 2.2.3 FeatureEngineering.......................................... 11 2.2.4 ChallengesandInsights...................................... 12 2.3 PerformanceEvaluationofML-BasedSolutionsinDCN........... 13 References..................................................................... 14 3 MachineLearningEmpoweredIntelligentDataCenter Networking ................................................................... 15 3.1 FlowPrediction........................................................ 15 3.1.1 Temporal-DependentModeling............................. 16 3.1.2 Spatial-DependentModeling................................ 16 3.1.3 DiscussionandInsights...................................... 17 3.2 FlowClassification .................................................... 17 3.2.1 SupervisedLearning-BasedFlowClassification ........... 22 3.2.2 UnsupervisedLearning-BasedFlowClassification ........ 23 3.2.3 DeepLearning-BasedFlowClassification.................. 23 3.2.4 ReinforcementLearning-BasedFlowClassification....... 24 3.2.5 DiscussionandInsights...................................... 24 3.3 LoadBalancing........................................................ 28 3.3.1 TraditionalSolutions......................................... 29 3.3.2 MachineLearning-BasedSolutions......................... 29 3.3.3 DiscussionandInsights...................................... 30 3.4 ResourceManagement ................................................ 31 3.4.1 Task-OrientedResourceManagement...................... 36 3.4.2 VirtualEntities-OrientedResourceManagement .......... 37 ix x Contents 3.4.3 QoS-OrientedResourceManagement ...................... 37 3.4.4 ResourcePrediction-OrientedResourceManagement..... 38 3.4.5 ResourceUtilization-OrientedResourceManagement .... 38 3.4.6 DiscussionandInsights...................................... 39 3.5 EnergyManagement................................................... 46 3.5.1 ServerLevel.................................................. 47 3.5.2 NetworkLevel ............................................... 47 3.5.3 DataCenterLevel............................................ 48 3.5.4 DiscussionandInsights...................................... 49 3.6 RoutingOptimization ................................................. 54 3.6.1 Intra-DCRoutingOptimization............................. 55 3.6.2 Inter-DCRoutingOptimization............................. 55 3.6.3 DiscussionandInsights...................................... 55 3.7 CongestionControl.................................................... 61 3.7.1 CentralizedCongestionControl............................. 62 3.7.2 DistributedCongestionControl............................. 63 3.7.3 DiscussionandInsights...................................... 63 3.8 FaultManagement..................................................... 64 3.8.1 FaultPrediction .............................................. 69 3.8.2 FaultDetection............................................... 70 3.8.3 FaultLocation................................................ 70 3.8.4 FaultSelf-Healing............................................ 70 3.8.5 DiscussionandInsights...................................... 71 3.9 NetworkSecurity...................................................... 75 3.10 NewIntelligentNetworkingConcepts................................ 79 3.10.1 Intent-DrivenNetwork....................................... 80 3.10.2 Knowledge-DefinedNetwork ............................... 80 3.10.3 Self-DrivingNetwork........................................ 81 3.10.4 Intent-BasedNetwork(Gartner)............................. 82 3.10.5 Intent-BasedNetwork(Cisco)............................... 83 References..................................................................... 84 4 Insights,ChallengesandOpportunities ................................... 101 4.1 IndustryStandards..................................................... 105 4.1.1 NetworkIntelligenceQuantificationStandards ............ 105 4.1.2 DataQualityAssessmentStandards ........................ 105 4.2 ModelDesign.......................................................... 105 4.2.1 IntelligentResourceAllocationMechanism................ 105 4.2.2 Inter-DCIntelligentCollaborativeOptimization Mechanism................................................... 106 4.2.3 AdaptiveFeatureEngineering............................... 106 4.2.4 IntelligentModelSelectionMechanism.................... 106 4.3 NetworkTransmission................................................. 106 4.4 NetworkVisualization................................................. 107 References..................................................................... 108 Contents xi 5 Conclusion.................................................................... 109 Index............................................................................... 111

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.