s u 1 bli01 min%fr al ee meof s s a g e s MA136 Introduction to Abstract Algebra Samir Siksek MathematicsInstitute UniversityofWarwick DIRE WARNING: These notes are printed on paper laced with N-isopropyl-2-methyl-2-propyl-1,3-propanediol di- carbamate.Donotburnduringend-of-examscelebrations. ©2015SamirSiksek Contents ChapterI. Prologue 1 I.1. WhoAmI? 1 I.2. AJollyGoodRead! 1 I.3. Proofs 2 I.4. AcknowledgementsandCorrections 2 ChapterII. FAQ 4 ChapterIII. AlgebraicReorientation 5 III.1. Sets 5 III.2. BinaryOperations 6 III.3. VectorOperations 7 III.4. OperationsonPolynomials 7 III.5. CompositionofFunctions 8 III.6. CompositionTables 9 III.7. CommutativityandAssociativity 9 III.8. WherearetheProofs? 11 III.9. TheQuaternionicNumberSystem(donotread) 12 ChapterIV. Matrices—ReadOnYourOwn 15 IV.1. WhatareMatrices? 15 IV.2. MatrixOperations 16 IV.3. Wheredomatricescomefrom? 18 IV.4. Howtothinkaboutmatrices? 19 IV.5. WhyColumnVectors? 21 IV.6. MultiplicativeIdentityandMultiplicativeInverse 22 IV.7. Rotations 28 ChapterV. Groups 29 V.1. TheDefinitionofaGroup 29 V.2. FirstExamples(andNon-Examples) 29 V.3. AbelianGroups 31 V.4. SymmetriesofaSquare 32 ChapterVI. FirstTheorems 37 VI.1. GettingRelaxedaboutNotation 38 VI.2. AdditiveNotation 40 ChapterVII. MoreExamplesofGroups 41 i ii CONTENTS VII.1. MatrixGroupsI 41 VII.2. CongruenceClasses 42 ChapterVIII. OrdersandLagrange’sTheorem 45 VIII.1. TheOrderofanElement 45 VIII.2. Lagrange’sTheorem—Version1 48 ChapterIX. Subgroups 49 IX.1. WhatWereTheyAgain? 49 IX.2. CriterionforaSubgroup 49 IX.3. RootsofUnity 57 IX.4. MatrixGroupsII 58 IX.5. DifferentialEquations 59 IX.6. Non-TrivialandProperSubgroups 60 IX.7. Lagrange’sTheorem—Version2 61 ChapterX. CyclicGroupsandCyclicSubgroups 63 X.1. LagrangeRevisited 66 X.2. Subgroupsof(cid:90) 67 ChapterXI. Isomorphisms 69 ChapterXII. Cosets 71 XII.1. GeometricExamples 72 XII.2. SolvingEquations 74 XII.3. Index 76 XII.4. TheFirstInnermostSecretofCosets 76 XII.5. TheSecondInnermostSecretofCosets 77 XII.6. LagrangeSuper-Strength 78 ChapterXIII. QuotientGroups 81 XIII.1. CongruencesModuloSubgroups 81 XIII.2. CongruenceClassesandCosets 83 XIII.3. (cid:82)/(cid:90) 84 XIII.4. (cid:82)2/(cid:90)2 85 XIII.5. (cid:82)/(cid:81) 86 XIII.6. Well-DefinedandProofs 86 ChapterXIV. SymmetricGroups 89 XIV.1. Motivation 89 XIV.2. Injections,SurjectionsandBijections 90 XIV.3. TheSymmetricGroup 93 XIV.4. S 93 n XIV.5. ANiceApplicationofLagrange’sTheorem 96 XIV.6. CycleNotation 97 XIV.7. PermutationsandTranspositions 101 XIV.8. EvenandOddPermutations 102 CONTENTS iii ChapterXV. Rings 109 XV.1. Definition 109 XV.2. Examples 110 XV.3. Subrings 111 XV.4. TheUnitGroupofaRing 114 XV.5. TheUnitGroupoftheGaussianIntegers 117 ChapterXVI. Fields 119 ChapterXVII. CongruencesRevisited 121 XVII.1. Unitsin(cid:90)/m(cid:90) 121 XVII.2. Fermat’sLittleTheorem 122 XVII.3. Euler’sTheorem 123 Vale Dicere XVII.4. 124 Appendices 124 AppendixA. 2012IntroductiontoAbstractAlgebraPaper 125 AppendixB. 2013IntroductiontoAbstractAlgebraPaper 127 AppendixC. 2014IntroductiontoAbstractAlgebraPaper 129 AppendixD. 2015IntroductiontoAbstractAlgebraPaper 131 AppendixE. TheForgottenJoysofAnalyticIrresponsibility 133 E.1. TheMathematicalEquivalentofanX-RatedDVD 133 E.2. Nothingtoseehere—movealongplease 134 CHAPTER I Prologue I.1. WhoAmI? ISamirSiksekhavetheimmensepleasureofintroducingyoutothree heroes of abstract algebra: groups, rings and fields. I am not an alge- braist, but I have nothing but love, admiration and enthusiasm for the subject. Someofmybestfriendsarealgebraists. I.2. AJollyGoodRead! Abstractalgebraisaboutpatterns.Youseeonepatternrepeatingitself acrossmathematicsandyoutrytoextracttheessentialelementsofthat pattern and turn them into a definition. This process gives you groups, rings, fields, vector spaces, etc. You then study each of these new alge- braicobjectsandbecomefamiliarwithit. Afterthat,whenyouspotone of these patterns in a new context, you’ll say ‘Aha! I know what that is, andwhattodowithit’. threetips Abstractalgebraisincrediblyuseful,buttogetanybenefitfromityou needtodevelopthreeessentialhabits: (i) Studyasmanydifferentexamplesasyoucan. Theexamplesare as important as the theorems and definitions. There is abso- lutely no use in knowing the definition of a group if you’re not familiarwiththestandardexamples. (2) Do calculations. Use calculations with matrices, permutations, symmetries,etc.totestyourideas. Calculationswillleadyouto counterexamples that can correct any erroneous ideas that you have. Butalsowithpractice,youwillfindthatcalculationsoften containthegermoftheproofyou’relookingfor. (c) Think geometrically and draw pictures. The true meaning of mostmathematicalconceptsisgeometric. Ifyouspendallyour time manipulating symbols (i.e. doing algebra) without under- standing the relation to the geometric meaning, then you will haveverylittleintermsofmathematicalinsight. The three habits will not only help you learn the subject and apply it, youwilldevelopgreatmathematicaltaste.Hereismyfavouritequotation aboutalgebra: 1 2 I.PROLOGUE Algebraistheoffermadebythedeviltothemathemati- cian. The devil says: ‘I will give you this powerful ma- chine,itwillansweranyquestionyoulike. Allyouneed to do is give me your soul: give up geometry and you willhavethismarvellousmachine.’ MichaelAtiyah (FieldsMedalistandAbelPrizewinner) I.3. Proofs WhenIwasastudentIfounditveryhardtofollowproofsinbooksand lectures.SowhenIreadatheorem,Iwouldputdownthebookandtryout afewexamples.AfterthatIwouldtrytoprovethetheoremmyself.AfterI finished(orifIfailed)Iwouldlookattheproofinthebookandcompare. I heartily recommend this strategy. You’ll gain a great understanding of the subject. You’ll also get really good practice for the exam, where you mayaskedtoprovestatementsthatyouhaven’tseenbefore. I.4. AcknowledgementsandCorrections IoffermymostenthusiasticcongratulationsthecreatersofVim,LATEX, “Realmenuse andTikZontheir...ermm...creations.IthankAlexBest,GeorgeChristofi, LATEX. Andreal JennyCooley,HarryGraham,GilesHutchings,DaveMcCormick,Joseph womentoo.” Miller, Ghaleo Tsoi Kwok-Wing, James Soffe and Esther Turner for sug- gestingcorrectionstopreviousversionsofthesenotes. Please email me your comments, misprintsandcorrections. My ad- [email protected]. .liameybroecaf-ot-ecaf,emoclewerasmsicitircevitcurtsnoC ?smsicitirc evitcurtsnoc ekam I nac woH .mrala erfi eht ffo tes dluowhcrotatahtdeirrowm’Idna,krofhctipafodlohtegt’nacI .dnikebothguotebotevahuoysemitemos tub ,uoy no drah os eb ot peed em stuc tI .keew rep teehs eno ot krowemohehttimileroferehtll’I.ecneicsnocymnotahtevaht’nac ylpmisI .flesruoyotodthgimuoytahwgnilletons’erehtdna,revo si mret eht ecno smotpmys lawardhtiw ereves reffus ll’uoy ,krow -emoh hcum oot od uoy fI .luferac eb tsum eW ?krowemoh fo stnuoma enecsbo su tes esaeeeeeelP.llufeht otscitamehtamyojneottnawI,erehm’ItslihW.ruoivaheblaicos -itnadnassenneknurdotefilymetovedotnalpIkciwraWretfA .uoynosgod eht tes ot ton esimorp I ;ksa dna emoc seY .gnitnua-ynoga otni tuodehcnarbydaerlaev’I,yrrowt’noD ?tituobauoyksadnarood ruoy no kconk I naC .noitseuq krowemoh a od t’nac I esuaceb sdneirfymllagnissertsdnanekcihcsseldaehaekildnuoragnin -nur m’I .shtnom xis nihtiw/keew txen/worromot si maxe ehT .laivirtebdluoweergedshtamruoyesiwrehto,raeppa tsumsnoitseuqgnitseretniemosylniatrectub,ercassamwasniahc afotnelaviuqecimedacaehtebTONlliwmaxeehT !nacyehtseY ?maxe eht ni raeppa C trap ot epyt ralimis a fo snoitseuq naC .krowkoobevolI .snoitseuqkrowemoh dnasfoorp,snoitinfied,smeroeht,seY ?setonerutcelehtnidnuof roserutcelehtgnirudnekatsfoorpehtwonkotderiuqerewerA .emdnimeroteerfleeF .maxelanfiruoyerofebhtnom enoylhguorenilnosrewsnaehttsopll’ItuB .flesruoyogaevahot uoytnawI !teytoN ?maxes’raeytsalotsrewsnaehtevahewnaC .krowemohehttadrahkrowotsi maxeehtrofnoitaraperptsebeht,revewoH .secidneppaehtniera srepap maxe suoiverp ehT ?elbaliava srepap maxe suoiverp erA 3 4 II.FAQ .ecnetopmilautcelletnihsiuqnavotdengisednoitalumits latnemfoesruocralugeryrotadnamA .nuoN /k:3wmU@h"/ krow·emoh1 ?maIknihtuoyodwol woh,noemoC ?maxednah-dnocesahtiwffouoypirotemtcepxe yldrahuoY .raeya0009£gniyaper’uoY ?raeyyrevemaxeemaseht gnittesfonoitidartkciwraWsuoirtsulliehtotebircsbusuoyoD .tsocllatasnoitseuqCtrap gnitpmetta diova dluohs drihT a ro 2:II ta teg ot epoh ohw stned -utS .1:II a ro tsriF a niatbo ot epoh ohw stneduts yb detpmetta eb dluohs snoitseuq C traP .C trap ton tub B dna A strap htob ni -dnahotdeksaerauoY ?lanoitpoCtrapnisnoitseuqehterA.C,B ,AstrapotnidedividerasteehskrowemohehtnosnoitseuqehT .)elgooGotniemanymtuptsuj(egap -emohymmorfstnemngissaehtllategnacuoY ?ypocrehtonateg I nac erehW .nelots/tsol si x tnemngissa krowemoh fo ypoc yM .3mretnimaxeruohenoarof%58dna stnemngissakrowemohruofrof%51 ?dessessaesruocsihtsiwoH .ecfifOetaudargrednUehtybdeldnah era srettam esehT .enildaed krowemoh a dessim dna lli saw I 1 .setonerutceldetnirpesehtsallewsaserutcelehtfostnetnoc ehtnodesabeblliwmaxeehT .setonnworuoyekamdnaserutcel eht ot emoc ot deen uoY .seton detnirp eseht ni taht ot lacitnedi ebtonlliwserutcelehtnirevocewlairetamehtoS.serutcelgnirud noitasivorpmi evol I .slliks gnirutcel ym fo msicitirc a naht rehtar slliks gnitirw ym fo ssentaerg eht fo tnemesrodne na sa taht ekat ll’I ?setonerutcelesehthtiwodekamInacro,serutcelruoydnet -taotevahyllaerIoD .teyekawaebotdetcepxeebnactneduts gnitcepser-flesondnaerutcelaeludehcsotemitylraeylesrevrep a si noon 21 ,sediseB .gnirob ylgnitaicurcxe era serutcel ruoY .tidaerdnatiecitonlliwuoy tahtsecnahcehtevorpmiotsisihT ?nwodedispuQAFsihtsiyhW QAF II RETPAHC CHAPTER III AlgebraicReorientation III.1. Sets Sets are a basic notation for most of modern pure mathematics, but life is too short to spend too much time on them. A set is simply a col- lectionofobjects. Weusecurlybracketstodenotesets. Forexample,ifI write A={2,5,13}, then I’m saying that the set A consists of the elements 2, 5, 13. This is onewayofspecifyingaset; wesimplylistallitselementsbetweencurly brackets. The notation x ∈ S means x is a member of the set S and the notation x ∉S means x isnotamemberofthesetS. Fortheset A above, weknow13∈Abut11∉A. Wecanalsospecifysomeinfinitesetsinthisfashion;forexample,the setofallintegers (cid:90)={...,−3,−2,−1,0,1,2,3,...}. Thisisabsolutelystandardnotation: whenyousee(cid:90),you’reexpectedto knowthatit’sthesetofintegers. Thesetofnaturalnumbersis (cid:78)={0,1,2,3,4...}. Again this is standard notation(but not all mathematicians include 0 in thenaturalnumbers). Hereisanexampleofanotherwayofspecifyingaset: B ={x∈(cid:90):x2=16}. This is saying that B is the set of all integers x satisfying the equation x2 =16. Of course, another way of specifying the same set would be to writeB ={−4,4}. Ifwewrite C ={x∈(cid:78):x2=16}, thenC ={4}. Ifwewrite D={u∈(cid:90):u3=2}, then D is the set of integers u satisfying u3 = 2. There are no integers satisfying this equation, so D is the empty set. We denote the empty set by(cid:59),sowecanwriteD =(cid:59). Hereareacouplemoreexamplesofempty sets: {w ∈(cid:78):w ≤−1}=(cid:59), {v ∈(cid:90):3·01≤v ≤3·99}=(cid:59). 5