´ UNIVERSIDADE FEDERAL DO PARANA SHUQIN WANG ´ ´ METODO DE GALERKIN DESCONTINUO PARA DOIS PROBLEMAS DE ˜ ˜ CONVECC¸AO-DIFUSAO Curitiba, Setembro de 2015. ´ UNIVERSIDADE FEDERAL DO PARANA SHUQIN WANG ´ ´ METODO DE GALERKIN DESCONTINUO PARA DOIS PROBLEMAS DE ˜ ˜ CONVECC¸AO-DIFUSAO Tese de Doutorado apresentada ao Programa de Po´s-Graduac¸˜ao em Matema´tica Aplicada da Universidade FederaldoParana´, comorequisito parcial `a obten¸c˜ao do T´ıtulo de Doutor em Matem´atica. Orientador: Prof. Dr. Jinyun Yuan. Co-orientador: Prof. Dr. Yujiang Wu. Curitiba, Setembro de 2015. W246M Wang, Shuqin Método de Galerkin descontínuo para dois problemas de convecção- difusão/ Shuqin Wang. – Curitiba, 2015. 86 f. : il. color. ; 30 cm. Tese - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-graduação em Matemática Aplicada, 2015. Orientador: Junyun Yuan – Co-orientador: Yujiang Wu. Bibliografia: p. 82-86. 1. Equações diferenciais não lineares - Soluções numericas. 2. Dinamica dos fluidos. 3. Matemática aplicada. I. Universidade Federal do Paraná. II.Yuan, Junyun. III. Wu, Yujiang . IV. Título. CDD: 515.355 Aos meus pais e meu irma˜o. i Acknowledgements Immeasurable appreciation and deepest gratitude for the help and support from the following persons . I am extremely thankful to my supervisor Prof. Jinyun Yuan, and co-supervisor Prof. Yujiang Wu for their support, advices, guidance, valuable comments, sugges- tions, and care, shelter in doing these researches. I greatly appreciate Prof. Weihua Deng, who responded promptly and enthusias- tically to my requests for comments despite his congested schedules. I thank for all the help from the professors in UFPR, Prof. Saulo, Prof. Geovani, Prof. Elizabeth, Prof. Matioli and other professors who I know. I am also thankful to my friendsin Brazil, Oscar, Kally, Aura, Elvis, Marcos, Diego, Priscila, Leonardo and all the classmates from the Po´s. Above all, thanks to my parents and my brother for their support, understanding and love. ii Resumo Nesta tese consideramos dois tipos de problemas de convec¸c˜ao-difusa˜o, a saber, as equa¸c˜oes de Navier-Stokes para meios incompress´ıveis e dependentes do tempo e as equa¸c˜oes de convec¸c˜ao-difusa˜o espac¸o-fracion´aria em duas dimens˜oes. Para as equa¸c˜oes de Navier-Stokes usamos o m´etodo das caracter´ısticas para lin- earizarequa¸c˜oesna˜o-lineareseintroduzimosumavaria´velauxiliarparareduziraequa¸c˜ao deordemaltaaumsistemadeprimeiraordem. Escolhendo-se cuidadosamente osfluxos num´ericos e adicionando os termos de penalizac¸˜ao propomos um m´etodo de Galerkin descont´ınuo caracter´ıstico local (CLDG) sim´etrico e esta´vel. Com essa simetria, ´e f´acil provar estabilidade num´erica e estimativas de erros. Experimentos num´ericos sa˜o re- alizados para verificar os resultados te´oricos. Para os problemas de convecc¸˜ao-difusa˜o espac¸o-fracion´aria ainda utilizamos o m´etodo das caracter´ısticas para tratar a derivada no tempo e os termos convectivos conjuntamente. Para o termo fracion´ario introduz- imos algumas varia´veis auxiliares para decompor a derivada de Riemann-Liouville na integral de Riemann-Liouville e na derivada de ordem inteira. Em seguida um m´etodo de Galerkin descont´ınuo hibridizado(HDG) ´e proposto. Finalmente usamos os m´etodos anal´ıticos para realizar a ana´lise de estabilidade e estimativas de convergˆencia do es- quema HDG. Pelo nosso conhecimento, este ´e o primeiro trabalho que combina o m´etodo de Galerkin descont´ınuo caracter´ıstico `as equa¸c˜oes de Navier-Stokes e `as equa¸c˜oes con- vec¸c˜ao-difusa˜o espac¸o-fracion´aria em 2D. Estes esquemas tamb´em podem ser aplicados e estudados em outros problemas. Os resultados num´ericos sa˜o consistentes com os re- sultados te´oricos. Palavras-chave: m´etododascaracter´ısticas; m´etododeGalerkindescont´ınuo;equa¸c˜oes de Navier-Stokes; equa¸c˜oes de convec¸c˜ao-difusa˜o espac¸o-fracion´aria. iii Abstract In this thesis, we consider two kinds of convection-diffusion problems, namely the clas- sical time-dependent incompressible Navier-Stokes equations and the space-fractional convection-diffusion equations in two dimensions. For Navier-Stokes equations, we use the method of characteristics to make nonlinear equations linear, and we introduce an auxiliary variable to reduce high-order equation to one order system. Carefully choosing numerical fluxes and adding penalty terms, a stable and symmetric characteristic local discontinuous Galerkin (CLDG) method is proposed. With this symmetry, it is easy to perform numerical stability and error es- timates. Numerical experiments are performed to verify theoretical results. For the space-fractional convection-diffusion problems, we still use the method of characteris- tics to tackle the time derivative and convective terms together. For the fractional term, we introduce some auxiliary variables to split the Riemann-Liouville derivative into Riemann-Liouville integral and integer order derivative. Thus a hybridized discon- tinuous Galerkin method (HDG) is proposed. Finally we use general analytic methods to perform the stability analysis and convergence estimates of the HDG scheme. As far as we know, this is the first time the discontinuous Galerkin method and the methodofcharacteristics are combinedtonumericallysolve theNavier-Stokes equations andspace-fractional convection-diffusion equations in 2D. Theseschemes can beapplied and further studied into other problems as well. The numerical results are consistent with theoretical results. Keywords: methodofcharacteristics;discontinuousGalerkinmethod;Navier-Stokes equations; space-fractional convection-diffusion equations. iv
Description: