ebook img

Lung Complications in Adenosine Deaminase (ADA - T-Space PDF

123 Pages·2012·13.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lung Complications in Adenosine Deaminase (ADA - T-Space

Lung Complications in Adenosine Deaminase (ADA) Deficiency: A Mouse Model for the Human Disease by Rupreet Dhanju A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Rupreet Dhanju 2012 Lung Complications in Adenosine Deaminase (ADA) Deficiency: A Mouse Model for the Human Disease Rupreet Dhanju Master of Science Institute of Medical Science University of Toronto 2012 Abstract Recently, we discovered patients with inherited adenosine deaminase (ADA) deficiency are predisposed to pulmonary alveolar proteinosis (PAP). PAP is characterized by the accumulation of surfactant in the alveoli. To overcome ethical issues and limited patient samples, animal models are often utilized. Here, I investigated the lung abnormalities in ADA deficient (ADA -/-) mice, which suffer from severe hypoxia, till their death at 3 weeks. I hypothesized that, similar to ADA-deficient patients, ADA -/- mice demonstrate evidence of PAP. Indeed, electron microscopy showed thickening of type I cells, accumulation of apoptotic foamy alveolar macrophages, cholesterol and lipoproteinaceous material that is periodic-acid Schiff (PAS) positive and diagnostic of PAP. Moreover, the pulmonary abnormalities were corrected with supplementation of ADA. In conclusion, we demonstrated evidence of PAP in ADA -/- mice for the first time and their suitability to study pathogenesis of PAP in ADA deficiency. ii Acknowledgments and Contributions First and foremost, I would like to thank Dr. Eyal Grunebaum for his guidance, patience and support over the two years. I have learned a great deal from Dr. Grunebaum and I am truly grateful for the experience. I would like to extend my gratitude to Dr. Nades Palaniyar for his continuous encouragement. I sincerely appreciate Dr. Palaniyar for welcoming me to his lab and for his efforts to make my goals become a reality. I couldn’t have made it this far without the mentorship of both Dr. Grunebaum and Dr. Palaniyar. My program advisory committee members, Dr. Yigal Dror, Dr. Nicola Jones and Dr. Chetankumar Tailor have always been supporting and encouraging. I would like to thank them for always making helpful suggestions and their continued kindness. A special thanks goes to Dr. Cameron Ackerley for conducting the electron microscopy for this study. Weixian Min for animal husbandry and for his eagerness to always lend a helping hand. Huimin Wang for her help with sectioning and staining some tissues. Pascal Djiadeu for helping me with the apoptosis studies and Ron Flannagan for showing me the phagocytosis technique. I would also like to thank Casey and Francis at the PMH flow facility for introducing me to flow cytometry and Michael Woodside from the SickKids imaging facility for answering my microscope related questions. Thank you to all my friends in Dr. Dror’s and Dr. Palaniyar’s lab for always making everyday an adventure. Moreover, this could not have been possible without the support of my loving family and amazing friends. Lastly, I would like to acknowledge CIHR for providing me with a Frederick Banting and Charles Best Master’s Award. iii Table of Contents Acknowledgments  and  Contributions  ...................................................................................  iii   Table  of  Contents  ..........................................................................................................................  iv   List  of  Figures  .................................................................................................................................  vi   List  of  Tables  .................................................................................................................................  xii   List  of  Appendices  ......................................................................................................................  xiii   Chapter 1: Introduction  .................................................................................................................  1   1   Introduction  .............................................................................................................................  2   1.1   Adenosine  Deaminase  Deficiency  ............................................................................................  2   1.1.1   History  ..........................................................................................................................................................  3   1.1.2   Metabolism  .................................................................................................................................................  3   1.1.3   ADA  mutations  ..........................................................................................................................................  8   1.1.4   Clinical  Aspects  .........................................................................................................................................  9   1.2   Importance  of  ADA  Deficiency  and  Broader  Relevance  ................................................  10   1.3   Management  of  ADA  Deficiency  .............................................................................................  11   1.3.1   Bone  Marrow  Transplant  ..................................................................................................................  11   1.3.2   Enzyme  Replacement  Therapy  with  PEG-­‐ADA  (Adagen®)  .................................................  11   1.3.3   Gene  Therapy  ..........................................................................................................................................  12   1.4   Pulmonary  Abnormalities  in  patients  with  ADA  deficiency  ........................................  13   1.5   Pulmonary  Alveolar  Proteinosis  ...........................................................................................  17   1.6   Surfactant  ......................................................................................................................................  21   1.6.1   Surfactant  Homeostasis  .....................................................................................................................  22   1.7   Lung  Structure  and  Development  .........................................................................................  23   1.8   Mouse  Models  ..............................................................................................................................  26   1.8.1   Development  of  ADA  -­‐/-­‐  mice  ..........................................................................................................  26   1.8.2   Severe  Pulmonary  Abnormalities  in  ADA  -­‐/-­‐  mice  .................................................................  27   1.8.3   PAP  Models  ..............................................................................................................................................  28   1.9   Collectins:  Surfactant  Proteins  (SP)-­‐D  and  SP-­‐A  ..............................................................  29   iv 1.9.1   SP-­‐D  and  SP–  A  structure  ...................................................................................................................  29   1.9.2   The  role  of  SP-­‐D  in  surfactant  homeostasis  and  inflammation  .........................................  31   Chapter 2: Hypothesis and Aims  ...............................................................................................  33   2   Hypothesis  and  Aims  ...........................................................................................................  34   2.1.1   Rationale  ...................................................................................................................................................  34   2.1.2   Hypothesis  ...............................................................................................................................................  34   2.1.3   Aims  ............................................................................................................................................................  35   Chapter 3: Methods  ......................................................................................................................  36   3   Methods  ....................................................................................................................................  37   3.1   Animals  ..........................................................................................................................................  37   3.2   Anesthesia  .....................................................................................................................................  37   3.3   Enzyme  Activity  ...........................................................................................................................  37   3.4   Arterial  blood  oxygen  saturation  ..........................................................................................  38   3.5   Electron  Microscopy  ..................................................................................................................  38   3.6   Lung  Lavage  ..................................................................................................................................  38   3.7   Protein  Quantification  ..............................................................................................................  39   3.8   Western  Blot  ................................................................................................................................  39   3.9   Immunofluorescence  ................................................................................................................  40   3.10   Cholesterol  Assay  .....................................................................................................................  40   3.11   Apoptosis  Detection  ................................................................................................................  41   3.12   Histology  and  Oil  Red  O  .........................................................................................................  41   3.13   PEG-­‐ADA  treatment  .................................................................................................................  42   3.14   Kaplan-­‐Meier  Survival  Curve  ...............................................................................................  42   3.15   Phagocytosis  Assay  ..................................................................................................................  42   3.16   Viable  cell  counting  .................................................................................................................  43   3.17   Statistical  analysis  ...................................................................................................................  44   Chapter 4: Results  .........................................................................................................................  45   4   Results  ......................................................................................................................................  46   4.1   Aim  1  -­‐  Investigating  Lung  Structure  ...................................................................................  48   4.1.1   Abnormal  lung  ultrastructure  in  the  ADA  -­‐/-­‐  mice  ................................................................  48   v 4.1.2   Accumulation  of  PAS  positive  diastase  resistant  lipoproteinaceous  material  in  the   alveolar  spaces  of  ADA  -­‐/-­‐  mice  .....................................................................................................................  54   4.1.3   Decreased  SP-­‐D  and  SP-­‐A  in  the  ADA  -­‐/-­‐  BALF  ........................................................................  57   4.1.4   SP-­‐D  and  SP-­‐A  in  the  lung  homogenate  .......................................................................................  59   4.1.5   Immunofluorescence  of  SP-­‐D  and  SP-­‐A  in  the  lung  tissue  sections  ................................  59   4.1.6   Conclusion  ................................................................................................................................................  62   4.2   Aim  2  -­‐  Alveolar  macrophage  in  ADA  -­‐/-­‐  mice  ..................................................................  63   4.2.1   Accumulation  of  foamy  AM  in  ADA  -­‐/-­‐  BALF  ............................................................................  63   4.2.2   Accumulation  of  lipids  and  remnants  of  tubular  myelin  in  ADA  -­‐/-­‐  AM  .......................  66   4.2.3   Increased  cholesterol  in  ADA  -­‐/-­‐  lungs  .......................................................................................  68   4.2.4   Cell  death  in  ADA  -­‐/-­‐  AM  ....................................................................................................................  70   4.2.5   ADA  -­‐/-­‐  AM  phagocytose  IgG-­‐coated  beads  effectively  ........................................................  72   4.2.6   Conclusion  ................................................................................................................................................  75   4.3   Aim  3  -­‐  Correcting  lung  abnormalities  ................................................................................  76   4.3.1   PEG-­‐ADA  can  extend  survival  of  ADA  -­‐/-­‐  mice  .........................................................................  76   4.3.2   Treatment  with  PEG-­‐ADA  normalizes  abnormal  lung  architecture  ...............................  79   4.3.3   SP-­‐D  and  SP-­‐A  in  the  BALF  of  PEG-­‐ADA  treated  ADA  -­‐/-­‐  mice  ..........................................  79   4.3.4   Cholesterol  accumulation  in  ADA  -­‐/-­‐  AM  can  be  normalized  ............................................  83   4.3.5   Conclusion  ................................................................................................................................................  83   Chapter 5: Discussion  ...................................................................................................................  85   5   Discussion  ...............................................................................................................................  86   Chapter 6: Conclusions and Future Directions  ......................................................................  96   6   Conclusions  and  Future  Directions  ................................................................................  97   6.1   Conclusions  ...................................................................................................................................  97   6.2   Future  Directions  .......................................................................................................................  98   References  ...................................................................................................................................  100   Appendices  .................................................................................................................................  109   vi Abbreviations A2B – adenosine 2 B ABC – ATP-binding cassette ADA – adenosine deaminase deficiency AM – alveolar macrophages ATP- adenosine triphosphate BAL – bronchoalveolar lavage BALF - bronchoalveolar lavage fluid BCA – bicinchoninic acid CRD – carbohydrate recognition domain DAPI – 4’,6-diamidino-2-phenylindole dATP - deoxyadenosine triphosphate ELISA – enzyme-linked immunosorbent assay EM – electron microscope FITC – fluorescein isothiocyanate GM-CSF – granulocyte macrophage colony stimulating factor HLA- human leukocyte antigen IgG – immunoglobulin G LAMP – lysosomal-associated membrane protein LP – lipoproteinaceous vii MMP- matrix metalloproteinase NF- κβ – nuclear factor kappa beta PAP – pulmonary alveolar proteinosis PBS – phosphate buffered saline PCR – polymerase chain reaction PE – phycoerythrin PPAR – peroxisome proliferator- activated receptor SFM – serum free media SP – surfactant protein viii List of Figures Figure 1: Schematic representative of adenosine deaminase (ADA) deficiency metabolic pathway………………………………………………………………………………………..6 Figure 2: Biochemical effects of adenosine and deoxyadenosine……………………………7 Figure 3: Biopsy demonstrating pulmonary alveolar proteinosis in adenosine deaminase deficient patients…………………………………………………………………………..…16 Figure 4: Mechanisms of surfactant homeostasis and pulmonary alveolar proteinosis (PAP)…………………………………………………………………………………………20 Figure 5: The structure of the alveoli………………………………………………………..30 Figure 6: Collectin structure………………………………………………………………...25 Figure 7: Reduced arterial blood saturation in ADA -/- mice…………………………........47 Figure 8: Electron microscopy shows accumulation of lipoproteinaceous material in the ADA -/- alveolar spaces………………………………………………………………….......50 Figure 9: Electron microscopy indicates ADA -/- mice have thickened type I cells……......51 Figure 10: Alveolar type II cells in ADA -/- mice lungs show no apparent abnormalities compared to ADA +/+ mice…………………………………………………………….........52 Figure 11: Accumulation of lipoproteinaceous material and macrophages in the alveoli are characteristic of ADA -/- mice lungs…………………………………………………….......53 Figure 12: Light microscope show PAS positive and diastase resistant material indicative of pulmonary alveolar proteinosis in ADA -/- mice……………………………………............55 Figure 13: Increased protein concentration in BALF retrieved from ADA -/- mice……….56 Figure 14: Western blot analyses show decreased SP-D and SP-A in the BALF of ADA -/- mice lungs…………………………………………………………………………………...58 ix Figure 15: Western blot show that ADA -/- mouse lung tissues have similar amounts of SP-D and SP-A in lung homogenate as wild type littermate control………………………...60 Figure 16: SP-D and SP-A immunofluorescence in lung sections of ADA +/+ and ADA -/- mice…………………………………………………………………………………………..61 Figure 17: Light microscope shows an accumulation of enlarged foamy alveolar macrophages in ADA -/- mouse BALF……………………………………………….……..65 Figure 18: Electron microscopy shows accumulation of lipids phospholipids and tubular myelin remnants in ADA -/- alveolar macrophages………………………………….……...67 Figure 19: Increased cholesterol in ADA -/- mice macrophages and BALF………..……...69 Figure 20: Alveolar macrophages from ADA -/- mice are more susceptible to apoptosis……………………………………………………………………………..……...71 Figure 21: ADA -/- mice alveolar macrophages exhibit effective phagocytosis of IgG-coated polysterene beads (~3.5um) compared to ADA +/+ mice alveolar macrophages…..……...73 Figure 22: Similar number of beads phagocytosed by ADA +/+ and ADA -/- mice alveolar macrophages………………………………………………………………………...……...74 Figure 23: Kaplan-Meier survival curve demonstrates reduced survival in ADA -/- mice can be prolonged with PEG-ADA treatment…………………………………………….……...77 Figure 24: Normal blood oxygen saturation in ADA -/- mice following PEG-ADA treatment……………………………………………………………………………..……...78 Figure 25: PEG-ADA treatment on day 7 corrects lung structure and accumulation of macrophages and protein in the alveolar spaces of ADA -/- mice…………………..……...81 Figure 26: PEG-ADA treatment restores SP-D and SP-A in BALF of ADA -/- mice………………………………………………………………………………………...82 x

Description:
Recently, we discovered patients with inherited adenosine deaminase (ADA) deficiency are predisposed to pulmonary BAL – bronchoalveolar lavage.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.