Luminescence of Solids LLuummiinneesscceennccee ooff SSoolliiddss EEddiitteedd bbyy DD.. RR.. VViijj KKuurruukksshheettrraa UUnniivveerrssiittyy KKuurruukksshheettrraa,, IInnddiiaa SSpprriinnggeerr SScciieennccee++BBuussiinneessss MMeeddiiaa,, LLLLCC LLllbbrraarryy ooff CCoonnggrreessss CCaattaallooggllnngg--llnn--PPuubbllllccaattlloonn DDaattaa LLuummllnneesseeeenneeee ooff ssoollllddss II eeddlltteedd bbyy OO..RR.. VVlljj.. pp.. ccmm.. IInneelluuddeess bbllbbllllooggrraapphhlleeaall rreeffeerreenneeeess aanndd iinnddeexx.. IISSBBNN 997788--11--44661133--77444466--66 IISSBBNN 997788--11--44661155--55336611--88 ((eeBBooookk)) 0000111100..11000077//997788--11--44661155--55336611--88 11.. LLuummllnneesscceennccee.. 22.. SSooll iiddss----OOppttlleeaall pprrooppeerrttlleess.. 33.. IInnoorrggaanniicc eeoommppoouunnddss.. II.. VVlljj,, OO.. RR.. aaCC447766..55..LL8866 11999988 553355'' ..3355----ddcc2211 9988--1188224477 CCIIPP IISSBBNN 997788--11--44661133--77444466--66 ©© 11999988 SSpprriinnggeerr SScciieennccee++BBuussiinneessss MMeeddiiaa NNeeww YYoorrkk OOrriiggiinnaallllyy ppuubblliisshheedd bbyy PPlleennuumm PPrreessss,,NNeeww YYoorrkk iinn 11999988 SSooffttccoovveerr rreepprriinntt oofftthhee hhaarrddccoovveerr 11sstt eeddiittiioonn 11999988 1100998877665544332211 AAIIII rriigghhttss rreesseerrvveedd NNoo ppaarrtt ooff tthhiiss bbooookk mmaayy bbee rreepprroodduucceedd,, ssttoorreedd iinn aa rreettrriieevvaall ssyysstteemm,, oorr ttrraannssmmiitttteedd iinn aannyy ffoorrmm oorr bbyy aannyy mmeeaannss,, eelleeccttrroonniicc,, mmeecchhaanniiccaaJJ,, pphhoottooccooppyyiinngg,, mmiiccrrooffiillmmiinngg,, rreeccoorrddiinngg,, oorr ootthheerrwwiissee,, wwiitthhoouutt wwrriitttteenn ppeerrmmiissssiioonn ffrroomm tthhee PPuubblliisshheerr Contributors L. Yu. Brovko, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia. B. P. Chandra, Department of Postgraduate Studies and Research in Physics, Rani Durgavati University, Jabalpur 482001, India. Sean M. Cordry, Department of Physics and Astronomy, University of Mississippi, Mississippi 38677, United States. Lawrence A. Crum, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, United States. E. 1. Dementieva, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia. Debabrata Ghose, Saha Institute of Nuclear Physics, Bidhan Nagar, Calcutta 700064, India. V. P. Gribkovskii, B. I. Stepanov Institute of Physics, Academy of Sciences of Belarus, Minsk, 220072, Byelorussia. H.-E. Gumlich, Institut fUr Festkorperphysik, Technische UniversiHit, D-10623, Berlin, Germany. Rainer Hippler, FakulHit fUr Physik, UniversiHit Bielefeld, D-33501, Bielefeld, Germany. Present address: Institut fUr Physik, Universitat Greifswald, Domstrasse lOa, D-Germany. R. Mauch, Heinrich Hertz, Institut, 10117 Berlin, Germany. A. Meijerink, Department of Condensed Matter, Universitat Utrecht, 3508 TA, Utrecht, The Netherlands. Stefan Myhajlenko, Center for Solid State Electronics Research, College of Engineer ing and Applied Sciences, Arizona State University, Tempe, Arizona 85287, United States. v vi CONTRIBUTORS George T. Reynolds, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States. Shigeo Shionoya, Professor Emeritus, The University of Tokyo, Japan. N. N. Ugarova, Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia. D. R. Vij, Department of Physics, Kurukshetra University, Kurukshetra, India. A. Zeinert, Universite de Picardie Jules Verne, F80035 Amiens, France. Preface The past three decades have witnessed rapid growth in research and development of luminescent materials because of their diverse applications. Studies have been carried out in almost all branches of luminescence, including photoluminescence, cath odoluminescence, electroluminescence, thermoluminescence, and lyoluminescence, among others, with a view toward inventing and preparing new materials of practical use. It has become possible to observe new phenomena in known luminescent substances: e.g., saturation and absorption of luminescence, induced dichroism, depolarization of luminescence with increasing excitation power, two-photon ab sorption, luminescence at forbidden transitions, hot luminescence, radiation of biexcitons, electron-hole drops, ultrafast processes, self-focusing of light, and non linear phenomena. Moreover, the range of luminescent substances has been broadened owing to the production of complex materials and, frequently, materials that do not exist in nature, at all, i.e., hyperfine films of crystals, quantum-dimensional structures, stressed layers, and superlattices. This volume is the outcome of a clear need to review the recent trends in research on luminescent inorganic materials and new physical phenomena in all the various branches of the field. It has been designed to provide an overview of different areas of luminescence and related properties of important luminescent materials from a practical point of view. The individual chapters offer in-depth but concise reviews of different classes of luminescence so that the reader can utilize the information to examine the various phenomena with the right perspective. The volume begins with a chapter on the theory of luminescence, wherein an attempt has been made to present the achievements that led to the establishment of the fundamental laws of luminescence. Phenomenological expressions are given relating to the most important characteristics of luminescence, such as power, spectra, polarization, quantum efficiency, rise and decay times, light sum, and so forth, utilizing quantum theory and different basic models. The second chapter deals vii viii PREFACE with the conventional and modem experimental techniques, different types of light sources, light-dispersing elements, and the detectors in current use in luminescence spectroscopy of solids. The rest of the volume is a survey of nearly all the different types of classes of luminescence-photo-, cathodo-, iono-, electro-, thermo-, lyo-, sono-, and mechanoluminescence-with each chapter being devoted to a particular type. In addition to historical background, emphasis has been placed on the models and mechanisms, on materials with their preparation methods and characteristics, measurement techniques, and on future trends. The last chapter is devoted to Bio and Chemiluminescence, which although not generally exhibited by inorganic solids, have been introduced not only to apprise readers of this class of luminescence, but to provide a complete presentation that includes all the branches of luminescence in one volume. This book is a valuable collection by a diverse group of outstanding and experienced researchers, and it has an international flavor inasmuch as the contribu tors are from United States, Germany, Japan, India, Russia, and The Netherlands. It is hoped that it will help advanced students taking courses in luminescence and serve as a review for researchers going into the field. It should be useful as well for material physicists, chemists, biologists, engineers, and all the professionals asso ciated with luminescence spectroscopy. It is my pleasant duty to express my thanks to the contributors, who made this volume possible. My own efforts in the planning and preparation of this volume have benefited greatly from many fruitful interactions with colleagues in the Physics Department of Kurukshetra University over the past 30 years. I am also indebted to all those authors and publishers who promptly granted permission to reproduce their copyrighted materials. The patient encouragement of the staff at Plenum Press in New York is also acknowledged with gratitude. The help of Mr. S. C. Verma in connection with the typing of the manuscript is greatly appreciated. Last but not the least, I wish to express my deep appreciation to my wife, Meenakshi, and my daughters, Surabhi and Monica, for their support, encouragement, and patience throughout this time-consuming and seemingly endless task of writing and editing this volume. D. R. Vij Kurukshetra Spring 1998 Contents 1. Theory of Luminescence V. P. Gribkovskii 1. Introduction . 1 2. Characteristics of Luminescence 3 2.1. Luminescence Power .. 3 2.2. Luminescence Spectrum 4 2.3. Excitation Spectrum. . 5 2.4. Luminescence Polarization 5 2.5. Optical Indicatrix . . . . 6 2.6. Energy and Quantum Yields 8 2.7. Anti-Stokes Luminescence 9 2.8. Luminescence Rise and Decay. 10 2.9. Light Sum . . . . . . 11 2.10. Thermoluminescence .. 12 2.11. Negative Luminescence. 12 2.12. Hot Luminescence. . . 13 2.13. Superluminescence or Amplified Luminescence . 14 2.14. Near- and Far-Field Patterns ....... _ . 15 3. Fundamentals of the Quantum Theory of Radiation . 16 3.1. Classical, Quantum-Mechanical (Semiclassical), and Quantum-Electrodynamic Methods. . 16 3.2. Electronic States in an Ideal Crystal . 19 3.3. Lattice Vibrations: Phonons . 21 3.4. Impurity Levels and Bands . _ . . . 22 3.5. Excitons and Biexcitons. . . 24 3.6. Probabilities of Spontaneous and Induced Transitions. 26 3.7. Nonradiative Transitions . . _ . . . . . . _ . 27 4. Theoretical Models and Mechanisms of Luminescence. 27 4.1. The Harmonic Oscillator . . _ . . . . . . _ . 27 ix x CONTENTS 4.2. Two-, Three-, and N-Levd Systems ..... 28 4.3. Band-to-Band Absorption and Luminescence. 30 4.4. Luminescence in Impurity Solids. . . . . 32 4.5. Donor-Acceptor-Pair Luminescence . . . 34 4.6. Luminescence of Free and Bound Excitons . 35 4.7. Streamer Luminescence . . 37 5. Conclusions and Future Trends 39 References . . . . . . 40 2. Experimental Techniques A. M eijerink 1. Introduction 45 2. Absorption and Luminescence Spectroscopy . 46 2.1. Absorption . . . . . 46 2.2. Luminescence .... 50 3. Spectroscopic Components 53 3.1. Excitation Sources . . 53 3.2. Light-Dispersing Elements. 58 3.3. Light Detection . . . . . 62 4. Time-Resolved Spectroscopy .. 67 5. Hole-Burning, Fluorescence Line-Narrowing, and Photon Echo 71 5.1. Optical Hole-Burning. . . . 72 5.2. Fluorescence Line-Narrowing ...... . 73 5.3. Photon Echo ............. . 73 6. Quantum Efficiency and Nonradiative Processes. 77 7. Polarization and Perturbation Spectroscopy. 81 7.1. Polarization Spectroscopy . 81 7.2. Perturbation Spectroscopy. 84 8. New Developments. . . . . . 87 8.1. Ultrafast Spectroscopy 87 8.2. Single-Molecule Spectroscopy 89 8.3. Near-Field Optical Spectroscopy . 91 References . . . . . . . . . . . . . . 93 3. Photoluminescence Shigeo Shionoya 1. Introduction . . . . . . . . . . . . 95 2. Classification of Photoluminescence in Solids 96 2.1. Intrinsic Luminescence 96 2.2. Extrinsic Luminescence . . . . 97 3. Band-to-Band Luminescence. . .. 99 3.1. Direct and Indirect Transitions. 99 3.2. Luminescence Transition Rates and Spectra . 101 3.3. Recombination Cross Sections and Impurities . 102 CONTENTS xi 4. Wannier Exciton Luminescence ...... . 103 4.1. Energy States of Wannier Excitons. . . . 103 4.2. Luminescence of Free and Bound Excitons . 104 4.3. Luminescence of Self-Trapped Excitons. . 105 4.4. Luminescence of Excitonic Molecules. . . 106 5. Characteristics of Localized-Center Luminescence . 108 5.L Configuration-Coordinate Model ..... 108 5.2. Theoretical Treatments of Spectral Shapes. . 109 5.3. Examples of Typical Spectra. . . . . . . . 111 5.4. Temperature Dependence of Luminescence Efficiency. 113 6. Extrinsic Luminescence of Unlocalized Type. . . 114 6.1. Donor-Acceptor Pair Luminescence. . . . 114 6.2. Luminescence Owing to Isoelectronic Traps . 119 7. Extrinsic Luminescence of Localized Type. . . . 120 7.1. Luminescence of Allowed-Transition-Type Ions. 120 7.2. Luminescence of Forbidden-Transition-Type Ions. 124 8. Luminescence of Low-Dimensional Systems . 130 References . . . . . . . . . . . . . . . . . . . . . 133 4. Cathodoluminescence Stefan Myhajlenko L Introduction . . 135 1.1. Historical Perspective . 135 1.2. Current Outlook . . . 135 2. Fundamental Aspects. . . 136 2.1. Electron-Beam Interactions in Solids . 136 2.2. Luminescence Processes in Solids . 140 2.3. Cathodoluminescence Generation . 145 2.4. Cathodoluminescence Modeling . 147 3. Experimental Aspects. . . . . . . . 150 3.1. Basic Design and Instrumentation 150 3.2. Configurational Permutations 154 3.3. Operational Considerations 159 4. Materials Applications 166 4.1. Semiconducting Materials . 166 4.2. Minerals ., . . . . . . 167 4.3. Ceramics and Superconductors . 169 5. Recent Applications. . . . . . . . 170 5.L Stress Anisotropy in Thin Films . 170 5.2. High-Spatial-Resolution Imaging of Defects and Epitaxial Films . . . . . . . . . . . . . . ... 173 5.3. Surface- and Depth-Resolved Information. 179 5.4. Time-Resolved Measurements 180 6. Future Trends 182 References . . . . . . . . . . . . 183