Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches F.J. Iguaz∗, F. Aznar †, J.F. Castel, T. Dafni, J.A. Garcia, J.G. Garza, I.G. Irastorza, I. Ortega‡, A. Rodríguez and A. Tomas§ LaboratoriodeFísicaNuclearyAstropartículas,UniversidaddeZaragoza,Spain. 5 E-mail: [email protected] 1 0 S. Aune, E. Ferrer-Ribas, J. Galan, I. Giomataris, D. Jourde and T. Papaevangelou 2 n Serviced‘Electronique,desDétecteursetd‘Informatique,CEA-Saclay,Gif-sur-Yvette,France a J M. Davenport and T. Vafeiadis 7 CERN,EuropeanOrganizationforParticlePhysicsandNuclearResearch,Geneva,Switzerland ] M S.C. Yildiz I DepartmentofPhysics,DogusUniversity,AcibademKadikoy,Istanbul,Turkey . h Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high p - magneticfields.Theuseoflowbackgroundx-raydetectorsisanessentialcomponentcontributing o r tothesensitivityofthesesearches. Inthiswork,wereviewtherecentadvancesonMicromegas t s detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future Inter- a [ nationalAxionObservatory(IAXO).TheactualsetupinCASThasachievedbackgroundlevels 1 below10−6 keV−1 cm−2 s−1,afactor100lowerthanthefirstgenerationofMicromegasdetec- v tors.Thisreductionisbasedonactiveandpassiveshieldingtechniques,theselectionofradiopure 6 6 materials,offlinediscriminationtechniquesandthehighgranularityofthereadout. Wedescribe 4 indetailthebackgroundmodelofthedetector,basedonitsoperationatCASTsiteandattheCan- 1 0 francUndergroundLaboratory(LSC),aswellasonGeant4simulations.Thebestlevelscurrently 1. achievedatLSCarelowthan10−7keV−1cm−2s−1andshowgoodprospectsfortheapplication 0 of this technology in IAXO. Finally, we present some ideas and results for reducing the energy 5 1 thresholdofthesedetectorsbelow1keV,usinghigh-transparentwindows,autotriggerelectronics v: andstudyingtheclustershapeatdifferentenergies. Asahighfluxofaxion-like-particlesisex- i pectedinthisenergyrange,asub-keVthresholddetectorcouldenlargethephysicscaseofaxion X r helioscopes. a TechnologyandInstrumentationinParticlePhysics2014 2-6June,2014 Amsterdam,theNetherlands ∗Speaker. †Presentaddress:CentroUniversitariodelaDefensa,UniversidaddeZaragoza,Zaragoza,Spain ‡Presentaddress:CERN,EuropeanOrganizationforParticlePhysicsandNuclearResearch. §Presentaddress:HighEnergyPhysicsgroup,BlackettLaboratory,ImperialCollege,London,U.K. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Micromegasx-raydetectorsforaxionsearches F.J.Iguaz 1. Micromegasforaxionsearches Axion helioscopes [1] aim to detect solar axions through their conversion by the inverse Pri- makoff effect into x-rays (1-10 keV) using strong magnetic fields. The CERN Axion Solar Tele- scope(CAST)[2]isthemostpowerfulexampleandhassetthebestexclusionlimitsintheaxion- photon coupling for a wide range of axion masses [3, 4]. Three of the four CAST magnet bores areequippedwithmicrobulkMicromegas(MM)detectors[5,6]astheyhavealightandradiopure materialbudget[7];showanexcellentenergyresolution(12%FWHMat5.9keV)[8];haveahigh discriminationpowertoselectx-rays(point-likeevents)frommuonsandgammas;canbeshielded byapplyingthesametechniquesusedinrareeventsexperiments. X-raydetectorsareanimportantissueforthefutureInternationalAxionObservatory(IAXO) [9, 10]. Its main goal is to improve the signal-to-noise ratio more than 104 with respect to CAST, i.e. 1-2 orders of magnitude in sensitivity to the axion-photon coupling. From the different im- provementsforeseen,lowbackgroundx-raysdetectorsmustreachvaluesin10−7-10−8 s−1 keV−1 cm−2. MM technology is a perfect candidate according to the latest level reached in CAST-MM during2013[11]andcurrentlythelimitachievedattheCanfrancUndergroundLaboratory(LSC). In section 2, we will briefly describe the actual CAST-MM background model (exposed in detail in [6]). We will thus present the physical motivation and the R&D for sub-keV CAST-MM detectorsinsection3and,wewillfinishwithsomeconclusionsandprospects. 2. BackgroundmodelofCAST-MMdetectors Intable1thedifferentcontributionstobackgroundmodelofCAST-MMdetectorsaredetailed. Theyhavebeenidentifiedeitherbyin-situmeasurementsatCAST,byadetector’sreplicainstalled at LSC or by Geant4 simulations. The main contribution is caused by muons, while the origin of actuallimitsetatLSCisunknown. Somehypothesisareneutronsorthe39Arisotope. Contribution Level(s−1 keV−1 cm−2) Shieldingtechniqueapplied Before After Gammaflux 7×10−5 None? Fullcoverageby10cmleadshielding Radon 8×10−7 None Nitrogenfluxinsidetheshielding Cosmicmuons 2×10−6 6×10−7 95%coveragebyanactivemuonveto Alcathode 5×10−7 None Replacementbyanultrapurecoppercathode LSClimit 1.1×10−7 Neutrons? 39Ar? Others? Table 1: The different contributions to background level in 2-7 keV range identified in CAST-MM back- ground model and the different shielding techniques applied to completely or partially remove them. For clarity,valuesaregivenwithouterrors. Thefullmeasurementswiththeassociatederrorsarein[6]. 3. Loweringtheenergythreshold New calculations of axion production at the Sun by the so-called “BCA processes” in non- hadronicaxionmodels[12]pointouttoanaxionfluxpeakingatenergiesaround1keV.Thisfact motivatestheuseofsub-keVdetectorsinIAXO.Withthisaim,thereisaR&Dlinebasedon: 2 Micromegasx-raydetectorsforaxionsearches F.J.Iguaz Window The x-rays coming from the magnet enter the conversion volume via a gas-tight window made of 5 µm aluminized mylar foil. This foil is supported by a metallic squared-pattern strong-back,towithstandthepressuredifferencetothemagnet’svacuumsystem. Thisfoilis transparentdowntoenergiesof1.5keV.Otherpossiblematerialslikepolyimide-basedfoils arebeingstudied,astheirtransparencyisenlargeddownto0.7keV. Gas OthermixturesthanAr+2%isobutanehavebeenstudiedtoincreasetheactualoperationpoint (8×103),i.e,todecreasetheenergythreshold. Avalueof3×104 isreachedinneon-based mixturesbutthepressuremustbeincreasedtomaximizethephotonconversion[8]. Electronics The actual one is based on the AFTER chip [13], which provides time information of each strip. This feature improves the signal-to-noise ratio and have reduced the energy threshold downto450eV.AutotriggersystemslikeAGET[14]mayfurtherenhancethisreduction. Analysis The CAST-MM detectors have been calibrated in an electron beam at the CAST Detector Laboratory [15]. In this setup, the fluorescence lines of different target materials ranging from 2.3 (gold) to 8.0 keV (copper) are used to calculate the integrated signal efficiency [11]. Thisdataalsoprovidesinformationonevent’stopology,whichcanbeusedintheanal- ysis. To illustrate this issue, the distribution of the cluster’s width in Z (left) and the cluster differencebetweenX&Ywidths(right)areshownrespectivelyinfigure1. Clustersarewider atlowenergiesbecausemostofthex-raysmaybeabsorbedinthefirstmilimetersjustafter the window and will suffer more diffusion effects. Cluster differences also increase at low energiesaschargefluctuationsbetweenthetwodetectorplanes(XY)aremoreimportant. 5 7 4.5 2.3 keV 2.3 keV 6 4 Number of events (%) 123...23555 4568....5990 kkkkeeeeVVVV Number of events (%) 2345 4568....5990 kkkkeeeeVVVV 1 1 0.5 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Sigma in z direction (mm) Sigma difference in X-Y plane (-) Figure1: Distributionofthecluster’swidthinZ(left,insigmaunits)andthecluster’swidthdifferencein XY(right)forthedifferentfluorescencelinesusedinthex-raycalibrationofCAST-M18. 4. Conclusionsandprospects During more than a decade in CAST, Micromegas detectors have reduced their background levelsbytwoordersofmagnitude,reachingavalueof 7×10−7 keV−1 cm−2 s−1. Mostofcontri- butions have been identified and removed applying shielding techniques used in rare event exper- iments. The best levels currently achieved at LSC (a factor 7 lower) show good prospects for the applicationofthistechnologyinIAXO.Recentcalculationsofaxionfluxmotivatetheuseofsub- keVdetectorsinCAST.WehavepresentedthemainopenR&DlinesonthisissueforCAST-MM. 3 Micromegasx-raydetectorsforaxionsearches F.J.Iguaz Acknowledgments WethanktoourcolleaguesofCASTformanyyearsofcollaborativework,R.deOliveiraand histeamatCERNforthemanufacturingofthemicrobulkreadoutsandtheLSCstafffortheirsup- portduringtheuseoftheirfacilities. WeacknowledgethesupportfromtheEuropeanCommission under the European Research Council T-REX Starting Grant ref. ERC-2009-StG-240054 of the IDEAS program of the 7th EU Framework Program. We also the acknowledge support from the Spanish Ministry MINECO under contracts ref. FPA2008-03456 and FPA2011-24058, as well as under the CPAN project ref. CSD2007-00042 from the Consolider-Ingenio 2010 program. These grants are partially funded by the European Regional Development funded (ERDF/FEDER). My personalgratitudeisforthesupportfromtheJuandelaCiervaprogram. References [1] T.DafniandF.J.Iguaz,Axionhelioscopesupdate: thestatusofCASTandIAXO,inproceedingsof TIPP2014conference,PoS(TIPP2014)130. [2] CASTCollaboration,K.Zioutasetal.,FirstresultsfromtheCERNAxionSolarTelescope(CAST), Phys.Rev.Lett.94(2005)121301. [3] CASTCollaboration,S.Andriamonjeetal.,Animprovedlimitontheaxion-photoncouplingfromthe CASTexperiment,JCAP04(2007)010. [4] E.Ariketal.,SearchforsolaraxionsbytheCERNaxionsolartelescopewith3Hebuffergas: closing thehotdarkmattergap,Phys.Rev.Lett.112(2014)091302. [5] S.Andriamonjeetal.,DevelopmentandperformanceofMicrobulkMicromegasdetectors,JINST5 (2010)P02001. [6] S.Auneetal.,Lowbackgroundx-raydetectionwithMicromegasforaxionsearch,JINST9(2014) P01001. [7] S.Cebriánetal.,Radiopurityofmicromegasreadoutplanes,Astropart.Phys.34(2011)354. [8] F.J.Iguazetal.,Characterizationofmicrobulkdetectorsinargon-andneon-basedmixtures,JINST7 (2012)P04007. [9] I.G.Irastorzaetal.,TheInternationalAxionObservatoryIAXO,LetterofIntenttotheCERNSPS commitee,CERN-SPSC-2013-022,SPSC-I-242(2013). [10] E.Armengaudetal.,ConceptualdesignoftheInternationalAxionObservatory(IAXO),JINST9 (2014)T05003. [11] J.G.Garzaetal.,X-raydetectionwithMicromegaswithbackgroundlevelsbelow10−6keV−1cm−2 s−1,JINST8(2013)C12042. [12] J.Redondo,Solaraxion-fluxfromtheaxion-electroncoupling,JCAP12(2013)008. [13] P.Baronetal.,AFTER,anASICforthereadoutofthelargeT2Ktimeprojectionchambers,IEEE Trans.Nucl.Sci.55(2008)1744. [14] S.Anvaretal.,AGET,theGETfront-endASIC,forthereadoutofthetimeprojectionchambersused innuclearphysicsexperiments,IEEENSS/MIC(2011)745. [15] T.Vafeiadis,ContributiontothesearchforsolaraxionsintheCASTexperiment,PhDthesis,Aristotle UniversityofThessaloniki,Thessaloniki(Greece),2013.CERN-THESIS-2012-349. 4