ebook img

Lower bound of multipartite concurrence based on sub-multipartite quantum systems PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lower bound of multipartite concurrence based on sub-multipartite quantum systems

Lower bound of multipartite concurrence based on sub-partite quantum systems Wei Chen1, Xue-Na Zhu2, Shao-Ming Fei2,3, Zhu-Jun Zheng4 ∗ 1School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641,China 6 2Department of Mathematics and Statistics Science, Ludong University, Yantai 264025,China 1 0 2 2School of Mathematical Sciences, Capital Normal University, Beijing 100048,China g 3 Max-Planck-Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany u A 4 School of Mathematics, South China University of Technology, Guangzhou 510641,China 1 ] h p - t n Abstract a u We study the concurrence of arbitrary dimensional multipartite quantum sys- q tems. Anexplicitanalyticallowerboundofconcurrenceforfour-partitemixedstates [ is obtained in terms of the concurrences of tripartite mixed states. Detailed exam- 3 ples are given to show that our lower bounds improve the existing lower bounds of v concurrence. The approach is generalized to arbitrary multipartite quantum sys- 6 tems. 1 3 2 PACS numbers: 03.67.Mn, 03.65.Ud 0 Keywords: Concurrence, Lower bound of concurrence, Tripartite mixed states, . 1 Multipartite quantum systems 0 5 1 : As a striking feature of quantum physics and an essential resource in quantum infor- v mation processing[1]-[4], quantum entanglement has attracted much attention in recent i X years [5]-[10]. Its potential applications in quantum information processing have been r demonstrated in, such as quantum computation [11], quantum teleportation [12], dense a coding [13], quantum cryptographic schemes [14], entanglement swapping [15], remote states preparation [16], and in many pioneering experiments. To give a proper description and qualify the quantum entanglement for a given quantum state, many entanglement measures have been introduced, such as the entan- glement of formation [17] for bipartite quantum systems and concurrence [18] for any multipartite quantum systems. For the two qubit case, the entanglement of formation is proven to be a monotonically increasing function of the concurrence and an elegant formula for the concurrence was derived analytically by Wootters [19]. However, except for bipartite qubit systems and some special symmetric states [20], there have been no explicit analytic formulas of concurrence for arbitrary high-dimensional mixed states, due to the extremizations involved in the computation. Instead of analytic formulas, ∗e-mail: [email protected] 1 some progress has been made toward the analytical lower bounds of concurrence. A lower bound of concurrence based on local uncertainty relation criterion is derived in [10]. This bound is further optimized in [21]. For arbitrary bipartite quantum states, Refs [22]-[23] provide a detailed proof of an analytical lower bound of concurrence in terms of a different approach that has a close relationship with the distillability of bi- partite quantum states. In [23]-[24] the authors presented a lower bound of concurrence by decomposingthe joint Hilbertspace into many 2 2 and s t-dimensionalsubspaces, ⊗ ⊗ which improve all the known lower bounds of concurrence. Based on all lower boundsof bipartite concurrence, nice algorithms and progress has been made towards lower bounds of concurrence for tripartite quantum systems [25]- [26] and other multipartite quantum systems [27] by bipartite partitions of the whole quantum system. One would like to ask naturally if it is possible to improve further the lower bound of concurrence by using tripartite and M-partite concurrences of an N-partite (M < N) systems. In this paper, we firstprovide lower boundsof concurrence for arbitrary dimensional four-partite systems in terms of tripartite concurrences. Detailed examples are given to show that these bounds are better than the well known existing lower bounds of concurrence. We then generalize lower bound of concurrence to arbitrary multipartite case. We firstrecall the definition and some lower boundsof the multipartite concurrence. Let H , i = 1, ,N, be d dimensional Hilbert spaces. The concurrence of an N i i ··· − partite pure state ψ H1 H2 HN is defined by [28], | i ∈ ⊗ ⊗···⊗ CN(|ψi) = 21−N2 (2N −2)− Tr[ρ2α], (1) s α X where α labels all the different reduced density matrices. For a mixed multipartite quantum state ρ = ipi|ψiihψi| ∈ H1 ⊗H2 ⊗···⊗HN, p 0, p = 1, the concurrence is given by the convex roof: i ≥ i i P P C (ρ) = min p C (ψ ), (2) N i N i {pi,|ψi>} i | i X wherethe minimum is taken over all possible convex decompositions of ρ into purestate ensembles ψ with probability distributions p . i i {| i} { } In [29] the authors obtained lower bounds of multipartite concurrence in terms of the concurrences of bipartite partitioned states of the whole quantum system. For an N-partite quantum pure state ψ H1 H2 HN, dimHi = di, i = 1, ,N, the | i ∈ ⊗ ⊗···⊗ ··· concurrenceofbipartitedecompositionbetweenthesubsystems12 M andM+1 N ··· ··· is defined by C2(|ψihψ|) = 2(1−Tr[ρ212 M]), (3) ··· q where ρ12 M = TrM+1 N ψ ψ is the reduced density matrix of ρ = ψ ψ by ··· ··· {| ih |} | ih | tracing over the subsystems M +1 N. For a mixed multipartite quantum state ρ = ··· ipi|ψiihψi| ∈ H1 ⊗H2 ⊗···⊗HN, the corresponding concurrence C2(ρ) is given by the convex roof: P C2(ρ) = min piC2(ψi ψi ). (4) {pi,|ψii} i | ih | X A relation between the concurrence (2) and the bipartite concurrence (5) has been presented in [29]: For a multipartite quantum state ρ H1 H2 HN with N 3, ∈ ⊗ ⊗···⊗ ≥ 2 the following inequality holds, 3−N CN(ρ) max2 2 C2(ρ), (5) ≥ where the maximum is taken over all kinds of bipartite concurrences. In terms of the lower bounds of bipartite concurrence, in [27] further relations be- tween the concurrence (2) and the bipartite concurrence (5) has been obtained: 1−N CN(ρ) max 2 2 2N−M +2M 2C2(ρM) (6) ≥ M=1,2, ,N 1{ − } ··· − p forN 3,wherethemaximumis taken over allkindsof bipartiteconcurrences forgiven ≥ M. In particularly, if N = 3, one has C3(ρ) max C2(ρ1),C2(ρ2) . If N = 4, one gets ≥ { } C4(ρ) ≥ max{C2(ρ1), √23C2(ρ2),C2(ρ3)}. For multi-qubit systems, in [30] the authors get the analytical lower boundsin terms ofthemonogamy inequality: Foranyfour-qubitmixedquantumstateρ,theconcurrence C(ρ) satisfies 3 4 2 2 C (ρ) (T +T )C (ρ), (7) ≥ i j ij i=1 j>i XX where 2 x 2 x 2 y 2 y 2 z 2 z T1 = 1+ − − + − − + − − , {− 2 | 2 } {− 2 | 2 } {− 2 | 2 } 2 x 2 x y y z z T2 = 1+ − − + + , { 2 |− 2 } {−2|2} {−2|2} x x 2 y 2 y z 2 z T3 = 1+ + − − + − , {−2|2} { 2 |− 2 } {2|− 2 } and x x y y 2 z 2 z T4 = 1+ + + − − , {2|− 2} {2|− 2} { 2 |− 2 } where the bracket a b is so defined such that one may either take the first element a { | } or the second element b from a b . However, for any given pair a and b, once the first { | } (the second) has been taken, then in a formula one always takes the first (the second) element in all the following brackets containing the same two elements a and b. Inordertoimprovethelower boundsofconcurrence,inthefollowing weconsidertri- partite concurrence C3(ρ), instead of the bipartite concurrence C2(ρ). For an N-partite quantum pure state ψ H1 H2 HN, dimHi = di, i = 1,2, N (N 3), we denoteM decomposi|tioin∈amon⊗gsub⊗sy·s·te·m⊗s i1 , i2 , , iM1 , k1,·k·1· , k2,k≥2 , , 1 2 1 2 { } { } ··· { } { } { } ··· kM2,kM2 , , q1, ,q1 , , qMj, ,qMj ,where i1,i2, ,iM1, k1, k1, k2, k2, { 1 2 } ··· { 1 ··· j} ··· { 1 ··· j } { ··· 1 2 1 2 ,kM2,kM2, ,q1, ,q1, ,qMj, ,qMj = 1,2, ,N and j M = M, ··· 1 2 ··· 1 ··· j ··· 1 ··· j } { ··· } k=1 k j kM = N, the concurrence of M partite decomposition among the above sub- k=1 k − P sysytems is given by P CM(|ψihψ|) = 21−M2 (2M −2)− Tr(ρ2α), (8) s α X where α= i1 , i2 , , iM1 , k1,k1 , k2,k2 , , kM2,kM2 , , q1, ,q1 , {{ } { } ··· { } { 1 2} { 1 2} ··· { 1 2 } ··· { 1 ··· j} , qMj, ,qMj . ··· { 1 ··· j }} 3 For example, we can define the concurrence of tripartite decomposition among sub- systems 1,2, ,M, M +1, ,L and L+1, ,N as, ··· ··· ··· C3(|ψihψ|) = 3−Tr(ρ212 M +ρ2M+1 L+ρ2L+1 N), (9) ··· ··· ··· q where ρ12 M = TrM+1, ,L,L+1, ,N(ψ ψ is the reduced density matrix of ρ = ψ ψ ··· ··· ··· | ih | | ih | by tracing over the subsystems M+1, ,L,L+1, ,N. Similar definitions apply to ··· ··· ρM+1 L and ρL+1 N. The rearrangement of the subsystems are implied naturally, so if ··· ··· take N = 4,M = 3, there are six different dialects of four system: 1234,1324,1423, | | | | | | 1234,1324, 1423, then we can get the following theorem: | | | | | | Theorem 1. For a multipartite quantum state ρ H1 H2 H3 H4, then the following ∈ ⊗ ⊗ ⊗ inequality holds, 2 2 C4(ρ) C3 (ρ), (10) ≥ 2 where C3 (ρ) = 16(C32(ρ1234) + C32(ρ1324f) + C32(ρ1423) + C32(ρ1234) + C32(ρ1324) + C2(ρ )). | | | | | | | | | | 3 1423 | | f [Proof]. For a puremultipartite state ψ H1 H2 H3 H4, let ρ= ψ ψ , From | i ∈ ⊗ ⊗ ⊗ | ih | (1), we have 4 4 1 2 2 2 C (ρ) = ( (1 trρ )+ (1 trρ )). (11) 4 2 − i − 1i i=1 i=2 X X and 2 2 2 2 C (ρ ) = (1 trρ )+(1 trρ )+(1 trρ ). (12) 3 i|j|kl − i − j − kl where ρ = Tr (ρ),ρ = Tr (ρ),ρ = Tr (ρ). i jkl j ikl kl ij Then from (11) and (12), we have C2(ρ) 1(C2(ρ )+C2(ρ )+C2(ρ )+ C2(ρ )+C2(ρ )+C2(ρ )). 4 ≥ 6 3 1|2|34 3 1|3|24 3 1|4|23 3 1234 3 1324 3 1423 | | | | | | Assuming that a mixed state ρ = p ψ ψ attains the minimal decomposition i i| iih i| of the multipartite concurrence, one has, C42(ρ) = ( ipiC4(|ψiihψi|))2 P P 1 ( p (C2((ψ ) )+C2((ψ ) )+ +C2((ψ ) )))2 i 3 i 1234 3 i 1324 3 i 1423 ≥ i r6 | i | | | i | | ··· | i | | X 1 1 1 2 2 2 ( pi C3((ψi )1234)) +( pi C3((ψi )1324)) + +( pi C3((ψi )1423)) ≥ √6 | i | | √6 | i | | ··· √6 | i | | i i i X X X 1 2 2 2 2 2 2 (C (ρ )+C (ρ )+C (ρ )+C (ρ )+C (ρ )+C (ρ )), 3 1234 3 1324 3 1423 3 1234 3 1324 3 1423 ≥ 6 | | | | | | | | | | | | where the relation ( j( ixij)2)12 ≤ i( jx2ij)12 has been used in second inequality. Therefore, we have (10). P P P P It is obvious that our bound is better than the ones given by (5) in [29] and (6) in [27]. We now show some detailed examples. Let us first consider a simple case, the generalized four-qubit GHZ state: ψ = cosθ 0000 +sinθ 1111 . We have C4(ψ ) = | i | i | i | i √7sin2θcos2θ. From our lower bound (10), we have C4(ρ) √6sin2θcos2θ, which is ≥ generally greater than the bounds √4sin2θcos2θ from [27] and √2sin2θcos2θ from [29]. 4 Now consider the quantum mixed state ρ = 11−6tI16+t|φihφ|, with |φi = 21(|0000i+ 0011 + 1100 + 1111 ), where I16 denotes the 16 16 identity matrix. By Theorem 4 | i | i | i × in [32], We obtain 0, 0 t 1 , C2(ρ ) 81t2 18t+1, 1≤< t≤ 91, 12|3|4 ≥  181t−211−992258t+5, 915 < t ≤≤ 15. Also we can get   0, 0 t 1 , C2(ρ1|3|24) ≥ (cid:26) 175t21−9720t+7, 51 ≤< t≤≤ 15. Similarly,C2(ρ )hasthesamelowerboundasC2(ρ ),andC2(ρ ),C2(ρ ), 1234 1234 1423 1324 C2(ρ ) have the|s|ame lower bound as C2(ρ ). Assoc|ia|ted with (10)|,|we have | | 1423 1324 | | | | 0, 0 t 1 , C2(ρ) 81t2 18t+1, 1 ≤< t≤ 91, 4 ≥  531t2−5−75671698t+19, 915 < t ≤≤ 15. loweSroboouurnrdesoufltTchaenordeemtec1titnhe[3e0n]itsanCg2le(ρm)ent0o,fwρhwehnen1 <19 <t t ≤1,1,wsheiechFicga.1n.nWothidleettehcet ≥ 9 ≤ 3 the entanglement of the above ρ. Also we can found that our lower bound are larger than the lower bound of Theorem 1 in [30] when 1 < t 111+4√106, 9 ≤ 255 8 0. 2 C^ 0.4 0 0. 0.0 0.2 0.4 0.6 0.8 1.0 t Figure 1: Solid line for the lower bound from (10), which detects the entanglement of ρ when 1 < t 1. Dashed line for the lower bound from Theorem 1 in [30]. It detects entangle9ment ≤only for t > 1. 3 Similarly, the lower bound of Theorem 1 in [33]is C2(ρ) 0, when 1 <t 1, which ≥ 9 ≤ 3 can not detect the entanglement of theabove ρ. Also wecan foundthat ourlower bound are larger than the lower bound of Theorem 1 in [33] when 1 < t 219+4√187. 9 ≤ 579 Remark 1. The definition of concurrence in [30] is different from (1) up to a con- stant factor 21 N/2. In above examples and [33], the difference of the constant factor in − defining the concurrence for pure states has already been taken into account. And if we take N = 5,M = 3, there are twenty-five different dialects of five system: 12345,13245,1 4 235,15 234,123 45, 12435,12534,12 345,12 34 5,12 4 35, | | | | | | | | | | | | | | | | | | | | 13245,13245,134 25,14 235,14 23 5, 14325,15234,15 23 4,15 324,1234 5, | | | | | | | | | | | | | | | | | | | | 13425,12435,135 2 4,125 3 4,1452 3, then we have | | | | | | | | | | 5 0 2. 5 1. C^2 1.0 5 0. 0 0. 0.0 0.2 0.4 0.6 0.8 1.0 t Figure 2: Solid line for the lower bound from (10), which detects the entanglement of ρ when 1 < t 1. Dashed line for the lower bound from Theorem 1 in [30]. It detects entangle9ment ≤only for t > 1. 3 Theorem 2. For a multipartite quantum state ρ H1 H2 H3 H4 H5, then the ∈ ⊗ ⊗ ⊗ ⊗ following inequality holds, 2 2 C5(ρ) C3 (ρ), (13) ≥ 2 where C3 (ρ) = 215(C32(ρ1|2|345)+C32(ρ1|3|24f5)+···+C32(ρ145|2|3)). [Profof]. For a pure multipartite state |ψi ∈ H1⊗H2⊗H3⊗H4⊗H5, let ρ= |ψihψ|, From (1), we have 5 5 5 5 1 2 2 2 2 2 2 C (ρ)= ( (1 trρ )+ (1 trρ )+ (1 trρ )+ (1 trρ )+(1 trρ )), (14) 5 4 − i − 1i − 2i − 3i − 45 i=1 i=2 i=3 i=4 X X X X 2 2 2 2 C (ρ )=(1 trρ )+(1 trρ )+(1 trρ ), (15) 3 i|jt|kl − i − jt − kl where ρ =Tr (ρ),ρ =Tr (ρ),ρ =Tr (ρ), and i jtkl jt ikl kl ijt 2 2 2 2 C (ρ )=(1 trρ )+(1 trρ )+(1 trρ ), (16) 3 i|j|kls − i − j − kls where ρ =Tr (ρ),ρ =Tr (ρ),ρ =Tr (ρ). i jkls j ikls kls ij For a bipartite density matrix ρ H H , from [31], one has A B ∈ ⊗ 2 2 2 1 Tr(ρ ) (1 Tr(ρ ))+(1 Tr(ρ )), (17) − AB ≤ − A − B where ρ =Tr (ρ ),ρ =Tr (ρ ). A B AB B A AB C32(ρT1h45e|n2|3fr)o).m (14), (15), (16) and (17), we have C52(ρ)≥ 215(C32(ρ1|2|345)+C32(ρ1|3|245)+···+ Assuming that a mixed state ρ = p ψ ψ attains the minimal decomposition of the i i| iih i| multipartite concurrence, one has, C52(ρ)=( ipiC5(|ψiihψi|))2 P P 1 ≥( pi 25(C32((|ψii)1|2|345)+C32((|ψii)1|3|245)+···+C32((|ψii)145|2|3)))2 i r X 1 1 1 2 2 2 ≥( pi5C3((|ψii)1|2|345)) +( pi5C3((|ψii)1|3|245)) +···+( pi5C3((|ψii)145|2|3)) i i i X X X 1 2 2 2 ≥ 25(C3(ρ1|2|345)+C3(ρ1|3|245)+···+C3(ρ145|2|3)), 6 where the relation ( j( ixij)2)21 ≤ i( jx2ij)12 has been used in second inequality. There- fore, we have (13). P P P P If we take N = 5,M = 4, there are ten different dialects of five system: 12345,12435, | | | | | | 12534,12345,12435,12534,12345,13245,14235,15234, similar to Theorem2, we | | | | | | | | | | | | | | | | | | | | | | | | can get Theorem 3. For a multipartite quantum state ρ H1 H2 H3 H4 H5, then the following ∈ ⊗ ⊗ ⊗ ⊗ inequality holds, 2 2 C5(ρ) C4 (ρ), (18) ≥ 2 where C4 (ρ)= 110(C42(ρ1|2|3|45)+C42(ρ1|2|4|35)f+···+C42(ρ15|2|3|4)). Now we generalize our results to N-partite systems (N > 4). For a given N-partite state, f ρ H1 H2 HN, we can define the M-partite concurrences CM(ψ ψ ) associatedwith ∈ ⊗ ⊗···⊗ | ih | the corresponging decompositions among subsystems. Similar to the result (10) for tripartite 2 decomposition and the result (18) for four-partite decomposition, We have C2(ρ) C (ρ), 2 N ≥ M where C (ρ) takes average over all possible square M-partite concurrences. Generally, we M g obtain g Theorem 4. 2 ^2 ^2 2 CN(ρ)≥s1max{CN−1 (ρ)}+s2max{CN−2 (ρ)}+···+sN−2max{C2 (ρ)}, where Ni=−12si =1, si ≥0. f InPsummary, we have presented an approach to derive lower bounds of concurrence for arbitrarydimensionalN-partitesystemsbasedonsubM-partite(M =3,...,N 1)concurrences. − Lower bounds of concurrence for four-partite mixed states have been studied in detail in terms of the tripartite concurrences. By detailed examples we have shown that this bound is better than other existing lower bounds of concurrence. Above all, in [23]-[25] lower bounds of concurrence for high dimensional systems have been presentedbasedontheconcurrencesofsub-dimensionalstates,bydecomposingthejointHilbert space into lower dimensional subspaces. For high dimensional multipartite systems, it would be usefultousetheconcurrencesofbothsub-dimensionalstatesandsub-partitestates. Anoptimal lower bound could be obtained by repeatedly using the concurrences of sub-dimensional and sub-partite states in an suitable order. Acknowledgments ThisworkissupportedbytheNSFCundernumbers11571119,11405060, 11475178and 11275131. References [1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa- tion(Cambridge University Press, Cambridge, 2000). [2] A. einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777(1935). [3] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature(London)416, 608(2002). [4] R. F. Werner, Phys. Rev. A 40, 4277(1989). [5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865(2009). [6] F. Mintert, M. Kus´, and A. Buchleitner, Phys. Rev. Lett. 92, 167902(2004); F. Mintert, Ph.D. thesis, Measures and dynamics of entangled states, Munich University, Munich, 2004. [7] K. Chen, S. Albeverio, and S. M. Fei, Phys. Rev. Lett. 95, 040504(2005). [8] H. P. Breuer, J. Phys. A: Math. Gen. 39, 11847 (2006). 7 [9] H. P. Breuer, Phys. Rev. Lett. 97, 080501(2006). [10] J. I. de Vicente, Phys. Rev. A 75, 052320(2007). [11] See, for example, D. P. DiVincenzo, Science 270, 255(1995). [12] C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa, A. Peres and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993); S. Albeverio, S. M. Fei and Y. L. Yang, Phys. Rev. A 66, 012301(2002). [13] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881(1992). [14] A. Ekert, Phys. Rev. Lett. 67, 661(1991); C.A.Fuchs,N.Gisin,R.B.Griffiths,C.S.Niu,andA.Peres,Phys.Rev.A56,1163(1997). [15] M.Z˙ukowski,A.Zeilinger,M.A.HorneandA.K.Ekert,Phys.Rev.Lett.71,4287(1993); S. Bose, V. Vedral and P. L. Knight, Phys. Rev. A 57, 822(1998); 60, 194(1999); B. S. Shi, Y. K. Jiang, G. C. Guo, Phys. Rev. A 62, 054301(2000). [16] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J.A. Smolin, B. M. Terhal and W. K. Wootter, Phys. Rev. Lett. 87, 077902(2001); D. W. Leung and P. W. Shor, Phys. Rev. Lett. 90, 127905(2003). [17] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54,3824(1996); M. B. Plenio and S. Virmani, Quant. Inf. Comput. 7, 1(2007). [18] A. Uhlmann, Phys. Rev. A 62, 032307(2000); P. Rungta, V. Buzˇek, C. M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315(2001); S. Albeverio and S. M. Fei, J. Opt. B: Quantum Semiclassical Opt. 3, 223(2001). [19] W. K. Wootters, Phys. Rev. Lett. 80, 2245(1998). [20] B. M. Terhal and K. G. H. Vollbrecht, Phys. Rev. Lett. 85, 2625(2000); S. M. Fei, J. Jost, X. Q. Li-Jost, and G. F. Wang, Phys. Lett. A 310, 333(2003); P. Rungta and C. M. Caves, Phys. Rev. A 67, 012307(2003); S. M. Fei and X. Q. Li-Jost, Rep. Math. Phys. 53, 195(2004); S. M. Fei, Z. X. Wang, and H. Zhao, Phys. Lett. A 329, 414(2004). [21] C. J. Zhang, Y. S. Zhang, S. Zhang, and G. C. Guo, Phys. Rev. A 76, 012334(2007). [22] E. Gerjuoy, Phys. Rev. A 67,052308(2003). [23] Y. C. Ou, H. Fan, and S. M. Fei, Phys. Rev. A 78, 012311(2008). [24] M. J. Zhao, X. N. Zhu, S. M. Fei, and X. Q. Li-Jost, Phys. Rev. A 84, 062322(2011). [25] X. N. Zhu, M. J. Zhao and S. M. Fei, Phys. Rev. A 86, 022307(2012). [26] X. H. Gao, S. M. Fei, and K. Wu, Phys. Rev. A 74, 050303(2006). [27] X. N. Zhu, M. Li, and S. M. Fei, Aip Conf. Proc.Advances in Quan. Theory, 1424(2012). [28] L. Aolita and F. Mintert, Phys. Rev. Lett. 97, 050501(2006); A. R. R. Carvalho, F. Mintert, and A. Buchleitner, Phys. Rev. Lett. 93, 230501(2004). [29] M. Li, S. M. Fei and Z. X. Wang, Rep. Math. Phys. 65, 289-296(2010). [30] X. N. Zhu, S. M. Fei, Quantum Inform. Processing 13, 815-823(2014). [31] J. M. Cai, Z. W. Zhou, S. Zhang and G. C. Guo, Phys. Rev. A 75, 052324(2007). [32] W.Chen,S.M.Fei,Z.J.Zheng,QuantumInform.Processing(2016),Doi:10.1007/s11128- 016-1369-x. [33] X. F. Qi, T. Gao, F. l. Yan, arXiv:1605.05000. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.