ebook img

Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers PDF

20 Pages·2015·2.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers

RESEARCHARTICLE Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers: Characterization for Sensing Applications R.Haarindraprasad1,U.Hashim1*,SubashC.B.Gopinath1,2,MohdKashif1, P.Veeradasan1,S.R.Balakrishnan1,K.L.Foo1,P.Poopalan3 1 BiomedicalNanoDiagnosticsResearchGroup,InstituteofNanoElectronicEngineering(INEE),Kangar, Perlis,Malaysia,2 SchoolofBioprocessEngineering,UniversityMalaysiaPerlis(UniMAP),Kangar,Perlis, Malaysia,3 SchoolofMicroelectronicEngineering,UniversityMalaysiaPerlis(UniMAP),KualaPerlis,Perlis, Malaysia * [email protected] Abstract OPENACCESS Theperformanceofsensingsurfaceshighlyreliesonnanostructurestoenhancetheirsen- sitivityandspecificity.Herein,nanostructuredzincoxide(ZnO)thinfilmsofvariousthick- Citation:HaarindraprasadR,HashimU,Gopinath nesseswerecoatedonglassandp-typesiliconsubstratesusingasol-gelspin-coating SCB,KashifM,VeeradasanP,BalakrishnanSR,et al.(2015)LowTemperatureAnnealedZincOxide technique.Thedepositedfilmswerecharacterizedformorphological,structural,and NanostructuredThinFilm-BasedTransducers: optoelectronicpropertiesbyhigh-resolutionmeasurements.X-raydiffractionanalyses CharacterizationforSensingApplications.PLoSONE revealedthatthedepositedfilmshaveac-axisorientationanddisplaypeaksthatreferto 10(7):e0132755.doi:10.1371/journal.pone.0132755 ZnO,whichexhibitsahexagonalstructurewithapreferableplaneorientation(002).The Editor:YogendraKumarMishra,Institutefor thicknessesofZnOthinfilmspreparedusing1,3,5,and7cyclesweremeasuredtobe40, MaterialsScience,GERMANY 60,100,and200nm,respectively.Theincrementingrainsizeofthethinfilmfrom21to52 Received:March25,2015 nmwasnoticed,whenitsthicknesswasincreasedfrom40to200nm,whereastheband Accepted:June17,2015 gapvaluedecreasedfrom3.282to3.268eV.BandgapvalueofZnOthinfilmwiththickness Published:July13,2015 of200nmatpHrangingfrom2to10reducesfrom3.263eVto3.200eV.Furthermore,to evaluatethetransducingcapacityoftheZnOnanostructure,therefractiveindex,optoelec- Copyright:©2015Haarindraprasadetal.Thisisan openaccessarticledistributedunderthetermsofthe tricconstant,andbulkmoduluswereanalyzedandcorrelated.Thehighestthickness(200 CreativeCommonsAttributionLicense,whichpermits nm)ofZnOfilm,embeddedwithaninterdigitatedelectrodethatbehavesasapH-sensing unrestricteduse,distribution,andreproductioninany electrode,couldsensepHvariationsintherangeof2-10.Itshowedahighlysensitive medium,providedtheoriginalauthorandsourceare credited. responseof444μAmM-1cm-2withalinearregressionofR2=0.9304.Themeasuredsensi- tivityofthedevelopeddeviceforpHperunitis3.72μA/pH. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformationfiles. Funding:TheauthorswouldliketothankUniversiti MalaysiaPerlis(UniMAP),andMinistryofHigher EducationMalaysiaforthefinancialsupportthrough MTUN-COEgrant9016-00004toconductthe Introduction research.Thefundershadnoroleinstudydesign, datacollectionandanalysis,decisiontopublish,or Sensitivityistheprimedeterminingfactorofthequalityofsensors,andtheconstructionof preparationofthemanuscript. nanostructureonthesensingsurfacecreatesanavenueforhigh-performancesensing[1]. Amongdifferentsensorsproposed,pHsensorhasbeenconsideredasmandatorytomaintain CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. thequalityoffoodbymeasuringtheaciditylevels,whichwillpreventfoodbornepathogens. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 1/20 ZnONanostructure-MediatedSensingApplication Previously,pHsensorshavebeenfabricatedviavarioustypesofelectrodesystembyimplement- ingconventionalstrategy.Inordertoovercomesomelimitations,suchasrigidandbulksize structureofglasselectrode,researchersdevelopedsmallerandrobustelectrodesystems,which includesIon-SensitiveField-Effecttransistor(ISFET)andextended-gatefield-effect-transistor (EGFET)[2,3].However,thecomplexityofthesenon-interdigitatedelectrodedevicefabrications aswellaselectricaloperationsincreasesthecost,duetotheusageofmultiplemasksets,which greatlyincreasesfabricationprocesses.Furthermore,ZnOintegrationencounterstheproblems withconventionalCMOSprocessesandpossiblecontaminationofprocessequipment.Addition- ally,thesethreeterminaldevicesrequirecomplexbiasingarrangementsincomparisontocapaci- tiveinterdigitatedelectrode(IDE).AnattempthasbeenmadetodevelopIDEforpHsensing applicationsinceIDEhasbecomepromisingfordevelopingbiosensorsystemduetoitshigher stability,robustandsimplicity.Inaddition,ultra-lowvolumeofsolutionisrequiredformeasure- mentsinIDEcomparedtootherelectrodesystemssuchasglasselectrode,ISFETandEGFET. Zincoxide(ZnO)hasbecomeapopularchoiceforthedevelopmentofsensingplatforms withvariousapplications,suchasphotovoltaics,solarcells,andoptoelectronicbiosensors[4– 7]duetoitsappealingcharacteristicssuchasalargebandgapof3.37eV[8]andbiocompati- bility[9,10].IntensivereviewsindicatethatZnOhasbecomeanemergingcontenderforenvi- ronmentalapplicationswiththeconsiderationsofreducedcost,non-toxicity,andhigh reactivity.StudiesthatfocusedonthemorphologicalaspectsofZnOmaterialspreparedbythe sol-gelmethodhaveledtonovelapplications.ZnOhavebeenattestedbyresearcherstobean idealmaterialformakingnanostructures,duetotheireaseofsynthesis,resultinginahighcrys- tallinitywithafewstructuraldefectsusingalow-temperatureprocess.ZnOalsopossesses excellentelectricalcharacteristicsthatcanbetailoredforafastandaccuratesensorresponse [11,12].ThebiocompatibilityofZnOmakesitconvenientforsurfacemodificationandinter- facingwithchemicalandbiologicalcompoundsatextremepHconditions. TheZnOseedsolution,whichisindexedtothewurtzitestructureassociatedwithhighcrystal- linity,hasahightendencytosynthesizequasione-dimensionalnanowiresviabottom–up approaches,suchasthevapor-liquid-solidmechanism,pulsedlaser,flametransfersynthesis,RF magnetronsputteringandhydrothermalmethods[13–17].PriortotheformationofZnOnano- structures,studiesonthecrystallographicandmorphologicalpropertiesofZnOthinfilmsarenec- essarytoanalyzethevariousparametersoftheseedsolutionthataffectthethinfilmformation. TheparametersrelevanttothesynthesisofZnOthinfilmsincludethethickness,pre- annealingandpost-annealingtemperaturesmaintainedduringprocessing,sol-seedconcentra- tion,andannealingperiod.Inthisstudy,aZnOseedsolutionissynthesizedviathesol-gel method,andthethicknessoftheseedsolutionistunedtoinvestigatetheoptoelectronicand structuralpropertiesofZnOthinfilmsthatarecoatedonglassandsiliconsubstrates.Further- more,wecharacterizedtheopticalandbulkmoduluspropertieswithrespecttothicknessto evaluatethetransducingcapacity.TheeffectofopticalpropertiesofZnOthinfilm(200nm)at differentpHconditionshavebeencharacterizedbymeasuringthebandgapofthemembranous ZnOthinfilm.WemadeanapproachofdevelopinganoptimizedZnOthickness,fortwoelec- trodedetectionscheme(IDE)withsimplecurrentdetection.Withaviewforhigh-performance sensingapplications,theelectricalbehaviorsonZnOthinfilmsofdifferentthicknessesunder variedpHsfrom2to10wereinvestigated. MaterialsandMethods ConsumableMaterials ZnOseedsolutionwaspreparedusingzincacetatedehydrate[Zn(CH3COO) .2H O](98%; 2 2 Sigma-Aldrich)asaprecursor.Isopropylalcohol(IPA;99.8%)wasfromSigma-Aldrich. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 2/20 ZnONanostructure-MediatedSensingApplication Monoethanolamine(MEA;99%;Merck)wasusedasastabilizer.Siliconwafers(100)werepur- chasedfromFilmetrics,andglassslideswerepurchasedfromFisherScientific. SilverInterdigitatedelectrode(IDE) AsilverIDEelectrodewasdepositedonthesiliconwafer<100>usingthetraditionalwetetch- ingmethod.Apositivephotoresist(PR)wascoatedonthesiliconwaferfollowedbysoftbak- ingfor90sec.UVlightwasappliedfor10sectopatterntransfertheIDEmask.The developmenttook15secusingRD-6developer,andthesamplewasbakedat110°Ctoremove excessmoistureandenhancetheadhesionforcebetweenthesilverandSiO layers.Theunex- 2 posedareawasremovedbysilveretchantappliedfor23sec,andthesamplewasthencleaned withacetone. ZnOsynthesis TheZnOseedsolutionwassynthesizedaspreviouslyreported[18–20].Briefly,1632mgof zincacetatepowderwasdilutedin40mlofisopropylalcoholtoobtain0.2MZnOseedsolu- tion.Theseedsolutionwasthenstirredat1000rpmfor20minat60°C.Thevolumesofthesol stabilizerandmonoethanolamine(MEA)weremeasuredtoensurethattheratiobetweenthe solventandstabilizerwas1:1sinceF.Boudjouanetal.hasstatedthatthemostoptimumratio ofMEAsolventis1:1forsynthesizingZnOsolgelsolution[21].Afterstirringthesolventfor 20min,theMEAwassubsequentlyaddedfor120minuntilaclearandtransparentsolution appeared.ThepreparedZnOseedsolutionwaslefttoageatroomtemperaturefor24h. ZnOseeding TheZnOseedsolutionwascoatedonp-typesiliconandglasssubstratesofdimensions2x2 cm2.Bothsubstratetypesunderwentaninitialstandardcleaningprocesspriortocoatingwith theZnOseedsolution.ThepreparedZnOseedsolutionwascoatedviathespin-coating method.Thecoatedsampleswereheatedat60°Cfor20min,atpointwherethetemperature wasraisedto150°Candkeptconstantfor10minbeforecoolingto50°C.Thesampleswere heatedaftereachcoatingtoeliminateresidualmoistureandenhancetheadhesionbetweenthe surfaceofthesubstrateandtheZnOseedsolution.Afterthecoating,allsamplesunderwentan annealingprocessat300°Cfor2h. CharacterizationofnanostructuredZnOthinfilms ThemorphologicalcharacterizationofthenanostructuredZnOthinfilmswasconducted usingfieldemissionscanningelectronmicroscopy(FESEM;CarlZeissAG-ULTRA55,Gem- ini).ThestructuralanalysiswasconductedviaX-raydiffraction(XRD,BrukerD2Phaser). Atomicforcemicroscopy(AFM;SPA400-SPI3800)wasutilizedtoexaminetheroughnessof thefilmsurfaces.Theopticalpropertieswereexaminedbyultraviolet-visiblespectroscopy (UV-vis,Lambda35,PerkinElmer),andphotoluminescence(PL)spectroscopy(PL,Horiba Fluorolog-3,HORIBAJobinYvonInc;USA)wasusedtoobservetheeffectofthethicknesson theopticaltransmittanceandcrystaldefects.Theelectricalcharacterizationwasconducted usingaKeithley2400sourcemeter. ResultsandDiscussion Analysis Azincoxide(ZnO)thinfilmwassynthesizedbyasimplechemicalroute(sol-gel)andopti- mizedtoimproveitsinternalandsurfacematrixesforsensingapplications.Thecharacteristics PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 3/20 ZnONanostructure-MediatedSensingApplication Fig1.StructuralandgrainsizeanalysisofmatrixofZnOthinfilm.X-RaydiffractionanalysesonZnO thinfilms. doi:10.1371/journal.pone.0132755.g001 ofthethinfilmweremodifiedbythedepositionofdifferentthicknessesonthesurfaceofthe sensingelectrode.Thestructural,morphological,opticalandelectricalchangesuponvarying thethicknessesoftheZnOthinfilmwerecriticallyobserved. Structuralanalysis ZnOthinfilmsofdifferentthicknesseswereobservedbyX-raydiffraction(XRD)analysis,and preliminaryinvestigationswereevaluatedforthegraincrystalsize,graingrowthorientation andcrystallinequalityofthematrix.Fig1displaystheXRDpatternsofZnOthinfilmsofdif- ferentthicknesses.TheXRDspectrashowsthatallfilmsconsistof(100),(002),and(101) planepeaks.ThepresenceofthesepeaksindicatethatalldepositedfilmshaveonlyZnOmate- rialsthatareindexedbyahexagonalwurzitestructure,whichisingoodagreementwiththe standarddiffractionpattern(JCPDScard#36–1451). Asthefilmthicknesswasincreased,theintensityofthediffractionpeaks[(100),(002),and (101)]werealsoincreased,revealingthatthecrystallinitywasincreasedinthethinfilmdueto thepreferentialgrowthofZnOalongthec-axis[22].TheScherrerequationwasusedtocalcu- latethecrystallitesizeoftheas-preparedfilms: kl D¼ ð1Þ FWHMcosy where,κistheScherrerconstant,withavalueof0.9;λrepresentstheincidentX-raywave- length;FWHMisthefull-widthathalf-maximumoftherespectivepeak;andθrepresentsthe diffractionpeakangle. Thegrainsizewasincreasedwiththenumberofcoatingcycles,asshowninTable1.The grainsizeoftheseedsolutionwascalculatedbasedonthehighestpeakorientation.Thus, Table1. Calculatedgrainsize,fullwidthathalfmaximum(FWHM),andstrainofZnOfilmswithdifferentthicknesslayersusingBraggequation. ZnOthinfilmthickness(nm) Grainsize(nm) FWHM(°) a(Å) c(Å) Strain, ε ð%ÞC(cid:2)Co x100 Co 40 21.00 0.51 3.257 5.641 8.356 60 41.60 0.10 3.251 5.631 8.164 100 43.00 0.08 3.250 5.629 8.125 200 52.00 0.02 3.246 5.622 7.991 doi:10.1371/journal.pone.0132755.t001 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 4/20 ZnONanostructure-MediatedSensingApplication calculationswereconductedonthe(002)orientationbasedontheXRDdata.Thecrystallinity oftheZnOthinfilmwasenhanceduponincreasingthefilmthicknesses,ascalculatedbythe reductionoftheFWHMvalue[23].Thestrainpercentage[ε(%)]wasdecreasedwithincreas- ingfilmthicknesses,whichismainlyduetolowtemperature(200°C)andlongerannealing time.Consequently,itisalsosuspectedthatitcausethereductioninRMSsurfaceroughness. Anincreaseinthefilmthicknessleadstoreducedsurfaceroughness,whichismoresuitablefor thefunctionofatransducerinoptoelectronicapplicationsduetoitsuniformity.Strain,ε(%) wascalculatedbasedonthefollowingequation: C(cid:2)C o x100% ð2Þ C o whereCisthelatticeconstant,whichwascalculatedusingBragg’sequation,andCoisthelat- ticeparameterforbulkZnO,whichhasafixedvalueof0.5206nm[24]. MorphologicalAnalysis MorphologicalobservationswereconductedoncoatedZnOthinfilmsofvariousthicknesses. FESEMcharacterizationwascarriedouttoinspectthegraingeometry(shapeandsize)ofthe bipolarmatrixintheZnOthinfilm.Theuniformityandsurfacesmoothnessofthecoated ZnOthinfilmwasalsoobservedbyAFMcharacterization. Fig2showsFESEMimagesofZnOthinfilmsofdifferentthicknessesthatwerecoatedon siliconsubstrates.TheaveragegrainsizeoftheZnOthinfilm,asobservedfromtheFESEM image,wasintherangeof10to50nm.TheFESEMimagesrevealedthatthethinfilmsurface showedspherule-shapedstructures,whichisinagreementwiththeresultsofBerrinand Sumer[24].Thespheruleshapeoftheseedremainsunchangedwithadditionalcoatingcycles ontheglasssubstrate.However,Aihuaetal.reportedthatthegrainshapeoftheZnOchanged fromhexagonalsheet-liketowedge-shapedwiththeincreasingthicknessofthethinfilm[23]. Ourresultsaredifferentmainlybecauseoflowtemperatureandlongannealingtimewereused inthecurrentprocess.Whereastheyuseddifferentcoatingmethod,andduetotheinvolve- mentofN-AldopingintheZnOthinfilms,therewasachangeintheshapeoftheseededlayer. Onthecontrary,withthecurrentbaking-annealingprocess,thegrainsizeoftheseedwas enhancedwithincreasingcoatingcycles. Fig2.MorphologicalinspectionofZnOthinfilmsofdifferentthicknesses.Geometricalgrainshape analysisandsizeinspectionwereconductedtoobservetheeffectofdifferentthicknesses.FESEMimagesof ZnOthinfilmscoatedwithdifferentthicknesses(a)40nm,(b)60nm,(c)100nmand(d)200nm. doi:10.1371/journal.pone.0132755.g002 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 5/20 ZnONanostructure-MediatedSensingApplication Fig3.Surfaceanalysisofcoatedthinfilm.Thesurfaceuniformityandroughnesswereinvestigatedby AFM.The2DAFMimagesofZnOthinfilmsofdifferentthicknessesareshown. doi:10.1371/journal.pone.0132755.g003 Thegrainwasseenasbright-whitestructureonthelowerrightcornerofFig2B,wasdueto differencedegreeofcontrastinFESEMimage.Thegrainsizewasincreasedafterundergoing severalcoatingcyclesbecauseoftheenhancedcoalescencebetweengrainsoftheZnOthin film.Fig2A–2DdepictsthattheFESEMmagnificationataconstantlevel(150,000X)forall fourfilmthicknessesproducedincreasinggrainsizeswithfilmthicknesses.Thisalsoleadsto comparativeincrementintrapsites[25]. Theuniformityofthethinfilmwasimprovedwithincreasingcoatingcycles,whichisin agreementwiththeAFMresultdisplayedinFig3.Thereducedsurfaceroughnessofthecoated thinfilmisoptimalforvariousapplications,suchasphotovoltaicandsolarcells,becauseof theirenhancedabilityforphotonabsorption[26].Fig3shows2D-AFMimagesofnanostruc- turedZnOthinfilmsofdifferentthicknesses.AFMimageswerecapturedintappingmode overanareaof500x500nmatascanningspeedof2MHz.Fig3alsodisplaysthatthegrain particlesofthecoatedthinfilmexhibitchangesinsizeanddistributionwithincreasingthick- nessesofthethinfilm.Thesurfaceuniformityofthethinfilmvariesnon-monotonically.The AFMimagesshowedthatthethicknessofthethinfilmandthearrangementofthegrainparti- clesstronglyaffectthesurfaceuniformityofthethinfilm.Thesurfaceuniformityisdominated bythegrainparticleduetograincoordination.Thus,asreportedbefore,asuitablethinfilm thicknessisneededforfurtheroptimization,togetherwithasynthesisofgoodsurfaceunifor- mity[27]. Fig4showstherelationshipbetweenthethicknessofaZnOthinfilmcoatedonaglasssub- strateandtherootmeansquare(RMSsurfaceroughness)valueofthesurface-coatedglasssub- strate.TheRMSsurfaceroughnessvaluedecreaseswithincreasingthicknessofthethinfilm, indicatingthatthedegreeofthesurfaceroughnessdecreasedbecauseoftheincrementinthe grain-sizeparticlesoftheZnO[28].Xuetal.reportedsimilarresultsregardingtherelationship betweenthethicknessoftheZnOthinfilmandtheRMSsurfaceroughnessvalues[29]. Ghayouretal.statedthatanincreaseinthethicknessofaZnOthinfilmwillcauseareduced roughnessfrequency[30]. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 6/20 ZnONanostructure-MediatedSensingApplication Fig4.SurfaceroughnessmeasurementonZnOthinfilm.ThicknessofZnOthinfilmversusRMSsurface roughnessvalue. doi:10.1371/journal.pone.0132755.g004 Fig5shows3DimagesofcoatedZnOthinfilmsthatunderwentvariouscoatingprocesses. Whenthecoatingcyclesontheglasssubstratewereincreased,thethicknessesofthethinfilm werealsoincreased.Fig5alsoshowslargenumbersofgrainparticlesatthelowthicknesslayer oftheZnOthinfilm;thus,thenumberofgrainparticlesdecreaseduponincreasingthethick- nessofthethinfilm.Whenthenumberofcoatingcyclesincreasedfrom1to7,theZnOthin filmsurfaceuniformitywasgraduallyimproved. Opticalanalysis ThepreparedZnOseedsolutionwascoatedonglasssubstratestoinvestigatethetransmission andabsorptionperformancesbyUV-visspectroscopy.Thequalityofthethinfilmwasinvesti- gatedusingphotoluminescence(PL)atroomtemperature.Thestructuraldefectsintheinter- nalmatrixoftheZnOthinfilmcanbeidentifiedthroughPLcharacterization.Fig6showsthe Fig5.Thicknessmeasurementsofthinfilmsundergoingdifferentnumbersofcoatingcycles.3-D AFMimageofsurfaceofglasssubstratecoatedwith1,3,5,and7coatinglayersofZnOseedsolution. doi:10.1371/journal.pone.0132755.g005 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 7/20 ZnONanostructure-MediatedSensingApplication Fig6.OpticalcharacterizationofthinfilmstoevaluatetheirperformancesforUVtransmission application.InsertshowsthemagnifiedscaleoftransmissionspectraofZnOthinfilmsofvarious thicknesses. doi:10.1371/journal.pone.0132755.g006 effectofthicknessonthetransmissionspectrumoftheZnOthinfilm.TheZnOthinfilm showedexcellenttransmissionpercentage,whichismorethan80%.Thetransmissionpercent- ageofZnOthinfilmreducesasthethicknessofthethinfilmincreasesfrom40to200nm.The standardBeer'sLawequationexplainsthereductionoftransmittanceofZnOthinfilmwith increasingthicknessofZnOthinfilm: I ¼I e(cid:2)ad ð3Þ o whereαistheabsorptionco-efficientanddisthefilmthickness. Thefollowingequationisusedtodeterminetheabsorptioncoefficient(α): lnð1=TÞ a¼ ð4Þ d whereTrepresentstransmittanceofZnOfilmsanddrepresentsthefilmthicknessofZnOthin film. Thereductioninthetransmissionwithincreasingfilmthicknessmaybeattributedtothe effectonthesurfaceroughnessandgrainsizeboundaryofthethinfilms,asdescribedearlier [31–34].ResultsobtainedfromFigs2and3werevalidatedanddepictedthatwithincreasing filmthicknesses,thesurfaceroughnessandthetransmissionwerereduced.ZnOthinfilms withauniformsurfaceexhibitedsuperiorabsorptioncapabilitiestothosewitharoughsurface. Fig7showsthebandgapcurvesofZnOthinfilmsofdifferentthicknesses.Thebandgapwas obtainedbyplottingaTauccurve,andthevaluesweredecreasedfrom3.282eVto3.268eVas thethicknessesoftheZnOfilmwereincreased(40to200nm). ThedirectbandgapvaluesofthesamplestreatedwithdifferentZnOthinfilmthicknesses wereobtainedbythefollowingformula: ahv ¼bðhv(cid:2)EgÞn ð5Þ wherehvrepresentsphotonenergy,βisfixedconstant,Egisthebandgapenergy,andnisthe alloweddirectbandwithavalueof1/2. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 8/20 ZnONanostructure-MediatedSensingApplication Fig7.Bandgapobservationofcoatedthinfilmtoinvestigatetheoptoelectronicperformance.Tauc plotofZnOthinfilmsofdifferentthicknesses. doi:10.1371/journal.pone.0132755.g007 Thedecreaseinthebandgapmaybeattributedtoareduceddeteriorationrateofthelattice structureoftheZnOthinfilmwithincreasingthicknesses[35].Previousreportsstatedthat voidsinthestructureofthethinfilmcouldenhancethedeteriorationrate[36],andthesestud- ieshaveillustratedthatthebandgapofaZnOthinfilmcanbealteredwithoutintroducingfor- eigndopants. Tofurthervalidatethecrystallinequalityofthethinfilms,photoluminescenceemission spectroscopywasused,andtheresultsareillustratedinFig8.PLspectrademonstratedthatall theZnOfilmsexhibitedtwopeaks,oneisintheUVrangeandtheotherisinthevisiblerange. ThesmallpeakintheUVregioncorrespondstothenearbandedge,attributedtotheradiative recombinationoffreeexcitons,andthebroadpeaksinthevisibleregionareassociatedwith Fig8.Photoluminescenceanalysisatroomtemperaturetoinvestigatetheeffectofthicknesson structuralqualityofZnOthinfilmmatrix.PhotoluminescencespectraofZnOthinfilmsofdifferent thicknessesareshown. doi:10.1371/journal.pone.0132755.g008 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 9/20 ZnONanostructure-MediatedSensingApplication structuraldefects[37].Structuraldefectsofaseedsolutionexhibitedinthevisibleregionare referredtoasnativepointdefectsandincludezincvacancies(V )andoxygenvacancies(V ), zn o whichpresentdeep-energylevelsofthebandgap[38,39].VoidsandimbalancesintheZn-O ratiocancauseZnandOvacancies,leadingtostructuraldefectsinthethinfilm[40].Thevisi- blerange(from500to700nm)hadasignificantdecreaseinintensitywiththeincreasingthick- nessoftheZnOthinfilm,whichshowsareductioninthestructuraldefectdensityinthethin film.ThisresultrevealsthatincreasingthethicknessesofZnOthinfilmfrom40to200nm, couldimprovethestructuralquality,whichcancontributeitsusageasatransducerinbiosen- singapplications. Optoelectronicperformanceanalysis Therefractiveindex‘n’isconsideredavitalphysicalparameter,anditcanbeapproachedfrom itsrelationshipwiththedensityorthelocalpolarizability[41–46].Thevalueof‘n’isnot dependentontemperatureorincidentphotonenergy.Ravindraetal.[47]expressed‘n’asalin- earfunctionofE : g n¼a þbE ð6Þ g whereα=4.048andβ=-0.62eV-1.Fromthesimplephysicsoflightrefractionanddispersion, HerveandVandamme(1995)formulatedanempiricalrelation[48] vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u ! u 2 t A ¼ 1þ ð7Þ E þB g Where,A=13.6eVandB=3.4eV.Ghoshetal.[49]usedadifferentstrategybyconsidering bandstructureandthequantumdielectricapproachesofPenn(1962)[50]andVanVechten [51].Byindexing‘A’asanimportantcontributionofthevalenceelectronsand‘B’asaconstant additiveforthebandgapwiththelowestE ,thehigh-frequencyrefractiveindexcanbe g expressedas: A n2(cid:2)1¼ ð8Þ ðEgþBÞ2 whereA=25E +212,B=0.21E +4.25,and(E +B)referstothematerialwithanappropriate g g g averageenergygap.Verificationoftherelationshipwasperformedbycalculatingthedielectric constantε1,inwhichε1=n2[52],anditisinagreementwiththeexperimentalvalue[47,53]. Theintenseabsorptionandminimalreflectionrepresentsanincreaseintheefficiencyofgener- atingoptoelectronicdevices. Thebulkmodulusrepresentsthematerialstiffness,asobservedpreviously[54–59],andit canbecomputedaccuratelybyusingsolidstructuralandelectronicproperties.Amoreempiri- calderivationwasdesignedwith‘ab’initiocalculations[60].Cohen[61]formulatedanempiri- calformulatocalculatethebulkmodulus‘B0’basedonthenearest-neighbordistanceunder agreementwiththeexperimentalvalues.Lametal.[62]designedananalyticalexpressionfor thepressurederivative‘B0’thatisdifferentfromtheempiricalformulainstructure,butpro- ducessimilarnumericalresults.Dourietal.[63]followedaconceptbasedonthelatticecon- stantandestablishedanempiricalformula.Areasontostudy‘B0’isduetothecleardifferences betweenthelatticeconstantsofdifferentZnOsamples,asshowninTable2. ThedominanteffectrepresentsthedegreeofcovalencythatcharacterizesPhillips’homopo- largap,‘Eh’[60],aqualitativeconcept,suchasbulkmodulus.Theseapproacheswereusedin PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 10/20

Description:
thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40,. 60, 100, and 200 nm, PLOS ONE | DOI:10.1371/journal.pone.0132755 July 13, 2015. 1 / 20 ideal material for making nanostructures, due to their ease of synthesis, resulting in a high crys- tallinity with a f
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.