RESEARCHARTICLE Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers: Characterization for Sensing Applications R.Haarindraprasad1,U.Hashim1*,SubashC.B.Gopinath1,2,MohdKashif1, P.Veeradasan1,S.R.Balakrishnan1,K.L.Foo1,P.Poopalan3 1 BiomedicalNanoDiagnosticsResearchGroup,InstituteofNanoElectronicEngineering(INEE),Kangar, Perlis,Malaysia,2 SchoolofBioprocessEngineering,UniversityMalaysiaPerlis(UniMAP),Kangar,Perlis, Malaysia,3 SchoolofMicroelectronicEngineering,UniversityMalaysiaPerlis(UniMAP),KualaPerlis,Perlis, Malaysia * [email protected] Abstract OPENACCESS Theperformanceofsensingsurfaceshighlyreliesonnanostructurestoenhancetheirsen- sitivityandspecificity.Herein,nanostructuredzincoxide(ZnO)thinfilmsofvariousthick- Citation:HaarindraprasadR,HashimU,Gopinath nesseswerecoatedonglassandp-typesiliconsubstratesusingasol-gelspin-coating SCB,KashifM,VeeradasanP,BalakrishnanSR,et al.(2015)LowTemperatureAnnealedZincOxide technique.Thedepositedfilmswerecharacterizedformorphological,structural,and NanostructuredThinFilm-BasedTransducers: optoelectronicpropertiesbyhigh-resolutionmeasurements.X-raydiffractionanalyses CharacterizationforSensingApplications.PLoSONE revealedthatthedepositedfilmshaveac-axisorientationanddisplaypeaksthatreferto 10(7):e0132755.doi:10.1371/journal.pone.0132755 ZnO,whichexhibitsahexagonalstructurewithapreferableplaneorientation(002).The Editor:YogendraKumarMishra,Institutefor thicknessesofZnOthinfilmspreparedusing1,3,5,and7cyclesweremeasuredtobe40, MaterialsScience,GERMANY 60,100,and200nm,respectively.Theincrementingrainsizeofthethinfilmfrom21to52 Received:March25,2015 nmwasnoticed,whenitsthicknesswasincreasedfrom40to200nm,whereastheband Accepted:June17,2015 gapvaluedecreasedfrom3.282to3.268eV.BandgapvalueofZnOthinfilmwiththickness Published:July13,2015 of200nmatpHrangingfrom2to10reducesfrom3.263eVto3.200eV.Furthermore,to evaluatethetransducingcapacityoftheZnOnanostructure,therefractiveindex,optoelec- Copyright:©2015Haarindraprasadetal.Thisisan openaccessarticledistributedunderthetermsofthe tricconstant,andbulkmoduluswereanalyzedandcorrelated.Thehighestthickness(200 CreativeCommonsAttributionLicense,whichpermits nm)ofZnOfilm,embeddedwithaninterdigitatedelectrodethatbehavesasapH-sensing unrestricteduse,distribution,andreproductioninany electrode,couldsensepHvariationsintherangeof2-10.Itshowedahighlysensitive medium,providedtheoriginalauthorandsourceare credited. responseof444μAmM-1cm-2withalinearregressionofR2=0.9304.Themeasuredsensi- tivityofthedevelopeddeviceforpHperunitis3.72μA/pH. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformationfiles. Funding:TheauthorswouldliketothankUniversiti MalaysiaPerlis(UniMAP),andMinistryofHigher EducationMalaysiaforthefinancialsupportthrough MTUN-COEgrant9016-00004toconductthe Introduction research.Thefundershadnoroleinstudydesign, datacollectionandanalysis,decisiontopublish,or Sensitivityistheprimedeterminingfactorofthequalityofsensors,andtheconstructionof preparationofthemanuscript. nanostructureonthesensingsurfacecreatesanavenueforhigh-performancesensing[1]. Amongdifferentsensorsproposed,pHsensorhasbeenconsideredasmandatorytomaintain CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. thequalityoffoodbymeasuringtheaciditylevels,whichwillpreventfoodbornepathogens. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 1/20 ZnONanostructure-MediatedSensingApplication Previously,pHsensorshavebeenfabricatedviavarioustypesofelectrodesystembyimplement- ingconventionalstrategy.Inordertoovercomesomelimitations,suchasrigidandbulksize structureofglasselectrode,researchersdevelopedsmallerandrobustelectrodesystems,which includesIon-SensitiveField-Effecttransistor(ISFET)andextended-gatefield-effect-transistor (EGFET)[2,3].However,thecomplexityofthesenon-interdigitatedelectrodedevicefabrications aswellaselectricaloperationsincreasesthecost,duetotheusageofmultiplemasksets,which greatlyincreasesfabricationprocesses.Furthermore,ZnOintegrationencounterstheproblems withconventionalCMOSprocessesandpossiblecontaminationofprocessequipment.Addition- ally,thesethreeterminaldevicesrequirecomplexbiasingarrangementsincomparisontocapaci- tiveinterdigitatedelectrode(IDE).AnattempthasbeenmadetodevelopIDEforpHsensing applicationsinceIDEhasbecomepromisingfordevelopingbiosensorsystemduetoitshigher stability,robustandsimplicity.Inaddition,ultra-lowvolumeofsolutionisrequiredformeasure- mentsinIDEcomparedtootherelectrodesystemssuchasglasselectrode,ISFETandEGFET. Zincoxide(ZnO)hasbecomeapopularchoiceforthedevelopmentofsensingplatforms withvariousapplications,suchasphotovoltaics,solarcells,andoptoelectronicbiosensors[4– 7]duetoitsappealingcharacteristicssuchasalargebandgapof3.37eV[8]andbiocompati- bility[9,10].IntensivereviewsindicatethatZnOhasbecomeanemergingcontenderforenvi- ronmentalapplicationswiththeconsiderationsofreducedcost,non-toxicity,andhigh reactivity.StudiesthatfocusedonthemorphologicalaspectsofZnOmaterialspreparedbythe sol-gelmethodhaveledtonovelapplications.ZnOhavebeenattestedbyresearcherstobean idealmaterialformakingnanostructures,duetotheireaseofsynthesis,resultinginahighcrys- tallinitywithafewstructuraldefectsusingalow-temperatureprocess.ZnOalsopossesses excellentelectricalcharacteristicsthatcanbetailoredforafastandaccuratesensorresponse [11,12].ThebiocompatibilityofZnOmakesitconvenientforsurfacemodificationandinter- facingwithchemicalandbiologicalcompoundsatextremepHconditions. TheZnOseedsolution,whichisindexedtothewurtzitestructureassociatedwithhighcrystal- linity,hasahightendencytosynthesizequasione-dimensionalnanowiresviabottom–up approaches,suchasthevapor-liquid-solidmechanism,pulsedlaser,flametransfersynthesis,RF magnetronsputteringandhydrothermalmethods[13–17].PriortotheformationofZnOnano- structures,studiesonthecrystallographicandmorphologicalpropertiesofZnOthinfilmsarenec- essarytoanalyzethevariousparametersoftheseedsolutionthataffectthethinfilmformation. TheparametersrelevanttothesynthesisofZnOthinfilmsincludethethickness,pre- annealingandpost-annealingtemperaturesmaintainedduringprocessing,sol-seedconcentra- tion,andannealingperiod.Inthisstudy,aZnOseedsolutionissynthesizedviathesol-gel method,andthethicknessoftheseedsolutionistunedtoinvestigatetheoptoelectronicand structuralpropertiesofZnOthinfilmsthatarecoatedonglassandsiliconsubstrates.Further- more,wecharacterizedtheopticalandbulkmoduluspropertieswithrespecttothicknessto evaluatethetransducingcapacity.TheeffectofopticalpropertiesofZnOthinfilm(200nm)at differentpHconditionshavebeencharacterizedbymeasuringthebandgapofthemembranous ZnOthinfilm.WemadeanapproachofdevelopinganoptimizedZnOthickness,fortwoelec- trodedetectionscheme(IDE)withsimplecurrentdetection.Withaviewforhigh-performance sensingapplications,theelectricalbehaviorsonZnOthinfilmsofdifferentthicknessesunder variedpHsfrom2to10wereinvestigated. MaterialsandMethods ConsumableMaterials ZnOseedsolutionwaspreparedusingzincacetatedehydrate[Zn(CH3COO) .2H O](98%; 2 2 Sigma-Aldrich)asaprecursor.Isopropylalcohol(IPA;99.8%)wasfromSigma-Aldrich. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 2/20 ZnONanostructure-MediatedSensingApplication Monoethanolamine(MEA;99%;Merck)wasusedasastabilizer.Siliconwafers(100)werepur- chasedfromFilmetrics,andglassslideswerepurchasedfromFisherScientific. SilverInterdigitatedelectrode(IDE) AsilverIDEelectrodewasdepositedonthesiliconwafer<100>usingthetraditionalwetetch- ingmethod.Apositivephotoresist(PR)wascoatedonthesiliconwaferfollowedbysoftbak- ingfor90sec.UVlightwasappliedfor10sectopatterntransfertheIDEmask.The developmenttook15secusingRD-6developer,andthesamplewasbakedat110°Ctoremove excessmoistureandenhancetheadhesionforcebetweenthesilverandSiO layers.Theunex- 2 posedareawasremovedbysilveretchantappliedfor23sec,andthesamplewasthencleaned withacetone. ZnOsynthesis TheZnOseedsolutionwassynthesizedaspreviouslyreported[18–20].Briefly,1632mgof zincacetatepowderwasdilutedin40mlofisopropylalcoholtoobtain0.2MZnOseedsolu- tion.Theseedsolutionwasthenstirredat1000rpmfor20minat60°C.Thevolumesofthesol stabilizerandmonoethanolamine(MEA)weremeasuredtoensurethattheratiobetweenthe solventandstabilizerwas1:1sinceF.Boudjouanetal.hasstatedthatthemostoptimumratio ofMEAsolventis1:1forsynthesizingZnOsolgelsolution[21].Afterstirringthesolventfor 20min,theMEAwassubsequentlyaddedfor120minuntilaclearandtransparentsolution appeared.ThepreparedZnOseedsolutionwaslefttoageatroomtemperaturefor24h. ZnOseeding TheZnOseedsolutionwascoatedonp-typesiliconandglasssubstratesofdimensions2x2 cm2.Bothsubstratetypesunderwentaninitialstandardcleaningprocesspriortocoatingwith theZnOseedsolution.ThepreparedZnOseedsolutionwascoatedviathespin-coating method.Thecoatedsampleswereheatedat60°Cfor20min,atpointwherethetemperature wasraisedto150°Candkeptconstantfor10minbeforecoolingto50°C.Thesampleswere heatedaftereachcoatingtoeliminateresidualmoistureandenhancetheadhesionbetweenthe surfaceofthesubstrateandtheZnOseedsolution.Afterthecoating,allsamplesunderwentan annealingprocessat300°Cfor2h. CharacterizationofnanostructuredZnOthinfilms ThemorphologicalcharacterizationofthenanostructuredZnOthinfilmswasconducted usingfieldemissionscanningelectronmicroscopy(FESEM;CarlZeissAG-ULTRA55,Gem- ini).ThestructuralanalysiswasconductedviaX-raydiffraction(XRD,BrukerD2Phaser). Atomicforcemicroscopy(AFM;SPA400-SPI3800)wasutilizedtoexaminetheroughnessof thefilmsurfaces.Theopticalpropertieswereexaminedbyultraviolet-visiblespectroscopy (UV-vis,Lambda35,PerkinElmer),andphotoluminescence(PL)spectroscopy(PL,Horiba Fluorolog-3,HORIBAJobinYvonInc;USA)wasusedtoobservetheeffectofthethicknesson theopticaltransmittanceandcrystaldefects.Theelectricalcharacterizationwasconducted usingaKeithley2400sourcemeter. ResultsandDiscussion Analysis Azincoxide(ZnO)thinfilmwassynthesizedbyasimplechemicalroute(sol-gel)andopti- mizedtoimproveitsinternalandsurfacematrixesforsensingapplications.Thecharacteristics PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 3/20 ZnONanostructure-MediatedSensingApplication Fig1.StructuralandgrainsizeanalysisofmatrixofZnOthinfilm.X-RaydiffractionanalysesonZnO thinfilms. doi:10.1371/journal.pone.0132755.g001 ofthethinfilmweremodifiedbythedepositionofdifferentthicknessesonthesurfaceofthe sensingelectrode.Thestructural,morphological,opticalandelectricalchangesuponvarying thethicknessesoftheZnOthinfilmwerecriticallyobserved. Structuralanalysis ZnOthinfilmsofdifferentthicknesseswereobservedbyX-raydiffraction(XRD)analysis,and preliminaryinvestigationswereevaluatedforthegraincrystalsize,graingrowthorientation andcrystallinequalityofthematrix.Fig1displaystheXRDpatternsofZnOthinfilmsofdif- ferentthicknesses.TheXRDspectrashowsthatallfilmsconsistof(100),(002),and(101) planepeaks.ThepresenceofthesepeaksindicatethatalldepositedfilmshaveonlyZnOmate- rialsthatareindexedbyahexagonalwurzitestructure,whichisingoodagreementwiththe standarddiffractionpattern(JCPDScard#36–1451). Asthefilmthicknesswasincreased,theintensityofthediffractionpeaks[(100),(002),and (101)]werealsoincreased,revealingthatthecrystallinitywasincreasedinthethinfilmdueto thepreferentialgrowthofZnOalongthec-axis[22].TheScherrerequationwasusedtocalcu- latethecrystallitesizeoftheas-preparedfilms: kl D¼ ð1Þ FWHMcosy where,κistheScherrerconstant,withavalueof0.9;λrepresentstheincidentX-raywave- length;FWHMisthefull-widthathalf-maximumoftherespectivepeak;andθrepresentsthe diffractionpeakangle. Thegrainsizewasincreasedwiththenumberofcoatingcycles,asshowninTable1.The grainsizeoftheseedsolutionwascalculatedbasedonthehighestpeakorientation.Thus, Table1. Calculatedgrainsize,fullwidthathalfmaximum(FWHM),andstrainofZnOfilmswithdifferentthicknesslayersusingBraggequation. ZnOthinfilmthickness(nm) Grainsize(nm) FWHM(°) a(Å) c(Å) Strain, ε ð%ÞC(cid:2)Co x100 Co 40 21.00 0.51 3.257 5.641 8.356 60 41.60 0.10 3.251 5.631 8.164 100 43.00 0.08 3.250 5.629 8.125 200 52.00 0.02 3.246 5.622 7.991 doi:10.1371/journal.pone.0132755.t001 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 4/20 ZnONanostructure-MediatedSensingApplication calculationswereconductedonthe(002)orientationbasedontheXRDdata.Thecrystallinity oftheZnOthinfilmwasenhanceduponincreasingthefilmthicknesses,ascalculatedbythe reductionoftheFWHMvalue[23].Thestrainpercentage[ε(%)]wasdecreasedwithincreas- ingfilmthicknesses,whichismainlyduetolowtemperature(200°C)andlongerannealing time.Consequently,itisalsosuspectedthatitcausethereductioninRMSsurfaceroughness. Anincreaseinthefilmthicknessleadstoreducedsurfaceroughness,whichismoresuitablefor thefunctionofatransducerinoptoelectronicapplicationsduetoitsuniformity.Strain,ε(%) wascalculatedbasedonthefollowingequation: C(cid:2)C o x100% ð2Þ C o whereCisthelatticeconstant,whichwascalculatedusingBragg’sequation,andCoisthelat- ticeparameterforbulkZnO,whichhasafixedvalueof0.5206nm[24]. MorphologicalAnalysis MorphologicalobservationswereconductedoncoatedZnOthinfilmsofvariousthicknesses. FESEMcharacterizationwascarriedouttoinspectthegraingeometry(shapeandsize)ofthe bipolarmatrixintheZnOthinfilm.Theuniformityandsurfacesmoothnessofthecoated ZnOthinfilmwasalsoobservedbyAFMcharacterization. Fig2showsFESEMimagesofZnOthinfilmsofdifferentthicknessesthatwerecoatedon siliconsubstrates.TheaveragegrainsizeoftheZnOthinfilm,asobservedfromtheFESEM image,wasintherangeof10to50nm.TheFESEMimagesrevealedthatthethinfilmsurface showedspherule-shapedstructures,whichisinagreementwiththeresultsofBerrinand Sumer[24].Thespheruleshapeoftheseedremainsunchangedwithadditionalcoatingcycles ontheglasssubstrate.However,Aihuaetal.reportedthatthegrainshapeoftheZnOchanged fromhexagonalsheet-liketowedge-shapedwiththeincreasingthicknessofthethinfilm[23]. Ourresultsaredifferentmainlybecauseoflowtemperatureandlongannealingtimewereused inthecurrentprocess.Whereastheyuseddifferentcoatingmethod,andduetotheinvolve- mentofN-AldopingintheZnOthinfilms,therewasachangeintheshapeoftheseededlayer. Onthecontrary,withthecurrentbaking-annealingprocess,thegrainsizeoftheseedwas enhancedwithincreasingcoatingcycles. Fig2.MorphologicalinspectionofZnOthinfilmsofdifferentthicknesses.Geometricalgrainshape analysisandsizeinspectionwereconductedtoobservetheeffectofdifferentthicknesses.FESEMimagesof ZnOthinfilmscoatedwithdifferentthicknesses(a)40nm,(b)60nm,(c)100nmand(d)200nm. doi:10.1371/journal.pone.0132755.g002 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 5/20 ZnONanostructure-MediatedSensingApplication Fig3.Surfaceanalysisofcoatedthinfilm.Thesurfaceuniformityandroughnesswereinvestigatedby AFM.The2DAFMimagesofZnOthinfilmsofdifferentthicknessesareshown. doi:10.1371/journal.pone.0132755.g003 Thegrainwasseenasbright-whitestructureonthelowerrightcornerofFig2B,wasdueto differencedegreeofcontrastinFESEMimage.Thegrainsizewasincreasedafterundergoing severalcoatingcyclesbecauseoftheenhancedcoalescencebetweengrainsoftheZnOthin film.Fig2A–2DdepictsthattheFESEMmagnificationataconstantlevel(150,000X)forall fourfilmthicknessesproducedincreasinggrainsizeswithfilmthicknesses.Thisalsoleadsto comparativeincrementintrapsites[25]. Theuniformityofthethinfilmwasimprovedwithincreasingcoatingcycles,whichisin agreementwiththeAFMresultdisplayedinFig3.Thereducedsurfaceroughnessofthecoated thinfilmisoptimalforvariousapplications,suchasphotovoltaicandsolarcells,becauseof theirenhancedabilityforphotonabsorption[26].Fig3shows2D-AFMimagesofnanostruc- turedZnOthinfilmsofdifferentthicknesses.AFMimageswerecapturedintappingmode overanareaof500x500nmatascanningspeedof2MHz.Fig3alsodisplaysthatthegrain particlesofthecoatedthinfilmexhibitchangesinsizeanddistributionwithincreasingthick- nessesofthethinfilm.Thesurfaceuniformityofthethinfilmvariesnon-monotonically.The AFMimagesshowedthatthethicknessofthethinfilmandthearrangementofthegrainparti- clesstronglyaffectthesurfaceuniformityofthethinfilm.Thesurfaceuniformityisdominated bythegrainparticleduetograincoordination.Thus,asreportedbefore,asuitablethinfilm thicknessisneededforfurtheroptimization,togetherwithasynthesisofgoodsurfaceunifor- mity[27]. Fig4showstherelationshipbetweenthethicknessofaZnOthinfilmcoatedonaglasssub- strateandtherootmeansquare(RMSsurfaceroughness)valueofthesurface-coatedglasssub- strate.TheRMSsurfaceroughnessvaluedecreaseswithincreasingthicknessofthethinfilm, indicatingthatthedegreeofthesurfaceroughnessdecreasedbecauseoftheincrementinthe grain-sizeparticlesoftheZnO[28].Xuetal.reportedsimilarresultsregardingtherelationship betweenthethicknessoftheZnOthinfilmandtheRMSsurfaceroughnessvalues[29]. Ghayouretal.statedthatanincreaseinthethicknessofaZnOthinfilmwillcauseareduced roughnessfrequency[30]. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 6/20 ZnONanostructure-MediatedSensingApplication Fig4.SurfaceroughnessmeasurementonZnOthinfilm.ThicknessofZnOthinfilmversusRMSsurface roughnessvalue. doi:10.1371/journal.pone.0132755.g004 Fig5shows3DimagesofcoatedZnOthinfilmsthatunderwentvariouscoatingprocesses. Whenthecoatingcyclesontheglasssubstratewereincreased,thethicknessesofthethinfilm werealsoincreased.Fig5alsoshowslargenumbersofgrainparticlesatthelowthicknesslayer oftheZnOthinfilm;thus,thenumberofgrainparticlesdecreaseduponincreasingthethick- nessofthethinfilm.Whenthenumberofcoatingcyclesincreasedfrom1to7,theZnOthin filmsurfaceuniformitywasgraduallyimproved. Opticalanalysis ThepreparedZnOseedsolutionwascoatedonglasssubstratestoinvestigatethetransmission andabsorptionperformancesbyUV-visspectroscopy.Thequalityofthethinfilmwasinvesti- gatedusingphotoluminescence(PL)atroomtemperature.Thestructuraldefectsintheinter- nalmatrixoftheZnOthinfilmcanbeidentifiedthroughPLcharacterization.Fig6showsthe Fig5.Thicknessmeasurementsofthinfilmsundergoingdifferentnumbersofcoatingcycles.3-D AFMimageofsurfaceofglasssubstratecoatedwith1,3,5,and7coatinglayersofZnOseedsolution. doi:10.1371/journal.pone.0132755.g005 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 7/20 ZnONanostructure-MediatedSensingApplication Fig6.OpticalcharacterizationofthinfilmstoevaluatetheirperformancesforUVtransmission application.InsertshowsthemagnifiedscaleoftransmissionspectraofZnOthinfilmsofvarious thicknesses. doi:10.1371/journal.pone.0132755.g006 effectofthicknessonthetransmissionspectrumoftheZnOthinfilm.TheZnOthinfilm showedexcellenttransmissionpercentage,whichismorethan80%.Thetransmissionpercent- ageofZnOthinfilmreducesasthethicknessofthethinfilmincreasesfrom40to200nm.The standardBeer'sLawequationexplainsthereductionoftransmittanceofZnOthinfilmwith increasingthicknessofZnOthinfilm: I ¼I e(cid:2)ad ð3Þ o whereαistheabsorptionco-efficientanddisthefilmthickness. Thefollowingequationisusedtodeterminetheabsorptioncoefficient(α): lnð1=TÞ a¼ ð4Þ d whereTrepresentstransmittanceofZnOfilmsanddrepresentsthefilmthicknessofZnOthin film. Thereductioninthetransmissionwithincreasingfilmthicknessmaybeattributedtothe effectonthesurfaceroughnessandgrainsizeboundaryofthethinfilms,asdescribedearlier [31–34].ResultsobtainedfromFigs2and3werevalidatedanddepictedthatwithincreasing filmthicknesses,thesurfaceroughnessandthetransmissionwerereduced.ZnOthinfilms withauniformsurfaceexhibitedsuperiorabsorptioncapabilitiestothosewitharoughsurface. Fig7showsthebandgapcurvesofZnOthinfilmsofdifferentthicknesses.Thebandgapwas obtainedbyplottingaTauccurve,andthevaluesweredecreasedfrom3.282eVto3.268eVas thethicknessesoftheZnOfilmwereincreased(40to200nm). ThedirectbandgapvaluesofthesamplestreatedwithdifferentZnOthinfilmthicknesses wereobtainedbythefollowingformula: ahv ¼bðhv(cid:2)EgÞn ð5Þ wherehvrepresentsphotonenergy,βisfixedconstant,Egisthebandgapenergy,andnisthe alloweddirectbandwithavalueof1/2. PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 8/20 ZnONanostructure-MediatedSensingApplication Fig7.Bandgapobservationofcoatedthinfilmtoinvestigatetheoptoelectronicperformance.Tauc plotofZnOthinfilmsofdifferentthicknesses. doi:10.1371/journal.pone.0132755.g007 Thedecreaseinthebandgapmaybeattributedtoareduceddeteriorationrateofthelattice structureoftheZnOthinfilmwithincreasingthicknesses[35].Previousreportsstatedthat voidsinthestructureofthethinfilmcouldenhancethedeteriorationrate[36],andthesestud- ieshaveillustratedthatthebandgapofaZnOthinfilmcanbealteredwithoutintroducingfor- eigndopants. Tofurthervalidatethecrystallinequalityofthethinfilms,photoluminescenceemission spectroscopywasused,andtheresultsareillustratedinFig8.PLspectrademonstratedthatall theZnOfilmsexhibitedtwopeaks,oneisintheUVrangeandtheotherisinthevisiblerange. ThesmallpeakintheUVregioncorrespondstothenearbandedge,attributedtotheradiative recombinationoffreeexcitons,andthebroadpeaksinthevisibleregionareassociatedwith Fig8.Photoluminescenceanalysisatroomtemperaturetoinvestigatetheeffectofthicknesson structuralqualityofZnOthinfilmmatrix.PhotoluminescencespectraofZnOthinfilmsofdifferent thicknessesareshown. doi:10.1371/journal.pone.0132755.g008 PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 9/20 ZnONanostructure-MediatedSensingApplication structuraldefects[37].Structuraldefectsofaseedsolutionexhibitedinthevisibleregionare referredtoasnativepointdefectsandincludezincvacancies(V )andoxygenvacancies(V ), zn o whichpresentdeep-energylevelsofthebandgap[38,39].VoidsandimbalancesintheZn-O ratiocancauseZnandOvacancies,leadingtostructuraldefectsinthethinfilm[40].Thevisi- blerange(from500to700nm)hadasignificantdecreaseinintensitywiththeincreasingthick- nessoftheZnOthinfilm,whichshowsareductioninthestructuraldefectdensityinthethin film.ThisresultrevealsthatincreasingthethicknessesofZnOthinfilmfrom40to200nm, couldimprovethestructuralquality,whichcancontributeitsusageasatransducerinbiosen- singapplications. Optoelectronicperformanceanalysis Therefractiveindex‘n’isconsideredavitalphysicalparameter,anditcanbeapproachedfrom itsrelationshipwiththedensityorthelocalpolarizability[41–46].Thevalueof‘n’isnot dependentontemperatureorincidentphotonenergy.Ravindraetal.[47]expressed‘n’asalin- earfunctionofE : g n¼a þbE ð6Þ g whereα=4.048andβ=-0.62eV-1.Fromthesimplephysicsoflightrefractionanddispersion, HerveandVandamme(1995)formulatedanempiricalrelation[48] vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u ! u 2 t A ¼ 1þ ð7Þ E þB g Where,A=13.6eVandB=3.4eV.Ghoshetal.[49]usedadifferentstrategybyconsidering bandstructureandthequantumdielectricapproachesofPenn(1962)[50]andVanVechten [51].Byindexing‘A’asanimportantcontributionofthevalenceelectronsand‘B’asaconstant additiveforthebandgapwiththelowestE ,thehigh-frequencyrefractiveindexcanbe g expressedas: A n2(cid:2)1¼ ð8Þ ðEgþBÞ2 whereA=25E +212,B=0.21E +4.25,and(E +B)referstothematerialwithanappropriate g g g averageenergygap.Verificationoftherelationshipwasperformedbycalculatingthedielectric constantε1,inwhichε1=n2[52],anditisinagreementwiththeexperimentalvalue[47,53]. Theintenseabsorptionandminimalreflectionrepresentsanincreaseintheefficiencyofgener- atingoptoelectronicdevices. Thebulkmodulusrepresentsthematerialstiffness,asobservedpreviously[54–59],andit canbecomputedaccuratelybyusingsolidstructuralandelectronicproperties.Amoreempiri- calderivationwasdesignedwith‘ab’initiocalculations[60].Cohen[61]formulatedanempiri- calformulatocalculatethebulkmodulus‘B0’basedonthenearest-neighbordistanceunder agreementwiththeexperimentalvalues.Lametal.[62]designedananalyticalexpressionfor thepressurederivative‘B0’thatisdifferentfromtheempiricalformulainstructure,butpro- ducessimilarnumericalresults.Dourietal.[63]followedaconceptbasedonthelatticecon- stantandestablishedanempiricalformula.Areasontostudy‘B0’isduetothecleardifferences betweenthelatticeconstantsofdifferentZnOsamples,asshowninTable2. ThedominanteffectrepresentsthedegreeofcovalencythatcharacterizesPhillips’homopo- largap,‘Eh’[60],aqualitativeconcept,suchasbulkmodulus.Theseapproacheswereusedin PLOSONE|DOI:10.1371/journal.pone.0132755 July13,2015 10/20
Description: