ebook img

LOW POWER HIGH EFFICIENCY INTEGRATED CLASS-D AMPLIFIER CIRCUITS FOR MOBILE ... PDF

252 Pages·2015·2.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LOW POWER HIGH EFFICIENCY INTEGRATED CLASS-D AMPLIFIER CIRCUITS FOR MOBILE ...

LOWPOWERHIGHEFFICIENCYINTEGRATEDCLASS-DAMPLIFIER CIRCUITSFORMOBILEDEVICES ADissertation by ADRIANISRAELCOLLI-MENCHI SubmittedtotheOfficeofGraduateandProfessionalStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof DOCTOROFPHILOSOPHY ChairofCommittee, EdgarSánchez-Sinencio CommitteeMembers, SamuelPalermo HamidToliyat ZenónMedina-Cetina HeadofDepartment, ChananSingh May 2015 MajorSubject: ElectricalEngineering Copyright2015 AdrianIsraelColli-Menchi ABSTRACT The consumer’s demand for state-of-the-art multimedia devices such as smart phones andtabletcomputershasforcedmanufacturerstoprovidemoresystemfeaturestocompete for a larger portion of the market share. The added features increase the power consump- tion and heat dissipation of integrated circuits, depleting the battery charge faster. There- fore,low-powerhigh-efficiencycircuits,suchastheclass-Daudioamplifier,areneededto reduceheatdissipationandextendbatterylifeinmobiledevices. Thisdissertationfocuses on new design techniques to create high performance class-D audio amplifiers that have lowpowerconsumptionandoccupylessspace. The first part of this dissertation introduces the research motivation and fundamentals of audio amplification. The loudspeaker’s operation and main audio performance met- rics are examined to explain the limitations in the amplification process. Moreover, the operating principle and design procedure of the main class-D amplifier architectures are reviewedtoprovidetheperformancetradeoffsinvolved. The second part of this dissertation presents two new circuit designs to improve the audio performance, power consumption, and efficiency of standard class-D audio ampli- fiers. The first work proposes a feed-forward power-supply noise cancellation technique forsingle-endedclass-Damplifierarchitecturestoimprovethepower-supplyrejectionra- tio across the entire audio frequency range. The design methodology, implementation, and tradeoffs of the proposed technique are clearly delineated to demonstrate its simplic- ity and effectiveness. The second work introduces a new class-D output stage design for piezoelectric speakers. The proposed design uses stacked-cascode thick-oxide CMOS transistorsattheoutputstagethatmakespossibletohandlehighvoltagesinalowvoltage standard CMOS technology. The design tradeoffs in efficiency, linearity, and electromag- ii neticinterferencearediscussed. Finally, the open problems in audio amplification for mobile devices are discussed to delineate the possible future work to improve the performance of class-D amplifiers. For all the presented works, proof-of-concept prototypes are fabricated, and the measured resultsareusedtoverifythecorrectoperationoftheproposedsolutions. iii DEDICATION ToGodandtomyfamily. iv ACKNOWLEDGEMENTS Firstandforemost,IwouldliketothankGodforalltheblessingsthatHehasbestowed uponme. WithoutHisgrace,Iwouldhavebeenlost. "TheLordismyrock,myfortress,andmydeliverer,myGod,myrockinwhomItake refuge,myshield,andthehornofmysalvation,mystronghold." (Psalm18:2) I would like to thank my advisor, Dr. Edgar Sánchez-Sinencio, for his invaluable support and motivation throughout the development of this research. I am grateful for his academicguidance,professionaladvisement,andfriendship. Iwouldliketothankmycommitteemembers,Dr. SamuelPalermo,Dr. HamidToliyat, and Dr. Zenón Medina-Cetina for all their comments and suggestions to improve the qualityoftheresearchpresentedinthisdissertation. I would like to express my sincere gratitude to my wife, Liliana, for her unconditional love, support, encouragement, and patience. Many thanks to my parents, Jose and Ana, fortheirconstantsupportandmotivation. IamalsogratefultomylittlesisterMonica,for herloveandcomprehension. IwouldlikepresentmydeepappreciationtoMiguelRojas-GonzalezandJoselynTor- res for the numerous technical discussions that helped to develop this research work. Thanks also to my research colleagues Jorge Zarate, Salvador Carreon, Efrain Gaxiola, JiayiJin,XiaosenLiu,FernandoLavalle,andCarlosBriseno. Finally, thanks to the National Council of Science and Technology (CONACYT) of Mexicofortheeconomicsupportthroughoutmostofmydoctoralstudies. v NOMENCLATURE BTL BridgeTiedLoad CDA Class-DAmplifier CMOS ComplementaryMetalOxideSemiconductor DMOS Double-DiffusedMetalOxideSemiconductor DEMOS DrainExtendedMetalOxideSemiconductor EM Electromagnetic EMI ElectromagneticInterference GBW GainBandwidthProduct IMD IntermodulationDistortion LDMOS LaterallyDiffusedMetalOxideSemiconductor NMOS NegativeChannelMetalOxideSemiconductor PCB PrintedCircuitBoard PFM PulseFrequencyModulation PMOS PositiveChannelMetalOxideSemiconductor PSRR PowerSupplyRejectionRatio PWM PulseWidthModulation PZ Piezoelectric RMS RootMeanSquare SNR SignaltoNoiseRatio SMC SlidingModeControl SPL SoundPressureLevel THD TotalHarmonicDistortion THN+N TotalHarmonicDistortionplusNoise vi TABLEOFCONTENTS Page ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi TABLEOFCONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Researchimpact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Dissertationorganization . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. FUNDAMENTALSANDMETRICSOFAUDIOAMPLIFICATION . . . . . 6 2.1 Principlesofsoundandaudio . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Soundandaudiodefinition . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Soundpressurelevel . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Loudspeakertransducersinmobiledevices . . . . . . . . . . . . . . . . . 9 2.2.1 Electromagneticspeaker . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Piezoelectricspeaker . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Performancemetricsofaudioamplifiers . . . . . . . . . . . . . . . . . . 14 2.3.1 Totalharmonicdistortionplusnoise . . . . . . . . . . . . . . . . 15 2.3.2 Signaltonoiseratio . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 Powersupplyrejectionratio . . . . . . . . . . . . . . . . . . . . 18 2.3.4 Powersupplyintermodulationdistortion . . . . . . . . . . . . . . 20 2.3.5 Powerefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Audioamplifierclassification . . . . . . . . . . . . . . . . . . . . . . . . 25 3. PRINCIPLESOFCLASS-DAUDIOAMPLIFIERS . . . . . . . . . . . . . . 30 vii Page 3.1 Class-Damplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.1 Advantagesanddisadvantagesofclass-Damplifiers . . . . . . . . 33 3.1.2 Class-Damplifierpowerlosses . . . . . . . . . . . . . . . . . . . 34 3.1.3 Typicalapplications . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 Commercialclass-Daudioamplifierstypicalspecifications . . . . 39 3.2 Closeloopclass-Darchitectures . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Pulsewidthmodulation . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.2 Sigma-deltamodulation . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.3 Self-oscillatingmodulation . . . . . . . . . . . . . . . . . . . . . 61 3.2.4 Modulationarchitecturecomparison . . . . . . . . . . . . . . . . 72 3.3 Class-Ddesignimplementationtradeoffs . . . . . . . . . . . . . . . . . . 73 3.3.1 Compensatoramplifier . . . . . . . . . . . . . . . . . . . . . . . 74 3.3.2 Pulse-widthmodulator . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.3 Class-Doutputstage . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.4 Outputfilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.3.5 Currentandvoltagesensortechniques . . . . . . . . . . . . . . . 99 4. AFEEDFORWARDPOWERSUPPLYNOISECANCELLATION TECHNIQUEFORCLASS-DAMPLIFIERS . . . . . . . . . . . . . . . . . . 106 4.1 Power-supplynoiseprobleminclass-Daudioamplifiers . . . . . . . . . . 106 4.2 Power-supplynoisemodelinginclass-Daudioamplifiers . . . . . . . . . 109 4.2.1 Single-endedload . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.2 Bridge-tiedload . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3 Proposedfeed-forwardpower-supplynoisecancellationtechnique . . . . 113 4.3.1 ProposedFFPSNCtechniquedescription . . . . . . . . . . . . . 115 4.3.2 Class-DwithFFPSNCtechniquecircuitimplementation . . . . . 119 4.4 Proposedtechniquetradeoffsandmethodology . . . . . . . . . . . . . . 127 4.4.1 FFPSNCtechniqueimplementationtradeoffs . . . . . . . . . . . 129 4.4.2 FFPSNCtechniquedesignprocedure . . . . . . . . . . . . . . . . 131 4.5 SimulationresultsofproposedFFPSNCtechnique . . . . . . . . . . . . . 133 4.6 ExperimentalresultsofCDAwithFFPSNCtechnique . . . . . . . . . . . 137 4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5. AHIGH-EFFICIENCYSELF-OSCILLATINGCLASS-D AMPLIFIERFORPIEZOELECTRICSPEAKERS . . . . . . . . . . . . . . . 147 5.1 BackgroundinaudioamplifiersforPZspeakers . . . . . . . . . . . . . . 147 5.2 Class-Damplifierdesignconsiderationsforpiezoelectricspeakers . . . . 149 5.3 Proposedclass-Darchitectureforpiezoelectricspeakers . . . . . . . . . . 151 viii Page 5.3.1 Architecturedescription . . . . . . . . . . . . . . . . . . . . . . 152 5.3.2 Compensatordesign . . . . . . . . . . . . . . . . . . . . . . . . 153 5.3.3 Self-oscillatingmodulatordesign . . . . . . . . . . . . . . . . . . 154 5.3.4 OutputfilterdesignforPZspeakers . . . . . . . . . . . . . . . . 157 5.4 Proposedstacked-cascodeH-bridgeoutputstage . . . . . . . . . . . . . . 160 5.4.1 Stacked-cascodeoutputstagedescription . . . . . . . . . . . . . 161 5.4.2 Stacked-cascodeoutputstageoperation . . . . . . . . . . . . . . 163 5.4.3 Gatedriverdesign . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.5 ExperimentalresultsofCDAforPZspeakers . . . . . . . . . . . . . . . 170 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6. OPENPROBLEMSINCLASS-DAMPLIFIERS . . . . . . . . . . . . . . . . 179 6.1 Class-Damplifiercurrenttrends . . . . . . . . . . . . . . . . . . . . . . 179 6.2 AudioCODECintegration . . . . . . . . . . . . . . . . . . . . . . . . . 181 7. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 APPENDIXA. CLASS-GAMPLIFIERCASESTUDY . . . . . . . . . . . . . . 202 A.1 Class-Gamplificationbackground . . . . . . . . . . . . . . . . . . . . . 202 A.2 Proposedclass-Gimplementation . . . . . . . . . . . . . . . . . . . . . . 204 A.3 Class-Gdesigntradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . 208 A.4 Experimentalresultsofproposedclass-Gamplifier . . . . . . . . . . . . 215 A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 APPENDIXB. CLASS-DAMPLIFIERWITHSLIDINGMODE . . . . . . . . . 220 B.1 Designoftheproposedclass-DarchitecturewithISMC . . . . . . . . . . 220 B.2 Integralslidingmodecontroller . . . . . . . . . . . . . . . . . . . . . . . 222 B.3 ExperimentalresultsofCDAwithISMC . . . . . . . . . . . . . . . . . . 227 B.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 APPENDIXC. PAPERCONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . 234 ix LISTOFFIGURES FIGURE Page 1.1 Proposedsolutiontocancelsupplynoise(Section4). . . . . . . . . . . 3 1.2 Proposedsolutiontodrivepiezoelectricspeakers(Section5). . . . . . . 4 2.1 Audioamplifieroperation. . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Audiowaveformacrossdistance. . . . . . . . . . . . . . . . . . . . . . 7 2.3 EMspeakerphysicalstructuresideview. . . . . . . . . . . . . . . . . . 10 2.4 EMelectricalimpedanceversusfrequency. . . . . . . . . . . . . . . . . 11 2.5 PZspeakerphysicalstructuresideview. . . . . . . . . . . . . . . . . . 12 2.6 PZandEMspeakersimpedanceversusfrequencycomparison. . . . . . 13 2.7 THD+Ntypicalplotagainstoutputpowerforaudioamplifiers. . . . . . 16 2.8 Typicaloutputfrequencyspectrumforaudioamplifiers. . . . . . . . . . 18 2.9 PSRR measurement example for a noise signal at 217 Hz with -20 dB amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.10 PS-IMD measurement example for a noise signal at 217 Hz and audio signalat1kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11 InstantaneousandaveragepowerforaEMspeakerwithϕ <15°. . . . . 22 ∼ 2.12 InstantaneousandaveragepowerforaPZspeakerwithϕ =90°. . . . . 23 2.13 Complexpowerdefinition. . . . . . . . . . . . . . . . . . . . . . . . . 24 2.14 Mainlinearamplificationclasses. . . . . . . . . . . . . . . . . . . . . . 25 2.15 Class-Gamplifieroperation. . . . . . . . . . . . . . . . . . . . . . . . 26 2.16 Class-Hamplifieroperation. . . . . . . . . . . . . . . . . . . . . . . . 27 2.17 Class-Damplifieroperation,timedomain. . . . . . . . . . . . . . . . . 28 x

Description:
fore, low-power high-efficiency circuits, such as the class-D audio amplifier, are needed to reduce heat . 4.1 Power-supply noise problem in class-D audio amplifiers .. medium such as air or water magnetic coupling factor is very small between the amount of electric current consumed.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.