JournalofLowTemperaturePhysicsmanuscriptNo. (willbeinsertedbytheeditor) M.Pyle1 · D.A.Bauer2 · B.Cabrera1 · J. Hall2 · R.W.Schnee4 · R.BasuThakur2,3 · S.Yellin1 Low-Mass WIMP Sensitivity and Statistical Discrimination of Electron and Nuclear Recoils by Varying Luke-Neganov Phonon Gain in Semiconductor Detectors 2 1 0 January19,2012 2 n a Keywords DarkMatter,LowMassWIMP J Abstract Amplifyingthephononsignalinasemiconductordarkmatterdetector 8 can be accomplished by operating at high voltage bias and converting the elec- 1 trostaticpotentialenergyintoLuke-Neganovphonons.Thisamplificationmethod ] has been validated at up to |E|=40V/cm without producing leakage in CDM- M SII Ge detectors, allowing sensitivity to a benchmark WIMP with mass M = χ I 8GeV/c2andσ=1.8×10−42cm2(withsignificantsensitivityforMχ>2GeV/c2) . assuming flat electronic recoil backgrounds near threshold. Furthermore, for the h p first time we show that differences in Luke-Neganov gain for nuclear and elec- - tronic recoils can be used to discriminate statistically between low-energy back- o ground and a hypothetical WIMP signal by operating at two distinct voltage bi- r t ases. Specifically, 99% of events have p-value < 10−8 for a simulated 20kg- s a day experiment with a benchmark WIMP signal with Mχ =8GeV/c2 and σ = [ 3.3×10−41cm2. PACSnumbers:95.35.+d,07.57.Kp,95.55.Rg,07.85.Fv,29.40.-n 1 v 5 8 1 Motivation 6 3 . Forlow-massWIMPs(Mχ <10GeV/c2),theenergytransferinanelasticWIMP- 1 nucleon interaction is barely above detection threshold for dark matter experi- 0 ments. In particular, at these recoil energies experiments may lose the ability to 2 distinguish between electron recoils and nuclear recoils, have trouble defining a 1 : v 1:DepartmentofPhysics,StanfordUniversity,Stanford,Ca94110,USA i 2:FermiNationalAcceleratorLaboratory,Batavia,IL60510,USA X 3:DepartmentofPhysics,UniversityofIllinoisatUrbana-Champaign,Urbana,IL61801,USA r 4:DepartmentofPhysics,SyracuseUniversity,Syracuse,NY13244,USA a E-mail:[email protected] 2 fiducial volume, and have poor trigger efficiencies. For these reasons, the limits at low masses are many orders of magnitude larger than the limits for a heavier WIMP(M ∼100GeV/c2). χ The CoGeNT1 and DAMA2 experiments have unexplained low-energy sig- nals/modulationthatarecloseenoughtotheCDMS3 andXENON104 limitsthat some members of the dark matter physics community believe a misestimation ofsystematicscouldexplaintheexperimentalinconsistencies.Thenewinterdig- itated CDMS detectors5 should improve our sensitivity to low-mass WIMPs by an orderof magnitudedue toimproved definitionof thephonon fiducialvolume atlowenergies,butevenfurtherimprovementshouldbepossiblebymagnifying theirphononsignalforverylow-energyevents,anideafirstdiscussedandstudied byPaulLuke6. 2 Luke-NeganovPhononGain InaCDMSdetector,thee−/h+pairsproducedinaninteractionaredriftedacross thecrystaltocharge-amplifier-instrumentedelectrodes.Whiledrifting,thecarriers shed Luke-Neganov phonons equal in energy to the external electronic potential energyacrossthedetector.Thus,thetotalphononenergy,P,createdinaninter- t actionandmeasuredwithTESarraysisasumofthephononsproduceddirectly intherecoilitself(P)andtheLukephonons r P =P +n eV (1) t r e/h b wheren isthenumberofe−/h+pairsproducedandV istheexternalbias.n e/h b e/h isafunctionofbothP andinteractiontype(nuclear/electronic)andtraditionally r iswrittenintermsoftheaverageenergyneededtoproduceane−/h+ pairforan electronic recoil , ε , and a normalized yield factor, Y, which by definition is e/h 1 for electronic recoils and for nuclear recoils has been found to roughly follow Lindhard8 theoryinGe: n =Y(P,type)P/ε (2) e/h r r eh or P =(1+Y(P,type)V /ε )P. (3) t r b eh r In standard operating mode CDMS measures both P and n , and can thus t e/h estimateY for each particle interaction individually, allowing discrimination be- tween electron and nuclear recoils. To maximize this discrimination, we usually operate at smallV to minimize correlation between P and n . Paul Luke pro- b t e/h posed that if instead we operate at large V , then the Luke phonon signal will b completelydominatetheintrinsicrecoilsignalandP willsimplybeacalorimet- t ricmeasureofn withgainproportionaltoV . eh b Unfortunately, there are two experimental constraints which limit the useful- nessofLuke-Neganovgain.First,fieldandsensorgeometriesmustbechosento limitinteractionbetweenfreecarriersandcrystalsurfaces7.Second,atveryhigh voltages(forCDMSII|E|>∼40V/cm)ambientcurrentleakagedominatessen- sorjohnson/TFNnoiseandthusforour1”Gedevices,V =75Vseemstobenear b optimum. At thisV , the Luke-Neganov gain, P/P, for electron recoils is ∼26 b t r 3 asshowninFig.1.Consequently,thethresholdatwhichweexpectgoodfiducial- volumedefinitionintheinterdigitatedCDMSdetectors,P >750eV,corresponds t to electron recoil energy E >30eV . Of course, when operating in this mode R ee event-by-eventelectron/neutronrecoildiscriminationisimpossible. Simulated Wimp Search Spectrum (Pt) Luke Gain as a function of Bias and Particle Type 30 kgd]101 V/t e k Pt/Pr20 077V55VV N NERRR & ER rch Rate [/100 a 10 P Se10−1 M WI 00 2 4 6 8 10 100 101 P (keV) Total Phonon Energy, Pt [keV] r r t Fig.1 (Coloronline)left:Luke-NeganovGainforvariousV andrecoiltype.right:totalphonon b rateestimatesfor2hypotheticalsignals.At0Vbias(solidcurves),anexponentiallyincreasing lowenergyplusconstantelectronicbackground(red)behavesidenticallytothesum(black)of aWIMPsignal(green)andaflatelectronicbackground(blue).At75V,thesesametwocases (samecolorsbutdashed)areeasilydistinguishable.Allcasesincludecontributionsfromnoise- inducedtriggers(cyan). DuetothedependenceonyieldoftheLuke-Neganovgain,fornuclearrecoils thisgainfactorissuppressedby∼×5inthelimitoflargeV .Unfortunately,this b means that the fiducial volume threshold recoil energy corresponds to a nuclear- recoilenergyE >150eV ,resultinginsignificantdegradationofsensitivityfor R ne WIMPmassM <2GeV/c2. χ On the bright side, this variation in Luke gain with particle type means that an electron recoil background is preferentially pushed to higher energies, ener- gies which are not sensitive to a low mass WIMP signal. This effect is clearly seen in Fig. 1 where the black lines correspond to a benchmark total recoil rate spectrum on a detector for a M =8GeV/c2 and σ =5.0×10−42cm2 WIMP χ SI (green)plusflatelectron-recoilbackgroundof2keV−1kg−1day−1(blue)whichis r approximatelytheexperimentallymeasuredlow-energyelectronicbackgroundof theCDMSIIexperiment9.AtV =0V(solidlines),thebenchmarkWIMPinter- b actionrateisdominatedatallenergiesbybackground.Bycontrast,atV =75V, b the flat electron recoil background is relatively suppressed to the point that for P <4keV theWIMPsignaldominates. t t Thisnaturalelectronicbackgroundsuppressionmeansthatthesensitivityofa V =75V Ge WIMP search experiment without background subtraction will be b σ ∼1.8×10−42cm2 forM =8GeV/c2,∼50×lowerthantheCoGeNTsignal SI χ region,assumingnoexponentialincreaseintheelectronrecoilbackgroundat lowenergy. 4 Best Fit to Low Voltage WIMP Rate d) 102 g k V/pt e k vt/ e e ( at 101 R h c r a e S P M I W 100 0 2 4 6 8 10 Pt (keV) Fig.2 (Coloronline)FitofsimulatedWIMP+backgroundspectrum(black)tothesum(red)of anexponentialNRspectrum(green),avariabletriggerthreshold(cyan),andanexponentially decaying+constantelectronicbackground(blue). 3 NuclearRecoil/ElectronRecoilStatisticalSubtraction Therecoil-dependentvariationingainresponsealsoleadsinFig.1tovisibleshifts inspectrumshape.At75V,thebenchmarkWIMP+backgroundmodel(black)has asignificantexcessofeventsatlowenergiesandasuppressionofeventsathigh energies relative to the exponential electronic background spectrum (red) which was chosen to precisely mimic 0V response. This behavior is general; one can discriminatebetweenelectronicandnuclearrecoilspectrabymeasuringto- tal phonon distributions at multiple voltages. This possibility to differentiate betweenelectronicbackgroundandlow-massWIMPsignalsisapowerfulfeature not shared by CoGeNT, DAMA, or S2-only XENON10 results and adds signifi- cantdiscoverypotentialtoaCDMSexperimentinthisWIMPmassrange. To quantify our discrimination capability, we simulate 1000 experiments de- tectingthepreviouslymentionedbenchmarkratefor400kg-days,andalsosimu- lateforamuchlargerWIMPrate,σ =3.3×10−41cm2 for20kg-days(bench- SI mark2).Tocontrastwiththesesignalsimulations,wealsosimulate1000experi- mentswithanelectronicexponentialbackgroundthatisidenticallydistributedfor V =0Vtomaximallyprobeelectronic/nuclearstatisticaldiscrimination.Wethen b fiteachofthesesimulatedratemeasurementstoasumincludingarandomnoise contributionoftheformNe−Pt/εe,acontributionfromelectronrecoilswhosere- coil energy is distributed according to form Ce+Ree−ER/εr, and, if WIMPs are included in the fit, a contribution from nuclear recoils with E distributed ac- R cordingtoRne−ER/εn.TherandomnoiseisindependentofVb,theelectron-recoil backgroundspectrumisespeciallysensitivetoV ,andthenuclear-recoilspectrum b isintermediateinsensitivitytoV .Allcontributionsareconstrainedtobepositive. b Fits without a nuclear-recoil contribution have 5 degrees of freedom (DOF); fits with a nuclear-recoil contribution have 7 DOF. A fit of simulated data under the signalhypothesisisshowninFig.2. Forthebackground-onlysimulatedexperiments(cyanandmagentainFig.3), the fit quality for the 2 fits are statistically identical since the log of the likeli- 5 hoodratiodistributionaresmallerthanaχ2distributionwith2DOF(thephysical constraintsofpositiveratesmeansthattheadditionalsignalDOFarenotalways optimallyused). Likelihood Ratio for Fits 100 Simulation P Distributions Null 20kgd Null 20kgd WIMP σ=3.3x10−41cm2 20kgd WIMP σ=3.3x10−41cm2 20kgd F10−1 NWχ2u(I2lMl D4P0O 0σFk=)g5d.0x10−42cm2 400kgd g(P)10−1 NWuIlMl 4P0 0σk=g5d.0x10−42cm2 400kgd PD Flo 10−2 PD10−2 10−30 20 40 60 80 100 120 10−3 10−15 10−10 10−5 100 2log(L /L ) WIMP+BKGND Bkgnd P value Fig.3 (Coloronline)left:Loglikelihoodratioforthesignal+backgroundfitversusbackground onlyfit forthe2 WIMP modelbenchmarks(blue/cyan) andforthebackground onlymodels (cyan/magenta).right:Statisticalseparabilityassumingaχ2 distributionwith2DOFbetween nullsimulations(cyan/magenta)andsimulationswithWIMPsignals(green/blue). Bycontrast,bothsignalsimulations(blue/green)showsizeablefitqualitydif- ferences,somuchsothattothelevelofstatisticssimulated(>99.8%),thereisno overlapwiththenullsimulations.Wecanfurtherquantifytheelectronrecoil/nu- clearrecoildiscriminationpotentialbylookingatconservativep-valuesassuming a χ2 with 2 DOF null distribution (fig. 3). For the benchmarks, 99% of simu- latedexperimentshavep-values<10−8 and<2.4x10−6 respectively,indicating very strong discrimination capability. Best fit WIMP cross sections were found to be slightly systematically suppressed at 5x10−42±8x10−43cm2(90%CL) and 3.3x10−41±3x10−42cm2(90%CL)forthetwobenchmarks. 4 PotentialSystematics With such large statistical discrimination capability, systematics will almost cer- tainlydominateourfinalWIMPsensitivity.Inorderofimportance,thedominant expectedsystematicsinclude – Fiducialvolumeleakage:high-radiuselectronicrecoilscanhavecarriertrap- pingontheoutercylindricalsurfacethatsuppressestheLukephonongainand thus mimics a WIMP signal. Our standard collection and analysis of ∼106 133Bacalibrationeventsshouldbesufficienttoallowestimationofthiseffect andcorrectionforit. – Fiducial volume variation with energy and voltage: misestimates of fiducial volumethatartificiallymimicratedistributionchangesseeninfig.1canpro- duceafalseWIMPsignalbutshouldbepreventablewith252Cfcalibration. – Sensitivity to experimentally unverified Yield at ultra-low energies: through useofboth133Baand252Cf(whichintheCDMSIIdetectorproducesanevent 6 ratewhichis90%nuclearrecoils)calibrationsourcesatlowandhighvoltages, inferenceofultra-low-energynuclear-recoilyieldispossible. – Fit systematics: thefunctional formfor the parameterized fit also created the simulated Monte Carlo spectra. If actual backgrounds have different shapes, they may result in poor fits for both the low- and high-voltage rate distribu- tions,leadingtosuppressednuclear-recoilsensitivity. 5 Conclusion WithcurrentCDMStechnologyandcryogenicbackgrounds,phononinstrumented GedetectorsoperatedathighvoltagehavesensitivitytolowmassWIMPs∼2or- ders of magnitude below the CoGeNT and DAMA signal regions. Furthermore, even exponentially increasing low-energy electronic backgrounds can be distin- guished from a low-mass WIMP signal for cross sections an order of magnitude smallerthantheCoGeNTandDAMAsignalregionsbyalternatingbetweenhigh- andlow-voltagebias. Acknowledgements WewouldliketothankD.MooreandJ.Filippiniforvaluablediscussions. ThisworkissupportedbytheDepartmentofEnergycontractDE-FG02-04ER41295,andinpart bytheNationalScienceFoundationGrantNo.PHY-0855525. References 1. C.E..Aalsethetal.(CoGeNT),PRL,106,131301(2011). 2. R.Bernabeietal.(DAMA),Eur.Phys.J.C56,333(2008). 3. Z.Ahmedetal.(CDMS),PRL,106,131302(2011). 4. J.Angleetal.(XENON10),Arxiv:1104.3088. 5. S.Herteletal.(SuperCDMS),theseproceedings. 6. P.N.Luke,J.Appl.Phys64,6858(1998);P.N.Lukeetal.,NIMA,289,406 (1990). 7. IsailaCetal.(CRESST),J.LowTemp.Phys,151,1-2(2008) 8. J. Lindhard, M. S. V. Nielsen, and P. Thomsen. Mat. Fys. Medd. Dan. Vid. Selsk.,33,10(1963). 9. Z.Ahmedetal.(CDMS),PRD,81,042002(2010)