ebook img

Low-Mass WIMP Sensitivity and Statistical Discrimination of Electron and Nuclear Recoils by Varying Luke-Neganov Phonon Gain in Semiconductor Detectors PDF

0.23 MB·English
by  M. Pyle
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Low-Mass WIMP Sensitivity and Statistical Discrimination of Electron and Nuclear Recoils by Varying Luke-Neganov Phonon Gain in Semiconductor Detectors

JournalofLowTemperaturePhysicsmanuscriptNo. (willbeinsertedbytheeditor) M.Pyle1 · D.A.Bauer2 · B.Cabrera1 · J. Hall2 · R.W.Schnee4 · R.BasuThakur2,3 · S.Yellin1 Low-Mass WIMP Sensitivity and Statistical Discrimination of Electron and Nuclear Recoils by Varying Luke-Neganov Phonon Gain in Semiconductor Detectors 2 1 0 January19,2012 2 n a Keywords DarkMatter,LowMassWIMP J Abstract Amplifyingthephononsignalinasemiconductordarkmatterdetector 8 can be accomplished by operating at high voltage bias and converting the elec- 1 trostaticpotentialenergyintoLuke-Neganovphonons.Thisamplificationmethod ] has been validated at up to |E|=40V/cm without producing leakage in CDM- M SII Ge detectors, allowing sensitivity to a benchmark WIMP with mass M = χ I 8GeV/c2andσ=1.8×10−42cm2(withsignificantsensitivityforMχ>2GeV/c2) . assuming flat electronic recoil backgrounds near threshold. Furthermore, for the h p first time we show that differences in Luke-Neganov gain for nuclear and elec- - tronic recoils can be used to discriminate statistically between low-energy back- o ground and a hypothetical WIMP signal by operating at two distinct voltage bi- r t ases. Specifically, 99% of events have p-value < 10−8 for a simulated 20kg- s a day experiment with a benchmark WIMP signal with Mχ =8GeV/c2 and σ = [ 3.3×10−41cm2. PACSnumbers:95.35.+d,07.57.Kp,95.55.Rg,07.85.Fv,29.40.-n 1 v 5 8 1 Motivation 6 3 . Forlow-massWIMPs(Mχ <10GeV/c2),theenergytransferinanelasticWIMP- 1 nucleon interaction is barely above detection threshold for dark matter experi- 0 ments. In particular, at these recoil energies experiments may lose the ability to 2 distinguish between electron recoils and nuclear recoils, have trouble defining a 1 : v 1:DepartmentofPhysics,StanfordUniversity,Stanford,Ca94110,USA i 2:FermiNationalAcceleratorLaboratory,Batavia,IL60510,USA X 3:DepartmentofPhysics,UniversityofIllinoisatUrbana-Champaign,Urbana,IL61801,USA r 4:DepartmentofPhysics,SyracuseUniversity,Syracuse,NY13244,USA a E-mail:[email protected] 2 fiducial volume, and have poor trigger efficiencies. For these reasons, the limits at low masses are many orders of magnitude larger than the limits for a heavier WIMP(M ∼100GeV/c2). χ The CoGeNT1 and DAMA2 experiments have unexplained low-energy sig- nals/modulationthatarecloseenoughtotheCDMS3 andXENON104 limitsthat some members of the dark matter physics community believe a misestimation ofsystematicscouldexplaintheexperimentalinconsistencies.Thenewinterdig- itated CDMS detectors5 should improve our sensitivity to low-mass WIMPs by an orderof magnitudedue toimproved definitionof thephonon fiducialvolume atlowenergies,butevenfurtherimprovementshouldbepossiblebymagnifying theirphononsignalforverylow-energyevents,anideafirstdiscussedandstudied byPaulLuke6. 2 Luke-NeganovPhononGain InaCDMSdetector,thee−/h+pairsproducedinaninteractionaredriftedacross thecrystaltocharge-amplifier-instrumentedelectrodes.Whiledrifting,thecarriers shed Luke-Neganov phonons equal in energy to the external electronic potential energyacrossthedetector.Thus,thetotalphononenergy,P,createdinaninter- t actionandmeasuredwithTESarraysisasumofthephononsproduceddirectly intherecoilitself(P)andtheLukephonons r P =P +n eV (1) t r e/h b wheren isthenumberofe−/h+pairsproducedandV istheexternalbias.n e/h b e/h isafunctionofbothP andinteractiontype(nuclear/electronic)andtraditionally r iswrittenintermsoftheaverageenergyneededtoproduceane−/h+ pairforan electronic recoil , ε , and a normalized yield factor, Y, which by definition is e/h 1 for electronic recoils and for nuclear recoils has been found to roughly follow Lindhard8 theoryinGe: n =Y(P,type)P/ε (2) e/h r r eh or P =(1+Y(P,type)V /ε )P. (3) t r b eh r In standard operating mode CDMS measures both P and n , and can thus t e/h estimateY for each particle interaction individually, allowing discrimination be- tween electron and nuclear recoils. To maximize this discrimination, we usually operate at smallV to minimize correlation between P and n . Paul Luke pro- b t e/h posed that if instead we operate at large V , then the Luke phonon signal will b completelydominatetheintrinsicrecoilsignalandP willsimplybeacalorimet- t ricmeasureofn withgainproportionaltoV . eh b Unfortunately, there are two experimental constraints which limit the useful- nessofLuke-Neganovgain.First,fieldandsensorgeometriesmustbechosento limitinteractionbetweenfreecarriersandcrystalsurfaces7.Second,atveryhigh voltages(forCDMSII|E|>∼40V/cm)ambientcurrentleakagedominatessen- sorjohnson/TFNnoiseandthusforour1”Gedevices,V =75Vseemstobenear b optimum. At thisV , the Luke-Neganov gain, P/P, for electron recoils is ∼26 b t r 3 asshowninFig.1.Consequently,thethresholdatwhichweexpectgoodfiducial- volumedefinitionintheinterdigitatedCDMSdetectors,P >750eV,corresponds t to electron recoil energy E >30eV . Of course, when operating in this mode R ee event-by-eventelectron/neutronrecoildiscriminationisimpossible. Simulated Wimp Search Spectrum (Pt) Luke Gain as a function of Bias and Particle Type 30 kgd]101 V/t e k Pt/Pr20 077V55VV N NERRR & ER rch Rate [/100 a 10 P Se10−1 M WI 00 2 4 6 8 10 100 101 P (keV) Total Phonon Energy, Pt [keV] r r t Fig.1 (Coloronline)left:Luke-NeganovGainforvariousV andrecoiltype.right:totalphonon b rateestimatesfor2hypotheticalsignals.At0Vbias(solidcurves),anexponentiallyincreasing lowenergyplusconstantelectronicbackground(red)behavesidenticallytothesum(black)of aWIMPsignal(green)andaflatelectronicbackground(blue).At75V,thesesametwocases (samecolorsbutdashed)areeasilydistinguishable.Allcasesincludecontributionsfromnoise- inducedtriggers(cyan). DuetothedependenceonyieldoftheLuke-Neganovgain,fornuclearrecoils thisgainfactorissuppressedby∼×5inthelimitoflargeV .Unfortunately,this b means that the fiducial volume threshold recoil energy corresponds to a nuclear- recoilenergyE >150eV ,resultinginsignificantdegradationofsensitivityfor R ne WIMPmassM <2GeV/c2. χ On the bright side, this variation in Luke gain with particle type means that an electron recoil background is preferentially pushed to higher energies, ener- gies which are not sensitive to a low mass WIMP signal. This effect is clearly seen in Fig. 1 where the black lines correspond to a benchmark total recoil rate spectrum on a detector for a M =8GeV/c2 and σ =5.0×10−42cm2 WIMP χ SI (green)plusflatelectron-recoilbackgroundof2keV−1kg−1day−1(blue)whichis r approximatelytheexperimentallymeasuredlow-energyelectronicbackgroundof theCDMSIIexperiment9.AtV =0V(solidlines),thebenchmarkWIMPinter- b actionrateisdominatedatallenergiesbybackground.Bycontrast,atV =75V, b the flat electron recoil background is relatively suppressed to the point that for P <4keV theWIMPsignaldominates. t t Thisnaturalelectronicbackgroundsuppressionmeansthatthesensitivityofa V =75V Ge WIMP search experiment without background subtraction will be b σ ∼1.8×10−42cm2 forM =8GeV/c2,∼50×lowerthantheCoGeNTsignal SI χ region,assumingnoexponentialincreaseintheelectronrecoilbackgroundat lowenergy. 4 Best Fit to Low Voltage WIMP Rate d) 102 g k V/pt e k vt/ e e ( at 101 R h c r a e S P M I W 100 0 2 4 6 8 10 Pt (keV) Fig.2 (Coloronline)FitofsimulatedWIMP+backgroundspectrum(black)tothesum(red)of anexponentialNRspectrum(green),avariabletriggerthreshold(cyan),andanexponentially decaying+constantelectronicbackground(blue). 3 NuclearRecoil/ElectronRecoilStatisticalSubtraction Therecoil-dependentvariationingainresponsealsoleadsinFig.1tovisibleshifts inspectrumshape.At75V,thebenchmarkWIMP+backgroundmodel(black)has asignificantexcessofeventsatlowenergiesandasuppressionofeventsathigh energies relative to the exponential electronic background spectrum (red) which was chosen to precisely mimic 0V response. This behavior is general; one can discriminatebetweenelectronicandnuclearrecoilspectrabymeasuringto- tal phonon distributions at multiple voltages. This possibility to differentiate betweenelectronicbackgroundandlow-massWIMPsignalsisapowerfulfeature not shared by CoGeNT, DAMA, or S2-only XENON10 results and adds signifi- cantdiscoverypotentialtoaCDMSexperimentinthisWIMPmassrange. To quantify our discrimination capability, we simulate 1000 experiments de- tectingthepreviouslymentionedbenchmarkratefor400kg-days,andalsosimu- lateforamuchlargerWIMPrate,σ =3.3×10−41cm2 for20kg-days(bench- SI mark2).Tocontrastwiththesesignalsimulations,wealsosimulate1000experi- mentswithanelectronicexponentialbackgroundthatisidenticallydistributedfor V =0Vtomaximallyprobeelectronic/nuclearstatisticaldiscrimination.Wethen b fiteachofthesesimulatedratemeasurementstoasumincludingarandomnoise contributionoftheformNe−Pt/εe,acontributionfromelectronrecoilswhosere- coil energy is distributed according to form Ce+Ree−ER/εr, and, if WIMPs are included in the fit, a contribution from nuclear recoils with E distributed ac- R cordingtoRne−ER/εn.TherandomnoiseisindependentofVb,theelectron-recoil backgroundspectrumisespeciallysensitivetoV ,andthenuclear-recoilspectrum b isintermediateinsensitivitytoV .Allcontributionsareconstrainedtobepositive. b Fits without a nuclear-recoil contribution have 5 degrees of freedom (DOF); fits with a nuclear-recoil contribution have 7 DOF. A fit of simulated data under the signalhypothesisisshowninFig.2. Forthebackground-onlysimulatedexperiments(cyanandmagentainFig.3), the fit quality for the 2 fits are statistically identical since the log of the likeli- 5 hoodratiodistributionaresmallerthanaχ2distributionwith2DOF(thephysical constraintsofpositiveratesmeansthattheadditionalsignalDOFarenotalways optimallyused). Likelihood Ratio for Fits 100 Simulation P Distributions Null 20kgd Null 20kgd WIMP σ=3.3x10−41cm2 20kgd WIMP σ=3.3x10−41cm2 20kgd F10−1 NWχ2u(I2lMl D4P0O 0σFk=)g5d.0x10−42cm2 400kgd g(P)10−1 NWuIlMl 4P0 0σk=g5d.0x10−42cm2 400kgd PD Flo 10−2 PD10−2 10−30 20 40 60 80 100 120 10−3 10−15 10−10 10−5 100 2log(L /L ) WIMP+BKGND Bkgnd P value Fig.3 (Coloronline)left:Loglikelihoodratioforthesignal+backgroundfitversusbackground onlyfit forthe2 WIMP modelbenchmarks(blue/cyan) andforthebackground onlymodels (cyan/magenta).right:Statisticalseparabilityassumingaχ2 distributionwith2DOFbetween nullsimulations(cyan/magenta)andsimulationswithWIMPsignals(green/blue). Bycontrast,bothsignalsimulations(blue/green)showsizeablefitqualitydif- ferences,somuchsothattothelevelofstatisticssimulated(>99.8%),thereisno overlapwiththenullsimulations.Wecanfurtherquantifytheelectronrecoil/nu- clearrecoildiscriminationpotentialbylookingatconservativep-valuesassuming a χ2 with 2 DOF null distribution (fig. 3). For the benchmarks, 99% of simu- latedexperimentshavep-values<10−8 and<2.4x10−6 respectively,indicating very strong discrimination capability. Best fit WIMP cross sections were found to be slightly systematically suppressed at 5x10−42±8x10−43cm2(90%CL) and 3.3x10−41±3x10−42cm2(90%CL)forthetwobenchmarks. 4 PotentialSystematics With such large statistical discrimination capability, systematics will almost cer- tainlydominateourfinalWIMPsensitivity.Inorderofimportance,thedominant expectedsystematicsinclude – Fiducialvolumeleakage:high-radiuselectronicrecoilscanhavecarriertrap- pingontheoutercylindricalsurfacethatsuppressestheLukephonongainand thus mimics a WIMP signal. Our standard collection and analysis of ∼106 133Bacalibrationeventsshouldbesufficienttoallowestimationofthiseffect andcorrectionforit. – Fiducial volume variation with energy and voltage: misestimates of fiducial volumethatartificiallymimicratedistributionchangesseeninfig.1canpro- duceafalseWIMPsignalbutshouldbepreventablewith252Cfcalibration. – Sensitivity to experimentally unverified Yield at ultra-low energies: through useofboth133Baand252Cf(whichintheCDMSIIdetectorproducesanevent 6 ratewhichis90%nuclearrecoils)calibrationsourcesatlowandhighvoltages, inferenceofultra-low-energynuclear-recoilyieldispossible. – Fit systematics: thefunctional formfor the parameterized fit also created the simulated Monte Carlo spectra. If actual backgrounds have different shapes, they may result in poor fits for both the low- and high-voltage rate distribu- tions,leadingtosuppressednuclear-recoilsensitivity. 5 Conclusion WithcurrentCDMStechnologyandcryogenicbackgrounds,phononinstrumented GedetectorsoperatedathighvoltagehavesensitivitytolowmassWIMPs∼2or- ders of magnitude below the CoGeNT and DAMA signal regions. Furthermore, even exponentially increasing low-energy electronic backgrounds can be distin- guished from a low-mass WIMP signal for cross sections an order of magnitude smallerthantheCoGeNTandDAMAsignalregionsbyalternatingbetweenhigh- andlow-voltagebias. Acknowledgements WewouldliketothankD.MooreandJ.Filippiniforvaluablediscussions. ThisworkissupportedbytheDepartmentofEnergycontractDE-FG02-04ER41295,andinpart bytheNationalScienceFoundationGrantNo.PHY-0855525. References 1. C.E..Aalsethetal.(CoGeNT),PRL,106,131301(2011). 2. R.Bernabeietal.(DAMA),Eur.Phys.J.C56,333(2008). 3. Z.Ahmedetal.(CDMS),PRL,106,131302(2011). 4. J.Angleetal.(XENON10),Arxiv:1104.3088. 5. S.Herteletal.(SuperCDMS),theseproceedings. 6. P.N.Luke,J.Appl.Phys64,6858(1998);P.N.Lukeetal.,NIMA,289,406 (1990). 7. IsailaCetal.(CRESST),J.LowTemp.Phys,151,1-2(2008) 8. J. Lindhard, M. S. V. Nielsen, and P. Thomsen. Mat. Fys. Medd. Dan. Vid. Selsk.,33,10(1963). 9. Z.Ahmedetal.(CDMS),PRD,81,042002(2010)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.