ebook img

Low Frequency Low Voltage Vibration Energy Harvesting Converter PDF

114 Pages·2011·5.53 MB·Danish
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Low Frequency Low Voltage Vibration Energy Harvesting Converter

Johan Henning Pedersen, s052402 Low Frequency Low Voltage Vibration Energy Harvesting Converter Master’s Thesis, November 2011 Low Frequency Low Voltage Vibration Energy Harvesting Converter, Report written by: Johan Henning Pedersen, s052402 Advisors: Arnold Knott Ole Cornelius Thomsen Thomas Andersen Thomas Sørensen (DELTA) Peter Spies (Fraunhofer IIS) In cooperation with DELTA Venlighedsvej 4 DK-2970 Hørsholm Denmark Website: www.delta.dk Tel: (+45) 72 19 40 00 E-mail: [email protected] and Department of Electrical Engineering Electronics Group (ELE) Energiemanagement und Technical University of Denmark Mikroenergietechnik Ørsteds Plads, Building 349 Fraunhofer IIS DK-2800 Kgs. Lyngby Nordostpark 93 Denmark 90411 Nu¨rnberg Germany Website: www.elektro.dtu.dk Tel: (+45) 45 25 36 03 Website: www.iis.fraunhofer.de E-mail: [email protected] Tel: (+49) 911 58061-6363 Project period: April 26th, 2011 - November 1st, 2011 ECTS: 30 points Education: Master of Science Field: Electrical Engineering Class: Public Remarks: This report is submitted as partial fulfilment of the require- ments for graduation in the above education at the Technical University of Denmark. Copyrights: (cid:13)c , Johan Pedersen, 2011 Abstract This thesis explores the feasibility of a non-linear switching circuit for optimizing low frequency low voltage vibrational energy harvesting from a Macro Fiber Composite piezo- electric generator powering a sensor node. This analysis shows that, compared to other commonly used topologies, the Synchronized Switch Harvesting on Inductor topology is superior in output power at small vibrations at 2 Hz. The power levels explored in the project is in the microwatt range, which makes even a small component power loss impor- tant to take into account. The performance of the topology at a frequency of 2 Hz and output power levels around 10 µW was found to rise and fall with the peak detection control circuit performance. An active control circuit based on ultra low power ICs was proposed and a prototype of the Synchronized Switch Harvesting on Inductor was implemented and tested. The prototype showed to increase the output power by a factor of two, compared to the standard full bridge rectifier, but when accounting for the control circuit power consumption of 15.4 µW the gained output power was lost. The control circuit showed to be more of a limiting factor than expected and a set of requirements for a new control circuit was made. At higher energy levels the prototype is expected to increase the output energy by up to 8 times and to extend the range of feasible low frequency energy harvesting sources and applications. This project emphasizes the need for a passive control circuit at power levels in the microwatt range. vii Resum´e Idettespecialeudforskesanvendelighedenafetulineærtswitchingkredsløbtilatoptimere energihøst af lavfrekvent vibrationsenergi ved lav spænding fra en piezoelektrisk generator afmakrofiberkompositmateriale,derskaldriveensensornode. Isammenligningmedandre udbredte topologier viser SSHI (Synchronized Switch Harvesting on Inductor) topologien sig at have en overlegen udgangseffekt ved sm˚a vibrationer omkring 2 Hz. De undersøgte effektniveauer er i mikrowatt-omr˚adet, hvilket gør det nødvendigt at tage hensyn selv til sm˚a effekttab i komponenterne. Ved en frekvens p˚a 2 Hz og udgangseffekt omkring 10 µW vistetopologienspotentialesigatværestærktafhængigafkontrolkredsløbetsperformance. Derfor blev et aktivt kontrolkredsløb baseret p˚a ultra low power IC’er foresl˚aet og en pro- totype af SSHI topologien implementeret og testet. Prototypen viste sig at øge udgangsef- fekten med en faktor to i forhold til en almindelig diodebrokobling, men ved modregn- ing af kontrolkredsløbets strømforbrug p˚a 15,4 µW forsvandt den vundne udgangseffekt. Kontrolkredsløbet viste sig at være mere begrænsende end forventet s˚a et sæt krav til et nyt kontrolkredsløb blev opstillet. Ved højere energiniveauer forventes prototypen at øge udgangseffekten med op til en faktor 8 og derved at udvide det brugbare omr˚ade af lavfrekvente vibrationskilder til energihøst og dets anvendelser. Dette projekt fremhæver behovet for et passivt kontrolkredsløb n˚ar der arbejdes med effektniveauer i mikrowatt- omr˚adet. ix Preface This report is a Master’s Thesis in Electrical Engineering at the Department of Electrical Engineering at the Technical University of Denmark. The project has been carried out in cooperation with DELTA in Hørsholm, Denmark and Fraunhofer IIS in Nu¨rnberg, Germany. Many people have supported me during the writing of this thesis and I would hereby like to thank all of you. A special thanks to my supervisors Arnold Knott, Ole Cor- nelius Thomsen, Thomas Andersen, Thomas Sørensen, and Peter Spies for great support andtoLoretoMatheufromFraunhoferIISforsolidguidanceandinspirationaldiscussions. Additionally, IwouldliketothankmycolleaguesfromDELTA,Micka¨elLallartfromINSA in Lyon, France for his helpful correspondence, Rasmus Trock Kinnerup, Stig H¨ogberg, and Johan Musaeus Bruun, as well as my family for their consistent support. xi Contents 1 Introduction 1 1.1 Energy Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Standard Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Energy Generating Material . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Energy Harvesting Applications . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 WindSpear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Running Tights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Project Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Vibrational Energy Harvesting 7 2.1 Vibrational Energy Harvesters . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Electrostatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Electromagnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Piezoelectric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The Piezoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Equivalent Electrical Circuit of Piezo Generator . . . . . . . . . . . . . . . . 11 2.3.1 Macro Fiber Composite Impedance . . . . . . . . . . . . . . . . . . . 12 2.4 Spring Mass Damper Mechanical Model . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Force Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Power Delivered to Resistive Load . . . . . . . . . . . . . . . . . . . 15 2.5 Macro Fiber Composite Output Power . . . . . . . . . . . . . . . . . . . . . 16 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Circuit Topologies for Piezo Harvesting 19 3.1 Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Standard Full Bridge Rectifier . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Voltage Doubler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.3 Synchronized Switched Harvesting on Inductor . . . . . . . . . . . . 21 3.2.4 Synchronous Electric Charge Extraction . . . . . . . . . . . . . . . . 25 3.2.5 Output Power Comparison . . . . . . . . . . . . . . . . . . . . . . . 26 4 Synchronized Switch Harvesting on Inductor Analysis 31 4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 xii

Description:
frequency low voltage vibrational energy harvesting from a Macro Fiber effektniveauer er i mikrowatt-omr˚adet, hvilket gør det nødvendigt at tage
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.