Low-Energy Electrons Low-Energy Electrons Fundamentals and Applications edited by Oddur Ingólfsson Publishedby PanStanfordPublishingPte.Ltd. PenthouseLevel,SuntecTower3 8TemasekBoulevard Singapore038988 Email:[email protected] Web:www.panstanford.com BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Low-EnergyElectrons:FundamentalsandApplications Copyright(cid:2)c 2019PanStanfordPublishingPte.Ltd. Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinany form or by any means, electronic or mechanical, including photocopying, recordingoranyinformationstorageandretrievalsystemnowknownorto beinvented,withoutwrittenpermissionfromthepublisher. Coverimage:Takenfromthepublicdomain(https://pixnio.com/nature- landscapes/night/aurora-borealis-astronomy-atmosphere- phenomenon-planet-majestic-sky-night)andmodifiedbyRezaTafrishi For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not requiredfromthepublisher. ISBN978-981-4800-00-6(Hardcover) ISBN978-0-429-05882-0(eBook) Tomylatefather, Ingo´lfurG.Sigurðsson,inappreciationof hissupportandinspirationthroughout thepastfewdecades Contents Preface xiii 1 MolecularProcessesandTechniquesforMeasuringTheir ScatteringCrossSections 1 MichaelJ.Brunger 1.1 PrologueandDefinitions 1 1.2 Introduction 8 1.3 NormalizationTechniquesinDifferential Cross-SectionMeasurements 12 1.3.1 ElasticScattering:TheRelativeFlowTechnique withaContinuousMolecularBeamSource 12 1.3.2 ElasticScattering:TheRelativeFlowTechnique withaSkimmedSupersonicJetBeam 17 1.3.3 InelasticScatteringDifferentialCrossSections 25 1.4 IntegralCrossSections 31 1.5 TotalCrossSections 36 2 LowEnergyElectron–InducedDissociation 47 OddurIngo´lfsson 2.1 Introduction 47 2.2 DissociativeElectronAttachment 48 2.2.1 BondandSiteSelectivityinDEA 52 2.2.2 DEACrossSections 56 2.2.3 CategorizationofResonances 60 2.2.3.1 Shape(open-channel)resonances 62 2.2.3.2 Feshbach(closed-channel)resonances 64 2.2.4 AngularDependenceinDEA 67 2.2.5 ThermochemistyinDEA 74 viii Contents 2.2.6 ExperimentalApproachestoStudyElectron AttachmentProcesses 83 2.2.6.1 Swarmexperiments 83 2.2.6.2 Crossed-beamexperiments 90 2.2.6.3 Angular-dependentmeasurements andkineticenergyrelease 95 2.2.6.4 Photoelectronattachmentand high-Rydberg-stateelectrontransfer forhigh-resolutionstudies 98 2.2.7 DissociativeIonizationandNeutraland DipolarDissociationuponElectronExcitation 100 3 MethodsforLow-EnergyElectron–MoleculeScattering 121 JimenaD.Gorfinkiel,Ma´rcioT.doN.Varella,and RomanCˇur´ık 3.1 Introduction 121 3.1.1 Notation 125 3.2 SchwingerMultichannelMethod 126 3.2.1 SchwingerVariationalPrinciple 127 3.2.2 SchwingerMultichannelMethod 129 3.2.3 Implementation 131 3.2.4 Applications:Ethyleneand5-Halouracils 135 3.3 DiscreteMomentumRepresentationMethod 137 3.3.1 Electron–MoleculeInteraction 138 3.3.1.1 Static-exchangeapproximation 138 3.3.1.2 Polarizationpotential 140 3.3.2 TheScatteringEquations 142 3.3.3 ApplicationtoStudyShapeResonances 146 3.3.4 SymmetryofShapeResonances 147 3.4 R-MatrixMethod 152 3.4.1 One-ChannelPotentialScattering 152 3.4.2 R-MatrixMethodforElectron–Molecule Scattering 155 3.4.3 PracticalConsiderations 158 3.4.4 Application:ResonancesinPyrimidine 161 3.5 Summary 164 Contents ix 4 Plasmas:Low-EnergyElectronsinAction 171 NigelJ.Mason 4.1 Introduction 172 4.1.1 Plasma:AUbiquitousStateofMatter 172 4.1.2 PlasmaProperties 173 4.1.2.1 Plasmadensity 174 4.1.2.2 Plasmatemperature 174 4.1.2.3 Plasmafrequency 176 4.1.2.4 Debyelength 176 4.1.2.5 Degreeofionization 177 4.1.3 ElectronProcessesinPlasmaSystems 177 4.1.3.1 Elasticscattering 177 4.1.3.2 Inelasticscattering 179 4.1.3.3 Ionization 180 4.1.3.4 Dissociativeelectronattachment 181 4.1.3.5 Ionpairformation 182 4.1.3.6 Electron–ioncollisions 183 4.1.3.7 Summed/totalinelasticcrosssections 184 4.1.3.8 Rateconstantsforelectronscattering 185 4.2 ThePlasmaWorldandtheRoleofElectronsinIt 186 4.2.1 AtmosphericPlasmas 186 4.2.2 RareGasPlasmas 189 4.2.3 FluorocarbonPlasmas 191 4.2.4 FusionPlasmas 193 4.2.5 PlasmasforEnvironmentalRemediation 196 4.3 ControllingPlasmaswithElectrons 198 4.3.1 ImprovingOzoneGeneration 198 4.3.2 ControllingElectronTemperaturein FluorocarbonPlasmaforNanotechnology 202 4.4 TheFuture 203 4.4.1 ControllingPlasmaChemistry 203 4.4.2 UnderstandingthePlasma:Radicalsand ExcitedSpecies 206 4.4.3 TheRoleofMacrospeciesinAtmospheric PlasmaClusters 208 4.4.4 PlasmasinOtherMedia 211 4.5 Conclusions 214