ebook img

Low-energy constraints to $\alpha_s$ PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Low-energy constraints to $\alpha_s$

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2014 4 1 0 Low-energy constraints to α s 2 n a XavierGarciaiTormo1,a J 1AlbertEinsteinCenterforFundamentalPhysics,InstitutfürTheoretischePhysik,UniversitätBern,Sidler- 0 strasse5,CH-3012Bern,Switzerland 3 ] h Abstract. We briefly review some of the lower-energy constraints to the perturbative p behaviourofthestrongcouplingα ,withsomeemphasisonthedeterminationcoming s - fromtheenergybetweentwostaticsourcescalculatedonthelattice. p e h Thestrongcoupling,α ,istheonlyfreeparameterofQuantumChromoDynamics(QCD)inthe s [ masslessquarklimit. Itsprecisedeterminationisofparamountimportanceforthestudyofprocesses 1 thatinvolve thestronginteractions. Asymptoticfreedomtells usthatthe couplingis perturbativeat v large energy. Its running with the energy scale is predicted by QCD, and encoded in the famous β 6 function 3 dα (µ2) 8 µ s =α (µ2)β(α ). (1) dµ s s 7 . 1 α (µ2)isnotcontinuouswhencrossingquarkthresholds. Nowadays,theβfunctionandthematching s 0 at quark thresholds are known to four loop order [1–4]. In the following we briefly overview some 4 determinationsofα thatareperformedatperturbativebutrelativelylow-energyscales.Anadvantage 1 s of a low-energy determination of α is that, when its value is evolved to a higher-energy scale, like : s v theZ-bosonmassM ,theuncertaintyshrinks,duetothelogarithmicrunning. Thedownsideofthose Z i X determinationsisthat, sincethevalueofαs islargeratlowerscales, perturbativecorrectionsare, in turn,largerandunknownhigher-ordertermscouldbeimportant,andalsothatoneneedstoestimate r a orcontrolnon-perturbativeeffectsmorecarefully. Inanycase,onewantstohaveα determinations s inthewholerangeofenergieswhereperturbativeQCDisvalid, toobtaininthiswayaquantitative experimentaltestofasymptoticfreedom. A good and relatively clean way to obtain α is to use processes that are inclusive hadronically, s likethehadronicZdecayrate,R :=Γ(Z →hadrons)/Γ(Z →e+e−). Theinclusivehadronicdecayof Z theτleptonallowsustodetermineα atlowenergy[5],i.e. atthescaleoftheτmassm =1.78GeV. s τ This observable has been extensively exploited in the literature during the years. Some of the main complications are related to how one organizes the perturbative expansion, i.e. how to treat higher- ordercorrections. Severaltreatmentsarepresentintheliterature,anditisalong-standingdiscussion whichmethodshouldgivemoreaccurateresults. Anadequateassessmentofnon-perturbativeeffects is also important, a recent analysis is given in Ref. [6]. One can therefore discuss which should be the exact size of the error assigned to this result, but the fact remains that a comparison of this α determination with the one coming from Z-pole data fits provides a striking confirmation of the s predictedQCDrunning. ThisisillustratedinFig.1. ae-mail:[email protected] EPJWebofConferences 0.6 0.5 0.4 (cid:76) Τ 2 Q 0.3 (cid:72) Αs E0 0.2 Z 0.1 1 2 5 10 20 50 100 200 Q GeV Figure1. α (Q2)asafunctionoftheenergyscaleQ. The4-looprunning[7]ofthevalueobtainedfromdata s attheZpole[8]-bluepoint-isshownasthegreenband.(cid:72)Forthe(cid:76)αs valuefromτdecays-blackpoint-wetook therangespannedbyseveralrecentdeterminations[6,9,10]. Theredbandbelowtheα valuefromthestatic s energyE -redpoint-reflectstheenergyrangethatwasusedinthisextraction[11]. 0 Onecanalsoobtainadeterminationofα bycomparinglatticedatafortheenergybetweentwo s staticsourcesinQCD,E (r),andthecorrespondingperturbativeexpressions[12,13].Inthiscase,one 0 cantakeadvantageofrecentprogressinboththeperturbativeevaluationandthelatticecomputation of the static energy. Perturbatively the static energy is nowadays known at three loop, i.e. O(α4), s accuracy [14–16], including also resummation of logarithmically enhanced terms at O(α4+nlnnα ) s s (n≥0)[17,18];asummaryofallthecurrentlyknownperturbativeresultscanbefound,forinstance, inRef.[19].Onthelatticeside,thestaticenergywiththreelight-quarkflavorswasrecentlycomputed in Ref. [20]. A comparison of the two, and the corresponding extraction of α , was presented in s Ref.[11];andcorrespondstotheredpointinFig.1. Onecomplicationinthiscaseistoknowwhether ornotthecurrentlatticedatahasreallyreachedthepurelyperturbativeregime,withprecisionenough toperformtheextraction. Itisdifficulttoundoubtedlystatethispoint. Inthatsense,Ref.[11]follows theideathattheagreementwithlatticeshouldimprovewhentheperturbativeorderofthecalculation is increased. This is found to happen, and the resulting perturbative curves can describe the lattice dataquitewell. Inadditiontheresultforα isnotverysensitivetotheexactdistancerangethatone s usesintheanalyses. Thesefactscanbetakenasanindicationthatoneisindeedintheperturbative region. Furtherstudiestoverifythispointarecertainlywarranted,though;wementionthatRef.[21] concludes,inthetwolight-quarkflavorcase,thatfinerlatticespacingsareneededfortheextraction. AnupdateoftheanalysisinRef.[11],includinglatticedatawithfinerlatticespacings,andextensively addressingthesequestionsisongoing. There are many other lattice determinations of α , which use different quantities and energy s ranges. Arelativelyrecentreviewoflatticeresultsforα isgiveninRef.[22]. s Anothergoodwaytoextractα atrelativelylowenergiesistouseratiosofquarkonium,H,decay s widths. Thecomplicationhereisthatoneneedstotakeintoaccountthebound-statedynamics. The effectivetheoryframeworkofNon-RelativisticQCD[23]allowsonetotacklewiththeproblem. The MENU2013 bestquantityfortheα extractionturnsouttobetheratioR :=Γ(H →γ+hadrons)/Γ(H →hadrons), s γ inthesensethatitistheobservablewhichislesssensitivetocolor-octetconfigurationsandrelativistic effects. An extraction for the bottomonium system, i.e. at the scale MΥ = 9.46 GeV, was given in Ref.[24]. Asimilaranalysisforthecharmoniumsystem,i.e. atthescaleM =3.1GeV,ishindered J/ψ bythefactthatrelativisticandoctetcorrectionsaremoresevereinthiscase. There are several other good ways to determine α at different energies, including parton distri- s butionfitstodeepinelasticscatteringandhadroncolliderdata,eventshapesandjetratesinleptonic collisions, etcetera. Most of those results are collected and summarized in the Review of Particle PhysicsbytheParticleDataGroup(PDG)[8], andinseveralotherrecentreviewsonα determina- s tions,likeRefs.[9,25],thecontentsofwhichwerehelpfulinpreparingthepresentmanuscript. We finish by recalling that most, although not all, quantities entering the current (PDG) world averageforα aredominatedbysystematicerrorsoftheoreticalorigin.Thesearemanytimesdifficult s topreciselyassess. Inthatsense,anincreasingcorroborationofthevalueofα ,byextractingitfrom s differentindependentquantities,andatdifferentenergyranges,isbothwelcomeandnecessary. Acknowledgments This work is supported by the Swiss National Science Foundation (SNF) under the Sinergia grant numberCRSII21418471. References [1] T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B 400, 379 (1997) [hep- ph/9701390]. [2] M.Czakon,Nucl.Phys.B710,485(2005)[hep-ph/0411261]. [3] Y.SchroderandM.Steinhauser,JHEP0601,051(2006)[hep-ph/0512058]. [4] K.G.Chetyrkin,J.H.KuhnandC.Sturm,Nucl.Phys.B744,121(2006)[hep-ph/0512060]. [5] E.Braaten,S.NarisonandA.Pich,Nucl.Phys.B373,581(1992). [6] D.Boito,M.Golterman,M.Jamin,A.Mahdavi,K.Maltman,J.OsborneandS.Peris,Phys.Rev. D85,093015(2012)[arXiv:1203.3146[hep-ph]]. [7] K.G.Chetyrkin,J.H.KuhnandM.Steinhauser,Comput.Phys.Commun.133,43(2000)[hep- ph/0004189]. [8] J.Beringeretal.[ParticleDataGroupCollaboration],Phys.Rev.D86,010001(2012). [9] A.Pich,PoSConfinementX,022(2012)[arXiv:1303.2262[hep-ph]]. [10] G. Abbas, B. Ananthanarayan, I. Caprini and J. Fischer, Phys. Rev. D 87, 014008 (2013) [arXiv:1211.4316[hep-ph]]. [11] A.Bazavov,N.Brambilla,X.GarciaiTormo,P.Petreczky,J.SotoandA.Vairo,Phys.Rev.D 86,114031(2012)[arXiv:1205.6155[hep-ph]]. [12] C.Michael,Phys.Lett.B283,103(1992)[hep-lat/9205010]. [13] S.P.Boothetal.[UKQCDCollaboration],Phys.Lett.B294,385(1992)[hep-lat/9209008]. [14] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Lett. B 668, 293 (2008) [arXiv:0809.1927[hep-ph]]. [15] C.Anzai,Y.KiyoandY.Sumino,Phys.Rev.Lett.104,112003(2010)[arXiv:0911.4335[hep- ph]]. [16] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Rev. Lett. 104, 112002 (2010) [arXiv:0911.4742[hep-ph]]. EPJWebofConferences [17] N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo, Phys. Lett. B 647, 185 (2007) [hep- ph/0610143]. [18] N. Brambilla, A. Vairo, X. Garcia i Tormo and J. Soto, Phys. Rev. D 80, 034016 (2009) [arXiv:0906.1390[hep-ph]]. [19] X.GarciaiTormo,Mod.Phys.Lett.A28,1330028(2013)[arXiv:1307.2238]. [20] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. T. Ding, S. Gottlieb, R. Gupta and P.Hegdeetal.,Phys.Rev.D85,054503(2012)[arXiv:1111.1710[hep-lat]]. [21] B. Leder et al. [ALPHA Collaboration], PoS LATTICE 2011, 315 (2011) [arXiv:1112.1246 [hep-lat]]. [22] C.McNeile,Mod.Phys.Lett.A28,1360012(2013)[arXiv:1306.3326[hep-lat]]. [23] G.T.Bodwin,E.BraatenandG.P.Lepage,Phys.Rev.D51,1125(1995)[Erratum-ibid.D55, 5853(1997)][hep-ph/9407339]. [24] N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo, Phys. Rev. D 75, 074014 (2007) [hep- ph/0702079]. [25] G.Altarelli,PoSCorfu2012,002(2013)[arXiv:1303.6065[hep-ph]].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.