ebook img

Low Dielectric Constant Materials for IC Applications PDF

322 Pages·2003·5.222 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Low Dielectric Constant Materials for IC Applications

SpringerSeriesin advanced microelectronics 9 Springer-Verlag Berlin Heidelberg GmbH SpringerSeriesin advanced microelectronics Serieseditors: K.Itoh T.Lee T.Sakurai D.Schmitt-Landsiedel TheSpringerSeriesinAdvancedMicroelectronicsprovidessystematicinformationon allthetopicsrelevantforthedesign,processing,andmanufacturingofmicroelectronic devices.Thebooks,eachpreparedbyleadingresearchersorengineersintheirfields, cover the basic and advanced aspects of topics such as wafer processing, materials, devicedesign,devicetechnologies,circuitdesign,VLSIimplementation,andsubsys- temtechnology.Theseriesformsabridgebetweenphysicsandengineeringandthe volumeswillappealtopracticingengineersaswellasresearchscientists. 1 CellularNeuralNetworks Chaos,ComplexityandVLSIProcessing ByG.Manganaro,P.Arena,andL.Fortuna 2 TechnologyofIntegratedCircuits ByD.Widmann,H.Mader,andH.Friedrich 3 FerroelectricMemories ByJ.F.Scott 4 MicrowaveResonatorsandFiltersforWirelessCommunication Theory,DesignandApplication ByM.MakimotoandS.Yamashita 5 VLSIMemoryChipDesign ByK.Itoh 6 High-FrequencyBipolarTransistors Physics,Modelling,Applications ByM.Reisch 7 NoiseinSemiconductorDevices ModelingandSimulation ByF.BonaniandG.Ghione 8 LogicSynthesisforAsynchronousControllersandInterfaces ByJ.Cortadella,M.Kishinevsky,A.Kondratyev,L.Lavagno,andA.Yakovlev 9 LowDielectricConstantMaterialsforICApplications Editors:P.S.Ho,J.Leu,W.W.Lee Serieshomepage–http://www.springer.de/phys/books/ssam/ P.S. Ho J. Leu W.W. Lee (Eds.) Low Dielectric Constant Materials for IC Applications With163Figures 1 3 ProfessorPaulS.Ho WeiWilliamLee TexasMaterialsInstitute TaiwanSemiconductorManufacturingCo. TheUniversityofTexasatAustin (TSMC),No.9,CreationRoad1 Austin,TX78712,USA Science-BasedInd.Park,Hsin-chu,Taiwan e-mail:[email protected] e-mail:[email protected] Jihperng(Jim)Leu IntelCorp.,MS:RA1-204 5200N.E.ElamYoungParkway Hillsboro,OR97214,USA e-mail:[email protected] SeriesEditors: Dr.KiyooItoh HitachiLtd.,CentralResearchLaboratory,1-280Higashi-Koigakubo Kokubunji-shi,Tokyo185-8601,Japan ProfessorThomasLee StanfordUniversity,DepartmentofElectricalEngineering,420ViaPalouMall,CIS-205 Stanford,CA94305-4070,USA ProfessorTakayasuSakurai CenterforCollaborativeResearch,UniversityofTokyo,7-22-1Roppongi Minato-ku,Tokyo106-8558,Japan ProfessorDorisSchmitt-Landsiedel TechnischeUniversita¨tMu¨nchen,Lehrstuhlfu¨rTechnischeElektronik Theresienstrasse90,Geba¨udeN3,80290München,Germany ISSN1437-0387 ISBN 978-3-642-63221-1 ISBN 978-3-642-55908-2 (eBook) DOI 10.1007/978-3-642-55908-2 LibraryofCongressCataloging-in-PublicationData:LowdielectricconstantmaterialsforICapplications/P.S. Ho,J.Leu,W.W.Lee(eds.).p.cm.–(Springerseriesinadvancedmicroelectronics,ISSN1437-0387;9)Includes bibliographicalreferencesandindex.ISBN3540678190(alk.paper)1.Electricinsulatorsandinsulation.2. Dieelectrics.3.Integratedcircuits.I.Ho,P.S.II.Lee,WeiWilliam.III.Leu,J(Jihperng),1958–IV.Series. TK3401.L692002 621.3815–dc21 2002066982 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,inits currentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsareliable forprosecutionundertheGermanCopyrightLaw. ©Springer-VerlagBerlinHeidelberg2003 (cid:54)(cid:82)(cid:73)(cid:87)(cid:70)(cid:82)(cid:89)(cid:72)(cid:85)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:76)(cid:81)(cid:87)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:75)(cid:68)(cid:85)(cid:71)(cid:70)(cid:82)(cid:89)(cid:72)(cid:85)(cid:3)(cid:20)(cid:86)(cid:87)(cid:3)(cid:72)(cid:71)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)2003 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Typesetting:DataconversionbyVerlagsserviceAscheron,Mannheim CoverconceptbyeStudioCalmarSteinenusingabackgroundpicturefromPhotoStudio“SONO”.Courtesy ofMr.YukioSono,3-18-4Uchi-Kanda,Chiyoda-ku,Tokyo Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:10752471 57/3141/ba-543210 Preface This book addresses issues on development, characterization and integration of low dielectric constant (k) materials for advanced on-chip interconnects. The implementation of low-k dielectrics was first identified as a key enabling technologyforthedevelopmentofon-chipinterconnectsinthe1994National TechnologyRoadmapforSemiconductors.Researchanddevelopmentforlow- k dielectrics for microelectronics applications can be traced back further by a number of years. While the need for low-k dielectrics for improving the performance and density of advanced interconnects is clear, the progress in implementation of low-k materials has been slower than anticipated. With the announcement of copper metallization in 1997, the implementation of low-k dielectrics was highlighted in the 1997 Technology Roadmap with a k of 2.5–3.0 to be implemented for the 180-nm node in 1999. This was not fulfilleduntil2000whenIBMannouncedthedevelopmentofCuinterconnects for the 130-nm node with SiLKTM, a low-k dielectric material developed by the Dow Chemical Company with a k of about 2.7. At this time, there is intense effort in the industry to develop Cu/low-k interconnects with porous dielectrics with a k of 2.2 or less. Thedelayinimplementationoflow-kILDcanbelargelyattributedtothe many challenges associated with the integration of these materials into the dual-damasceneCuinterconnectstructures.Aparticularlydifficultchallenge has been to obtain the combination of low dielectric constant and good ther- malandmechanicalpropertiesincomparisontoSi O.Thisrequiresmaterial 2 design with molecular structures to optimize the bonding strength but re- duce the electronic polarizability. This is a conflicting goal challenging low-k development and will become more difficult for porous materials as porosity is incorporated to further reduce the dielectric constant. This book begins with an overview in Chap. 1 by Ho et al. summarizing the basic issues for low-k material development and integration. The difficulty of balancing the electronicpolarizabilitywithbondingstrengthformaterialdevelopmentwas emphasized together with characterization of low-k materials in thin-film form, the impact of material reactions on reliability and the integration of low-k dielectrics into Cu damascene structures. Aftertheoverview,thisbookisorganizedintotwopartswithChaps.2to 6 discussing material development and characterization and Chaps. 7 to 10 VI Preface discussingmaterialreactionandprocessintegration.Withintenseeffortsfrom industryanduniversities,significantprogresshasbeenmadeinthesynthesis of fully dense low-k materials with molecular structures to optimize material properties for integration into copper interconnects. Material characterization has been an integral part of low-k development and extensive efforts have been made in metrology development to evaluate material properties for process integration. Since low-k materials are inte- grated as thin films, their properties can differ appreciably from bulk or thick-film materials. This challenges metrology development for measuring materialpropertiesofthinfilmsonawafer,particularlyforporousmaterials wheretheporosityfurthercomplicatesmaterialcharacterization.InChap.2, Ryan et al. describe characterization techniques developed for measuring di- electric, thermal, and mechanical properties of low-k thin films. In Chap. 3, Lin et al. review two new techniques: specular X-ray reflectivity (SXR) and small-angle neutron scattering (SANS) for characterization of porous low-k materials. Two general approaches for synthesis of low-k materials are discussed: in Chap. 4 by Gill et al. on vapor deposition and in Chap. 5 by Endo et al. on plasma-enhanced chemical vapor deposition of polymeric low-k dielectrics. For development of porous low-k materials, the “porogen” approach using a thermally degradable template appears promising in that it can be applied to a wide range of inorganic and organic materials and has good control of the pore size and morphology. The application of the porogen technique to synthesize porous low-k materials is described in Chap. 6 by Volksen et al. In the past several years, significant progress has been made by the semi- conductorindustrytointegratelow-kdielectricsintocopperinterconnects.In Chap. 10, Waterloos describes process integration of SiLKTM into Cu dam- ascene structures. Complementing the integration chapter, Oehrlein et al. in Chap.9discusstheplasma-etchingprocess,akeystepinintegrationoflow-k structures. The weak thermal and mechanical properties have raised reliabil- ityconcernsonthermalstabilityandstructuralintegrityoflow-k structures. Distinct failure mechanisms have been observed in low-k structures during processing or reliability tests, where more work is clearly required to fully understand the impact of low-k integration on interconnect reliability. Two basic issues related to reliability are discussed in this book: in Chap. 7 by Martini and Kelber on metal/polymer interfacial reaction and in Chap. 8 by Faupel et al. on metal diffusion in polymers. Continuingeffortsinlow-kintegrationwillundoubtedlyadvanceourknowl- edge on material development, characterization, process integration, and re- liability for this exciting class of materials and its technology. While new knowledge and developments are to be expected, we hope that this book provides a basis for readers to understand the current advances in low-k dielectrics for interconnect applications. We sincerely appreciate the efforts from all the authors for their valuable contributions to make this book pos- Preface VII sible. We would like to thank Claus Ascheron from Springer-Verlag for his patience in letting us complete this book properly and Jo Ann Smith for her efforts in working with the manuscript. Austin, TX, U.S.A. Paul S. Ho Hillsboro, OR, U.S.A. Jihperng (Jim) Leu Hsin-chu, Taiwan William W. Lee March 2002 Contents 1 Overview on Low Dielectric Constant Materials for IC Applications P.S. Ho, J. Leu, and W.W. Lee ................................... 1 1.1 Introduction............................................... 1 1.2 Dielectric Constant and Bonding Characteristics ............... 4 1.3 Material Properties and Integration Requirements.............. 8 1.4 Characterization of Low-k Dielectrics ......................... 11 1.5 Porous Low-k Materials..................................... 14 1.6 Conclusion ................................................ 18 References ..................................................... 19 2 Materials Issues and Characterization of Low-k Dielectric Materials E.T. Ryan, A.J. McKerrow, J. Leu, and P.S. Ho .................... 23 2.1 Introduction............................................... 23 2.2 Thin-Film Material Characterization ......................... 26 2.3 General Structure–Property Relationships..................... 37 2.3.1 Dielectric Constant .................................. 37 2.3.2 Thermal Properties .................................. 43 2.3.3 Moisture Uptake .................................... 46 2.3.4 Thermomechanical and Thermal Stress Properties ....... 46 2.4 Fluorinated Polyimide: Effect of Chemical-Structure Modifications on Film Properties ... 48 2.5 Crosslinked and Thermosetting Materials ..................... 51 2.6 Parylene Polymers: Effect of Thermal History on Film Properties ......................................... 56 2.7 Future Challenges.......................................... 64 References ..................................................... 68 X Contents 3 Structure and Property Characterization of Low-k Dielectric Porous Thin Films Determined by X-Ray Reflectivity and Small-Angle Neutron Scattering E.K. Lin, H. Lee, B.J. Bauer, H. Wang, J.T. Wetzel, and W. Wu...... 75 3.1 Introduction............................................... 75 3.2 Two-Phase Methodology .................................... 76 3.2.1 Experimental ....................................... 77 3.2.2 Two-Phase Analysis Using the Debye Model ............ 79 3.2.3 Results and Discussion ............................... 80 3.3 Three-Phase Methodology................................... 83 3.4 Films with Ordered Porous Structure......................... 86 3.5 Limits of SANS Characterization Methods .................... 87 3.6 Future Developments ....................................... 88 3.6.1 Contrast Variation SXR .............................. 88 3.6.2 Inhomogeneous Wall Composition ..................... 89 3.7 Conclusion ................................................ 92 References ..................................................... 92 4 Vapor Deposition of Low-k Polymeric Dielectrics W.N. Gill, S. Rogojevic, and T. Lu................................ 95 4.1 Introduction............................................... 95 4.2 Vapor-Phase Deposition and Polymerization on Substrates ...... 97 4.3 Parylenes ................................................. 98 4.3.1 Synthesis Review .................................... 99 4.3.2 Properties of Parylene-N ............................. 100 4.3.3 Mechanisms and Models of Parylene Polymerization ..... 101 4.3.4 Integration Issues with Parylene-N..................... 106 4.3.5 Synthesis and Properties of Parylene-F ................. 107 4.3.6 Integration Issues with Parylene-F ..................... 110 4.4 Polynaphthalene and Its Derivatives.......................... 111 4.4.1 Experimental System for Polynaphthalene Synthesis ..... 111 4.4.2 Properties of Polynaphthalene and Fluorinated Polynaphthalene...................... 113 4.5 Teflon and Its Derivatives ................................... 114 4.5.1 Synthesis of Teflon-AF ............................... 114 4.5.2 Properties of Teflon-AF .............................. 115 4.5.3 Integration Issues with Teflon ......................... 115 4.6 Vapor-Deposited Polyimides................................. 116 4.7 Prospects for Vapor-Depositable Low-k Polymers .............. 117 References ..................................................... 117 Contents XI 5 Plasma-Enhanced Chemical Vapor Deposition of FSG and a-C:F Low-k Materials K. Endo, K. Kishimoto, Y. Matsubara, and K. Koyanagi............. 121 5.1 Introduction............................................... 121 5.2 FSG Films ................................................ 122 5.2.1 Introduction ........................................ 122 5.2.2 General Characteristics............................... 122 5.2.3 HDP-CVD FSG Film ................................ 128 5.3 a-C:F Films ............................................... 144 5.3.1 Introduction ........................................ 144 5.3.2 Deposition of a-C:F by PE-CVD and Controlling Fluorine Concentration ................ 145 5.3.3 Control of F/C Ratio by Helicon-Wave HDP-CVD....... 146 5.3.4 Mechanism of the Reduction of the Dielectric Constant of a-C:F ............................................ 151 5.3.5 Signal-Delay Measurements of CMOS Circuits........... 156 5.3.6 Conclusion.......................................... 162 References ..................................................... 163 6 Porous Organosilicates for On-Chip Applications: Dielectric Generational Extendibility by the Introduction of Porosity W. Volksen, C.J. Hawker, J.L. Hedrick, V. Lee, T. Magbitang, M. Toney, R.D. Miller, E. Huang, J. Liu, K.G. Lynn, M. Petkov, K. Rodbell, and M.H. Weber ..................................... 167 6.1 Introduction............................................... 167 6.2 Porous Silica .............................................. 171 6.3 Organosilicates ............................................ 173 6.4 Porogens.................................................. 175 6.5 Porous Organosilicate Matrix Resins.......................... 180 6.6 Formation of Nanohybrids................................... 183 6.7 Porous Organosilicates...................................... 186 6.8 Characterization of Porous Organosilicates .................... 187 6.9 Conclusion ................................................ 196 References ..................................................... 198 7 Metal/Polymer Interfacial Interactions D.M. Martini, and J.A. Kelber ................................... 203 7.1 Introduction............................................... 203 7.2 Experimental Methods...................................... 204 7.2.1 XPS and AES Analysis............................... 205 7.2.2 XPS for Nucleation Modes............................ 206 7.2.3 Other Surface-Science Techniques...................... 207 7.2.4 Metal-Deposition Techniques.......................... 207

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.