ebook img

Lorentzian Geometrical Structures with Global Time, Gravity and Electrodynamics PDF

192 Pages·2023·3.693 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lorentzian Geometrical Structures with Global Time, Gravity and Electrodynamics

Lorentzian Geometrical Structures with Global Time, Gravity and Electrodynamics Arkady Poliakovsky Lorentzian Geometrical Structures with Global Time, Gravity and Electrodynamics ArkadyPoliakovsky DepartmentofMathematics Ben-GurionUniversityoftheNegev Be’erSheva,Israel ISBN 978-3-031-23761-4 ISBN 978-3-031-23762-1 (eBook) https://doi.org/10.1007/978-3-031-23762-1 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Prologue The idea of a four-dimensional space-time, rather than separate three-dimensional spaceandone-dimensionaltime,isthecornerstoneofallrelativistictheories.Further- more,theideaofcovariance(intensorformulation)ofthemostfundamentalPhysical Lawsunderachangeofgeneralcoordinatesystems,givenbyarbitrary(bothlinear andsmoothnonlinear)transformations,isthecentralfeatureofthetheoryofgeneral relativity. However, both these ideas do not really contradicts the non-relativistic considerations of space-time! For example, both the Galilean transformations and the Lorentz’s transformations can be considered with equal right as two different particular cases of general linear transformations of the space-time (note that one cancallaparticularcoordinateframesystembythewordinertialifitisobtainedbya generallineartransformationfromtheother,commonlyconsideredasinertial,coor- dinateframe).Theexistenceofaglobaltimescalarfunctioninthefour-dimensional space-timealsoimpliesnocontradiction,sincethisscalarequalstothefirstcoordi- nateofthespace-timeonlyinveryspecialcoordinatesystems,whileweassumethe generalcovarianceofthePhysicalLaws.Thecentralgoalofthepresentresearchis to show that both relativistic and non-relativistic approaches to space-time can be unified.Inparticular,theglobaluniversaltimefunction,oratleastthefour-covector fieldofthetimedirectionateverypointofthespace-time,canbeconcordantlyintro- ducedtorelativistictheories.Thisisuseful,inparticular,whenwearetalkingabout the absolute age of the universe. This is also useful for the Hamiltonian formula- tionoftheDiracequation,andmoreover,italsoprovidesthewaytoformulatethe Diracequationformultipleparticles,similarlytowhatwasdonefortheSchrödinger equationofthenon-relativisticquantummechanics. Inthisresearchwepostulatethatallrealphysicalprocessesappearinsomevalid pseudo-metric, describing a generalized gravity field, correlated with some four- covector of time direction. Furthermore, we distinguish two types of generalized gravity.Thefirsttypeisthefictitiousgravitywhichwecallinertia.Thistypeofgravity depends only on the flat Geometry of empty space-time via the choice of specific coordinate system, and it is independent on the surrounding real matter consisting of gravitational masses or other real physical fields. The second type of gravity is the genuine (real) gravity, which depends essentially on the real physical matter, v vi Prologue especially on gravitational masses. We assume that this type of gravity vanishes awayfromessentialgravitationalmassesandstrongrealphysicalfields. So,ateverypointofspace-timewedealwithtwodifferentpseudo-metricssimul- taneously.ThefirstisthekinematicalflatMinkowski’spseudo-metric,describingthe Geometryofthevirtuallyemptiedspace-time.Thesecondisthedynamicalpseudo- metric, which combines both effects of inertia and the genuine gravity, depending bothonthekinematicalpseudo-metricandonthegenuinegravityfield.Inthissense ourmodelisbimetrical.Ontheotherhand,thedynamicalpseudo-metricisassumed to preserve the same four-dimensional volume as the kinematical one, so that our modelisunimodular.Similarly,wedistinguishtwotypesoffour-covectorfieldsof thetimedirection.Thefirsttypeisthekinematicaltimedirection,whichequalsto thefour-dimensionalgradientofthekinematicalglobaltime,dependingonlyonthe flatGeometryofemptyspace-timeviathechoiceofspecificcoordinatesystem.The second type of time direction is the dynamical time direction, which depends on the real physical fields, similarly to the genuine gravity. Then we assume that the vacuumexpectationvalueofthedynamicaltimedirectionequalstothegradientof the kinematical global time, while the vacuum expectation value of the dynamical pseudo-metricequalstothekinematicalone,sothatthevacuumexpectationvalueof thegenuinegravityvanishes.Thedifferencebetweenthedynamicalandthekinemat- ical pseudo-metrics is assumed to depend on the four-covector of genuine gravity and the four-covector of the dynamical time direction. Both for genuine gravity andforthedynamicaltimedirectionweconsiderProca-typeLagrangianactions.In particular,incontrasttotheinertiaandthekinematicalglobaltime,onecanfurther quantify the fields of genuine gravity and the dynamical time direction, similarly towhatcanbedonefortheelectromagneticfield.Sincethecommonnameforthe quantoftheelectromagneticfieldisphoton,onecannamethequantofthegenuine gravitygravitonandthequantofthedynamicaltimedirectiontimion.Then,inthe frameworkofourmodel,thegravitoncanbeconsideredasthespin-oneneutralmass- lessparticle,similarlytophoton,whilethetimioncanbeconsideredasthespin-one neutralparticlehavinganegligiblebutnotcompletelyvanishingmass. Intheapproximatingcaseofourmodel,wherecertainconstantstendtoinfinity, thedynamical timedirectiontendstobeequaltothefour-dimensionalgradientof the kinematical global time, and we get the simplified model where the difference between the dynamical and the kinematical pseudo-metrics is assumed to depend on the four-covector of genuine gravity only! Then, the dynamical pseudo-metric genuinely depends on one four-covector only, which by unimodularity condition hasonlythreegenuinelyindependentcomponents.Inthissenseourmodelismuch moresimplethanthetheoryofgeneralrelativity,wherethesymmetric4×4-pseudo- metric depends on the full ensemble of all ten independent components. Even our fullmodeldependsonlyontwofour-covectors(thegenuinegravityandthedynam- icaltimedirection),whichbytheunimodularityconditionhasonlysevengenuinely independentcomponents.However,weareabletoprovethatintheframeworkofour simplified model, the gravitational field, generated by some massive body, resting and spherically symmetric in certain coordinate system, is given by the dynam- icalpseudo-metric,suchthatthereexistssomecurvilinearcoordinatesysteminthe Prologue vii space-time,wherethispseudo-metriccoincideswiththewell-knownSchwarzschild metric from general relativity! In particular, all the optical effects (like Sagnac, Michelson-Morley,etc.)thatwefindintheframeworkofourmodelcoincidewith theeffectsconsideredintheframeworkofgeneralrelativityfortheSchwarzschild metric.Finally,allthemechanicaleffects(likeMercurymotionintheSungravity field,etc.)willbethesameintheframeworkofourmodel,likeinthecaseofgeneral relativityfortheSchwarzschildmetric,providedthatthetimedoesnotappearexplic- itly in these effects. Furthermore, we also prove that gravitational field, governed byourmodel,generatedbyageneralslowly(non-relativistically)movingmassive matterincertaininertialcoordinatesystemcanbewellapproximated,bytheclas- sicalmodeloftheNewtonianGravity.Gravitationalwavesarealsopossiblebothin thefullandsimplifiedmodelspresentedhere. Finally,inthisresearchwegiveacovariantformulationoftheElectrodynamicsof themovingdielectricandpara/diamagneticcontinuummediumsinarbitrarydynam- icalpseudo-metric.TheLorentz’scovarianttheoryofthemovingpara/diamagnetic continuummediumsintheflatLorentz’spseudo-metricwasfirstintroducedbyH. Minkowski(1908).Hereweformulatethegeneralcovarianttheoryinadifferentalter- nativeway,thatis,suitableforformulationinageneralpseudo-metricincludingthe presenceofthegenuinegravity.Inparticular,weshowthatourmodeliscompletely consistentwiththewell-knownFizeau’sexperiment. InthisresearchwedonotconsiderthequantumconsiderationoftheLagrangian action.Thiswouldbethetopicofafurtherresearch. Contents 1 PreliminaryIntroduction ...................................... 1 References .................................................... 5 2 BasicDefinitionsandStatementsoftheMainResults ............. 7 2.1 Generalized-Lorentz’s Structures with Time Direction andGlobalTime .......................................... 7 2.1.1 Pseudo-LorentzianCoordinateSystems ................ 17 2.2 KinematicalLorentz’sStructurewithGlobalTime ............. 25 2.3 KinematicalandDynamicalGeneralized-LorentzStructures withTimeDirection ....................................... 26 2.4 Lagrangian of the Motion of a Classical Point Particle inaGivenPseudo-metricwithTimeDirection ................. 28 2.5 Lagrangian of the Electromagnetic Field in a Given Pseudo-metric ............................................ 32 2.6 CorrelatedPseudo-metrics .................................. 33 2.7 KinematicallyCorrelatedModelsoftheGenuineGravity ....... 38 2.8 LagrangianforDynamicalTimeDirectionandItsLimiting Case ..................................................... 42 2.9 LagrangianoftheGenuineGravity ........................... 46 References .................................................... 53 3 Mass, Charge and Lagrangian Densities and Currents oftheSystemofClassicalPointParticles ........................ 55 4 TheTotalSimplifiedLagrangianoftheGravityinaCartesian CoordinateSystem ............................................ 65 4.1 The Total Simplified Lagrangian in (2.9.23), (2.9.24), fortheLimitingCaseof(2.9.20)inaCartesianCoordinate System ................................................... 65 5 The Euler-Lagrange for the Lagrangian of the Motion ofAClassicalPointParticleinaCartesianCoordinateSystem .... 77 ix x Contents 6 TheEuler-LagrangefortheLagrangianoftheGravitational andElectromagneticFieldsinaCartesianCoordinateSystem ..... 81 6.1 The Euler-Lagrange for the Lagrangian in (4.1.71) inaCartesianCoordinateSystem ............................ 81 7 Gravity Field of Spherically Symmetric Massive Resting BodyinaCoordinateSystemWhichIsCartesianandInertial Simultaneously ................................................ 93 7.1 Certain Curvilinear Coordinate System in the Case of Stationary Radially Symmetric Gravitational Field andRelationtotheSchwarzschildMetric ..................... 96 References .................................................... 104 8 NewtonianGravityasanApproximationofOurModel ........... 105 8.1 NewtonianGravityasanApproximationof(6.1.52) ............ 105 9 PolarizationandMagnetization ................................. 111 9.1 PolarizationandMagnetizationinaCartesianCoordinate System ................................................... 119 10 Detailed Proves of the Stated Theorems, Propositions andLemmas .................................................. 131 Appendix: SomeTechnicalStatements .............................. 171 Chapter 1 Preliminary Introduction Intheclassicaltheoriesofspecialandgeneralrelativitytheinertiaandthegravity are described by certain pseudo-metric of signature {1,−1,−1,−1} in the four- dimensionalspace-time.Ontheotherhand,intheframeworkoftheNewton-Cartan theory (see [1–6]) the Geometry of the space-time is (incompletely) described by the two-times contravariant symmetric degenerate tensor {hmn}m,n=0,1,2,3 of signa- ture{0,1,1,1}andacovector(w ,w ,w ,w )oftimedirection,everywherenon- 0 1 2 3 vanishingandsatisfying (cid:2)3 hmjw =0 ∀m =0,1,2,3. (1.0.1) j j=0 Moreover,inthecasethatthereexistsascalarfieldτ satisfying ∂τ w = ∀m =0,1,2,3, (1.0.2) m ∂xm thisfieldcanserveasaglobaltimeinR4.Inthispaperweunifyboththeseapproaches andbuildthemodel,completelydescribingtheGeometryandthegravityinR4,which includesboththepseudo-metricandtheglobaltimescalarfield(ormoregenerally the covector of the time direction). One of the goals of the paper was to unify the relativisticandthenon-relativisticapproachestothestudyofthespace-time. Wepostulatethatallrealphysicalprocessesappearinsomevalidpseudo-metric {Kmn}m,n=0,1,2,3, describing the generalized gravity field, weakly correlated with some covector of time direction (w ,w ,w ,w ) (see definitions in the sequent 0 1 2 3 Sect.2).Furthermore,wedistinguishtwotypesofgeneralizedgravity.Thefirsttype isthefictitiousgravitywhichwecallinertia.Thistypeofgravitydependsonlyonthe flatGeometryofemptyspace-timeviathechoiceofspecificcoordinatesystem,and ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2023 1 A.Poliakovsky,LorentzianGeometricalStructureswithGlobalTime,Gravity andElectrodynamics,https://doi.org/10.1007/978-3-031-23762-1_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.