ebook img

Longitudinal analysis of MRI images in rheumatoid arthritis PDF

183 Pages·2007·4.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Longitudinal analysis of MRI images in rheumatoid arthritis

Longitudinal analysis of MRI images in rheumatoid arthritis Kelvin Ka-fai Leung Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy ofthe UniversityofLondon. CentreforMedicalImageComputing DepartmentofComputerScienceandDepartmentofMedicalPhysics UniversityCollegeLondon November16,2007 2 I,KelvinKa-faiLeung,confirmthattheworkpresentedinthisthesisismyown.Whereinformation hasbeenderivedfromothersources,Iconfirmthatthishasbeenindicatedinthethesis. 3 Tomyparents Abstract Rheumatoidarthritis(RA)isachronic,systemic,autoimmune,andinflammatoryjointdisease. Longi- tudinalimagingusingMRIhasbeenproposedasaneffectivetoolforpatientmanagementandclinical studies, but the analysis is based on visual inspection or interactive analysis. This thesis investigates image registration and analysis algorithms to automatically quantify changes in a bone in in-vivo lon- gitudinal MR images of an ankle in an experimental rat model of RA, and to improve the ease of use, reproducibility,andanalysistimeofvisualscoringsystemsinthehandsandwristsofhumanpatients. Inthefirstpartofthisthesis,twodifferentmethodswereusedtoautomaticallyquantifychangesin aboneintheexperimentalmodelofRA.Thefirstmethodusedsegmentationpropagationtodelineatea bonefromthelongitudinalMRimagesgivingaglobalmeasureoftemporalchangesinbonevolume.The secondmethodusedrigidbodyregistrationtodetermineintensitychangewithinaboneusinganintensity thresholding algorithm, and then mapped these into a common space using nonrigid registration. This gave a local measure of temporal changes in bone lesion volume. The global bone volume was found to be fluctuating over time. However, significant temporal changes were detected in local bone lesion volume in 4 out of 8 identified candidate bone lesion regions, and significant difference in local bone lesionvolumebetweenmaleandfemalesubjectswasdetectedin3outof8candidatebonelesionregions. Someoftheresultswereconfirmedbycomparisonwiththehistologyofthesubjects. The second part of this thesis described an integrated spatio-temporal segmentation algorithm, which built on the results of the first part that bone lesions are localised in space, time, and intensity of the difference images. A 5-dimensional feature space (3 spatial dimensions, 1 intensity dimension, and 1 temporal dimension) was built from the longitudinal MR images after rigid body registration to integratethetime-domaininformationacrossallthetimepoints. Thefeaturespacewasthendelineated by the mean shift algorithm to give high-intensity bone lesions as 4D segmentations. This technique was quantitatively compared with the previous method using simulated and real MR images, and was qualitativelycomparedwiththehistologyofthesubjects. Inthethirdpartofthisthesis,imageregistrationwasusedtoaligneachboneintheMRimagesof thehandsandwristsofhumanpatientstoacommonreferencecoordinatesystem,basedonareference atlassuchastheEULAR-OMERACTrheumatoidarthritisMRIreferenceimageatlas.Thismethodmay beusedtoincreasethesensitivityofvisualscoringtosubtlechangesbyreducingtheimpactofvariation inposition,andcouldprovideapre-processingstepforautomaticquantificationoferosionorsynovitis. MedicalresearchanddrugdiscoveryrelyincreasinglyoncomparisonsbetweenMRimagesfrom Abstract 5 large numbers of subjects, often with multiple time points for each subject. In the final part of this thesis, the computational grid (the Grid), which provides an infrastructure for researchers in different organisationstosharetheirworkandfacilities(e.g. imagedataandcomputingresources),wasusedto executethealgorithmsremotelyandinparallel. Thealgorithmsinthefirstthreepartsofthisthesiswere expressedinaworkflowlanguageprovidedbytheVirtualDataSystemsothattheirexecutionwasfully automated. The system was also designed to keep track of data provenance that provides information abouttheoriginofapieceofdataandtheprocessbywhichitwasderived. Thisinformationiscrucial fortheunderstandingandvalidationofscientificresults,andcanbeusedtoautomaticallygeneratethe audittrailrequiredinthehandlingofelectronicrecordsinapharmaceuticalcompany. Acknowledgements IwouldliketoexpressmysincerethankstomyfirstsupervisorProf. DerekHill. forhisguidanceand encouragement throughout my three years at KCL and UCL. My thanks are due to Dr. Mark Holden forhisguidanceanddiscussionsduringtheearlystagesofthisproject. Iamgratefulformyindustrial supervisorDr. NadeemSaeedfordiscussionsandhiscareduringmyvisitstoGlaxoSmithKline(GSK). IalsothankothercolleaguesinGSKforthepreparationoftheexperimentalmodelandtheimageacqui- sition. ThankstoDr. KateMcLeishfortheimageacquisitionofRApatients,andDr. StephenOakley andDr. BruceKirkamforthepatientrecruitment,clinicalassessmentandvariousworkintheRAstudy. IamgratefultomysecondsupervisorProf. DavidHawkesforhiscommentsonmythesis. Thanksalso toProf. JoHajnalandProf. DanielRuckertformanyinterestingdiscussionsandcommentsonmywork duringtheIXImeetings. ThankstomyEnglishtutorDr. SimonWilliamsforhelpingmetowritebetter English. ImustalsothankothermembersofthedepartmentinKCLandUCLfordiscussionsandhelp. Manythankstomyfamilyandfriendsfortheirsupportduringthisproject. Inparticular,Iwouldliketo thankmywifeAnnieandmysonBryanfortheirpatienceandsupportduringthisproject. Contents 1 Introduction 17 1.1 Backgroundandmotivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2 Imageregistration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3 Thesisaims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Thesisorganisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Softwareandothermaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6.1 Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6.2 Individualchapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Literaturereview 24 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 ImagingofjointsinRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Conventionalradiography(CR) . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Microfocalx-ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3 ComputedTomography(CT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.4 Bonescintigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.5 Magneticresonanceimaging(MRI) . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.6 Ultrasound(US) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Measuringchangesinlongitudinalimages . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Visualexaminationandscoring . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Changeinvolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.3 Subtractionafterregistrationandtheboundaryshiftintegral . . . . . . . . . . . 28 2.4 Imageregistration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.1 Thefeature-basedimageregistrationalgorithm . . . . . . . . . . . . . . . . . . 29 2.4.2 Theintensity-basedimageregistrationalgorithm . . . . . . . . . . . . . . . . . 30 2.5 Supervisedandunsupervisedclassifications . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.1 Unsupervisedclassification(ordataclustering) . . . . . . . . . . . . . . . . . . 37 Contents 8 2.6 AnimalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.7 Histologicalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 AutomaticQuantificationofChangesinLongitudinalMRImagesofJointsI 46 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Aimsandcontribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Segmentationpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 Otsu’sthresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.3 Mathematicalmorphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Overviewsofmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Assumptionsandobservations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.3 Overviewofthemeasurementofchangesinbonevolume(Method1) . . . . . . 53 3.5.4 Overviewofthemeasurementofchangesinbonelesionvolume(Method2). . . 53 3.6 Materialsandmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.1 Imagedata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.2 Atlasconstruction(usedinMethods1and2) . . . . . . . . . . . . . . . . . . . 54 3.6.3 Approximatedelineationofthetalusbone(usedinMethods1and2) . . . . . . 54 3.6.4 Accuratedelineationofthetalusbone(usedinMethods1and2) . . . . . . . . . 56 3.6.5 Generationofdifferenceimages(usedinMethod2) . . . . . . . . . . . . . . . 57 3.6.6 Identificationofpotentiallesionvoxels(usedinMethod2) . . . . . . . . . . . . 57 3.6.7 Identificationofcandidatebonelesionregions(usedinMethod2) . . . . . . . . 57 3.6.8 Calculationofbonelesionvolume(usedinMethod2) . . . . . . . . . . . . . . 58 3.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7.1 Method1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7.2 Method2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.8 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.8.1 Method1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.8.2 Method2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.9 Discussionandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 AutomaticQuantificationofChangesinLongitudinalMRImagesofJointsII 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Aimsandcontribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.1 Meanshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Contents 9 4.5 Materialsandmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5.2 Imagedata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.5.3 Atlasconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.5.4 DeterminationofROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.5 Generationofdifferenceimages . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.6 Spatio-temporalsegmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.7 Identificationofcandidatebonelesionregions . . . . . . . . . . . . . . . . . . 82 4.5.8 Calculationofbonelesionvolume . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5.9 Speedimprovementofthemeanshiftsegmentationbysubsampling . . . . . . . 83 4.5.10 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5.11 Comparisonwithmanualsegmentationofthebonelesions . . . . . . . . . . . . 84 4.6 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.6.1 Experimentsonsimulateddata . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.6.2 Experimentsonrealdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.6.3 Comparisonwithhistology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.6.4 Comparisonwithmanualbonelesionvolume . . . . . . . . . . . . . . . . . . . 93 4.6.5 Runningtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.7 Discussionandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 ApplicationtoClinicalData 96 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2 Aimsandcontribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Materialsandmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4.1 Imagedata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4.2 Thestandardreferenceimage . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4.3 Automaticbonelocalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4.4 Spatio-temporalsegmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.5 Automaticrigidbonealignmenttothestandardreferenceimage . . . . . . . . . 102 5.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.5.1 Imagedata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.5.2 Automaticbonelocalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.3 Spatio-temporalsegmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.4 Automaticrigidbonealignmenttothestandardreferenceimage . . . . . . . . . 109 5.6 Discussionandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Contents 10 6 UseoftheGridinAutomatedMedicalImageAnalysis 121 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Aimsandcontribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4 GridTechnologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4.1 TheGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4.2 CondorandCondorMW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.4.3 TheVirtualDataGrid(VDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.5 Materialsandmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.5.1 Theweb-basedimageanalysisworkbench . . . . . . . . . . . . . . . . . . . . . 128 6.5.2 VDLwrappingoftheimageanalysisalgorithms . . . . . . . . . . . . . . . . . 129 6.5.3 Theparallelimplementationofthespatio-temporalsegmentationalgorithm . . . 132 6.6 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.6.1 Theweb-basedimageanalysisworkbench . . . . . . . . . . . . . . . . . . . . . 132 6.6.2 Theparallelimplementationofthespatio-temporalsegmentationalgorithm . . . 135 6.7 Theevaluationoftheworkbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.8 Discussionandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7 Conclusions 145 7.1 Summaryoffindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.1.1 AutomaticquantificationofchangesinlongitudinalMRimagesofjointsI . . . . 145 7.1.2 AutomaticquantificationofchangesinlongitudinalMRimagesofjointsII . . . 146 7.1.3 Applicationtoclinicaldata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7.1.4 UseoftheGridinautomatedmedicalimageanalysis . . . . . . . . . . . . . . . 147 7.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.2.1 ImprovementstothequantificationofchangesintheexperimentalmodelofRA. 148 7.2.2 Otherapplicationsofthespatio-temporalsegmentation . . . . . . . . . . . . . . 148 7.2.3 Automaticwindowwidthdeterminationinthespatio-temporalsegmentation . . 149 7.2.4 Improvementstoautomaticbonelocalisationandalignment . . . . . . . . . . . 149 7.2.5 Dynamiccontrastenhanced(DCE)imagingofsynovitisinRApatients . . . . . 152 7.2.6 ImprovementstotheintegrationofmedicalimageanalysisandtheGrid . . . . . 152 7.2.7 Differentwaysofbuildingthefeaturespaceinthespatio-temporalsegmentation 152 7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Appendices 153 A AppendixofChapter3 154 A.1 Binaryopeninganddilationoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 A.2 Averagebonelesionvolumesinvariouscandidatebonelesionregions . . . . . . . . . . 154

Description:
image registration and analysis algorithms to automatically quantify changes in a bone in in-vivo lon- It regards a fea- ture space as the empirical probability density function (p.d.f.) of the represented parameters. Dense regions (i.e. regions with dense points) in the feature space correspond t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.