ebook img

Long Memory in Economics PDF

393 Pages·2007·6.134 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Long Memory in Economics

(cid:1)(cid:2)(cid:3)(cid:4) (cid:5)(cid:6)(cid:7)(cid:2)(cid:8)(cid:9) (cid:10)(cid:3) (cid:11)(cid:12)(cid:2)(cid:3)(cid:2)(cid:7)(cid:10)(cid:12)(cid:13) (cid:14)(cid:10)(cid:15)(cid:15)(cid:6)(cid:13) (cid:16)(cid:6)(cid:9)(cid:13)(cid:13)(cid:10)(cid:17)(cid:8)(cid:6) (cid:18) (cid:19)(cid:15)(cid:20)(cid:3) (cid:21)(cid:22) (cid:23)(cid:10)(cid:8)(cid:7)(cid:20)(cid:3) (cid:11)(cid:24)(cid:10)(cid:25)(cid:2)(cid:8)(cid:13) (cid:1)(cid:2)(cid:3)(cid:4) (cid:5)(cid:6)(cid:7)(cid:2)(cid:8)(cid:9) (cid:10)(cid:3) (cid:11)(cid:12)(cid:2)(cid:3)(cid:2)(cid:7)(cid:10)(cid:12)(cid:13) (cid:26)(cid:10)(cid:25)(cid:27) (cid:28)(cid:28)(cid:29) (cid:30)(cid:10)(cid:4)(cid:31)(cid:8)(cid:6)(cid:13) (cid:20)(cid:3)(cid:24) ! (cid:16)(cid:20)"(cid:15)(cid:6)(cid:13) (cid:1) (cid:2) #(cid:8)(cid:22) (cid:14)(cid:10)(cid:15)(cid:15)(cid:6)(cid:13) (cid:16)(cid:6)(cid:9)(cid:13)(cid:13)(cid:10)(cid:17)(cid:8)(cid:6) $(cid:3)(cid:10)%(cid:6)(cid:8)(cid:13)(cid:10)(cid:25)& (cid:21)(cid:20)(cid:8)(cid:10)(cid:13) (cid:28) (cid:1)(cid:20)"(cid:2)(cid:8)(cid:20)(cid:25)(cid:2)(cid:10)(cid:8)(cid:6) (cid:24)(cid:6) ’(cid:25)(cid:20)(cid:25)(cid:10)(cid:13)(cid:25)(cid:10)((cid:31)(cid:6) (cid:19)))(cid:15)(cid:10)((cid:31)&(cid:6) (cid:6)(cid:25) (cid:24)(cid:6) (cid:5)(cid:2)(cid:24)&(cid:15)(cid:10)(cid:13)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3) ’(cid:25)(cid:2)(cid:12)(cid:27)(cid:20)(cid:13)(cid:25)(cid:10)((cid:31)(cid:6) *’(cid:19)(cid:5)+’, (cid:21)(cid:20)(cid:3)(cid:25)(cid:27)&(cid:2)(cid:3) ’(cid:2)(cid:8)"(cid:2)(cid:3)(cid:3)(cid:6) -(cid:6)(cid:3)(cid:25)(cid:8)(cid:6) (cid:21)(cid:10)(cid:6)(cid:8)(cid:8)(cid:6) (cid:5)(cid:6)(cid:3)(cid:24)(cid:17)(cid:13) .! (cid:8)(cid:31)(cid:6) (cid:24)(cid:6) (cid:16)(cid:2)(cid:15)"(cid:10)(cid:20)(cid:12) / (cid:29)01 (cid:21)(cid:20)(cid:8)(cid:10)(cid:13) -(cid:6)(cid:24)(cid:6)2 (cid:28)0 (cid:30)(cid:8)(cid:20)(cid:3)(cid:12)(cid:6) (cid:21)(cid:8)(cid:2)3(cid:6)(cid:13)(cid:13)(cid:2)(cid:8) (cid:19)(cid:15)(cid:20)(cid:3) (cid:21)(cid:22) (cid:23)(cid:10)(cid:8)(cid:7)(cid:20)(cid:3) $(cid:3)(cid:10)%(cid:6)(cid:8)(cid:13)(cid:10)(cid:25)& (cid:19)(cid:10)24(cid:5)(cid:20)(cid:8)(cid:13)(cid:6)(cid:10)(cid:15)(cid:15)(cid:6) 555 (cid:1)6(cid:11)(cid:12)(cid:2)(cid:15)(cid:6) (cid:24)(cid:6)(cid:13) 7(cid:20)(cid:31)(cid:25)(cid:6)(cid:13) (cid:11)(cid:25)(cid:31)(cid:24)(cid:6)(cid:13) (cid:6)(cid:3) ’(cid:12)(cid:10)(cid:6)(cid:3)(cid:12)(cid:6)(cid:13) ’(cid:2)(cid:12)(cid:10)(cid:20)(cid:15)(cid:6)(cid:13) *(cid:11)7(cid:11)’’, 8 (cid:8)(cid:31)(cid:6) (cid:24)(cid:6) (cid:15)(cid:20) -(cid:27)(cid:20)(cid:8)(cid:10)(cid:25)& (cid:28)0!!8 (cid:5)(cid:20)(cid:8)(cid:13)(cid:6)(cid:10)(cid:15)(cid:15)(cid:6) (cid:30)(cid:8)(cid:20)(cid:3)(cid:12)(cid:6) 5’9:4(cid:28)! 04 1!488(cid:29).14;’)(cid:8)(cid:10)(cid:3)(cid:4)(cid:6)(cid:8)9(cid:6)(cid:8)(cid:15)(cid:10)(cid:3) 7(cid:6)(cid:10)(cid:24)(cid:6)(cid:15)"(cid:6)(cid:8)(cid:4) :(cid:6)< =(cid:2)(cid:8)> 5’9:4(cid:28)0 ./?404 1!488(cid:29).14.’)(cid:8)(cid:10)(cid:3)(cid:4)(cid:6)(cid:8)9(cid:6)(cid:8)(cid:15)(cid:10)(cid:3) 7(cid:6)(cid:10)(cid:24)(cid:6)(cid:15)"(cid:6)(cid:8)(cid:4) :(cid:6)<=(cid:2)(cid:8)> -(cid:20)(cid:25)(cid:20)(cid:15)(cid:2)(cid:4)(cid:10)(cid:3)(cid:4)4(cid:10)(cid:3)4(cid:21)(cid:31)"(cid:15)(cid:10)(cid:12)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3)#(cid:20)(cid:25)(cid:20) (cid:1)(cid:10)"(cid:8)(cid:20)(cid:8)(cid:9)(cid:2)3-(cid:2)(cid:3)(cid:4)(cid:8)(cid:6)(cid:13)(cid:13)-(cid:2)(cid:3)(cid:25)(cid:8)(cid:2)(cid:15):(cid:31)(cid:7)"(cid:6)(cid:8)@8!! .0!1(cid:29)! (cid:16)(cid:27)(cid:10)(cid:13) <(cid:2)(cid:8)> (cid:10)(cid:13) (cid:13)(cid:31)"A(cid:6)(cid:12)(cid:25) (cid:25)(cid:2) (cid:12)(cid:2))(cid:9)(cid:8)(cid:10)(cid:4)(cid:27)(cid:25)(cid:22) (cid:19)(cid:15)(cid:15) (cid:8)(cid:10)(cid:4)(cid:27)(cid:25)(cid:13) (cid:20)(cid:8)(cid:6) (cid:8)(cid:6)(cid:13)(cid:6)(cid:8)%(cid:6)(cid:24)B <(cid:27)(cid:6)(cid:25)(cid:27)(cid:6)(cid:8) (cid:25)(cid:27)(cid:6) <(cid:27)(cid:2)(cid:15)(cid:6) (cid:2)(cid:8) )(cid:20)(cid:8)(cid:25) (cid:2)3 (cid:25)(cid:27)(cid:6)(cid:7)(cid:20)(cid:25)(cid:6)(cid:8)(cid:10)(cid:20)(cid:15)(cid:10)(cid:13)(cid:12)(cid:2)(cid:3)(cid:12)(cid:6)(cid:8)(cid:3)(cid:6)(cid:24)B(cid:13))(cid:6)(cid:12)(cid:10)3(cid:10)(cid:12)(cid:20)(cid:15)(cid:15)(cid:9) (cid:25)(cid:27)(cid:6)(cid:8)(cid:10)(cid:4)(cid:27)(cid:25)(cid:13)(cid:2)3(cid:25)(cid:8)(cid:20)(cid:3)(cid:13)(cid:15)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3)B(cid:8)(cid:6))(cid:8)(cid:10)(cid:3)(cid:25)(cid:10)(cid:3)(cid:4)B(cid:8)(cid:6)(cid:31)(cid:13)(cid:6)(cid:2)3(cid:10)(cid:15)(cid:15)(cid:31)(cid:13)4 (cid:25)(cid:8)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3)(cid:13)B (cid:8)(cid:6)(cid:12)(cid:10)(cid:25)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3)B "(cid:8)(cid:2)(cid:20)(cid:24)(cid:12)(cid:20)(cid:13)(cid:25)(cid:10)(cid:3)(cid:4)B (cid:8)(cid:6))(cid:8)(cid:2)(cid:24)(cid:31)(cid:12)(cid:25)(cid:10)(cid:2)(cid:3) (cid:2)(cid:3) (cid:7)(cid:10)(cid:12)(cid:8)(cid:2)3(cid:10)(cid:15)(cid:7) (cid:2)(cid:8) (cid:10)(cid:3) (cid:20)(cid:3)(cid:9) (cid:2)(cid:25)(cid:27)(cid:6)(cid:8) <(cid:20)(cid:9)B (cid:20)(cid:3)(cid:24) (cid:13)(cid:25)(cid:2)(cid:8)(cid:20)(cid:4)(cid:6) (cid:10)(cid:3) (cid:24)(cid:20)(cid:25)(cid:20)"(cid:20)(cid:3)>(cid:13)(cid:22) #(cid:31))(cid:15)(cid:10)(cid:12)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3) (cid:2)3 (cid:25)(cid:27)(cid:10)(cid:13))(cid:31)"(cid:15)(cid:10)(cid:12)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3) (cid:2)(cid:8) )(cid:20)(cid:8)(cid:25)(cid:13) (cid:25)(cid:27)(cid:6)(cid:8)(cid:6)(cid:2)3(cid:10)(cid:13))(cid:6)(cid:8)(cid:7)(cid:10)(cid:25)(cid:25)(cid:6)(cid:24) (cid:2)(cid:3)(cid:15)(cid:9) (cid:31)(cid:3)(cid:24)(cid:6)(cid:8) (cid:25)(cid:27)(cid:6))(cid:8)(cid:2)%(cid:10)(cid:13)(cid:10)(cid:2)(cid:3)(cid:13) (cid:2)3(cid:25)(cid:27)(cid:6) (cid:14)(cid:6)(cid:8)(cid:7)(cid:20)(cid:3)-(cid:2))(cid:9)(cid:8)(cid:10)(cid:4)(cid:27)(cid:25) (cid:1)(cid:20)<(cid:2)3’(cid:6))(cid:25)(cid:6)(cid:7)"(cid:6)(cid:8) .B(cid:28).(cid:29) B (cid:10)(cid:3) (cid:10)(cid:25)(cid:13) (cid:12)(cid:31)(cid:8)(cid:8)(cid:6)(cid:3)(cid:25) %(cid:6)(cid:8)(cid:13)(cid:10)(cid:2)(cid:3)B(cid:20)(cid:3)(cid:24))(cid:6)(cid:8)(cid:7)(cid:10)(cid:13)(cid:13)(cid:10)(cid:2)(cid:3)3(cid:2)(cid:8)(cid:31)(cid:13)(cid:6)(cid:7)(cid:31)(cid:13)(cid:25)(cid:20)(cid:15)<(cid:20)(cid:9)(cid:13)"(cid:6)(cid:2)"(cid:25)(cid:20)(cid:10)(cid:3)(cid:6)(cid:24)3(cid:8)(cid:2)(cid:7)’)(cid:8)(cid:10)(cid:3)(cid:4)(cid:6)(cid:8)4C(cid:6)(cid:8)(cid:15)(cid:20)(cid:4)(cid:22)C(cid:10)(cid:2)(cid:15)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3)(cid:13) (cid:20)(cid:8)(cid:6)(cid:15)(cid:10)(cid:20)"(cid:15)(cid:6)3(cid:2)(cid:8))(cid:8)(cid:2)(cid:13)(cid:6)(cid:12)(cid:31)(cid:25)(cid:10)(cid:2)(cid:3)(cid:31)(cid:3)(cid:24)(cid:6)(cid:8)(cid:25)(cid:27)(cid:6)(cid:14)(cid:6)(cid:8)(cid:7)(cid:20)(cid:3)-(cid:2))(cid:9)(cid:8)(cid:10)(cid:4)(cid:27)(cid:25)(cid:1)(cid:20)<(cid:22) ’)(cid:8)(cid:10)(cid:3)(cid:4)(cid:6)(cid:8)(cid:10)(cid:13)(cid:20))(cid:20)(cid:8)(cid:25)(cid:2)3’)(cid:8)(cid:10)(cid:3)(cid:4)(cid:6)(cid:8)’(cid:12)(cid:10)(cid:6)(cid:3)(cid:12)(cid:6)D9(cid:31)(cid:13)(cid:10)(cid:3)(cid:6)(cid:13)(cid:13)(cid:5)(cid:6)(cid:24)(cid:10)(cid:20) (cid:13))(cid:8)(cid:10)(cid:3)(cid:4)(cid:6)(cid:8)(cid:2)(cid:3)(cid:15)(cid:10)(cid:3)(cid:6)(cid:22)(cid:12)(cid:2)(cid:7) E’)(cid:8)(cid:10)(cid:3)(cid:4)(cid:6)(cid:8)9(cid:6)(cid:8)(cid:15)(cid:10)(cid:3)(cid:18)7(cid:6)(cid:10)(cid:24)(cid:6)(cid:15)"(cid:6)(cid:8)(cid:4)8!!/ (cid:21)(cid:8)(cid:10)(cid:3)(cid:25)(cid:6)(cid:24)(cid:10)(cid:3)(cid:14)(cid:6)(cid:8)(cid:7)(cid:20)(cid:3)(cid:9) (cid:16)(cid:27)(cid:6)(cid:31)(cid:13)(cid:6)(cid:2)3(cid:4)(cid:6)(cid:3)(cid:6)(cid:8)(cid:20)(cid:15)(cid:24)(cid:6)(cid:13)(cid:12)(cid:8)(cid:10))(cid:25)(cid:10)%(cid:6)(cid:3)(cid:20)(cid:7)(cid:6)(cid:13)B(cid:8)(cid:6)(cid:4)(cid:10)(cid:13)(cid:25)(cid:6)(cid:8)(cid:6)(cid:24)(cid:3)(cid:20)(cid:7)(cid:6)(cid:13)B(cid:25)(cid:8)(cid:20)(cid:24)(cid:6)(cid:7)(cid:20)(cid:8)>(cid:13)B(cid:6)(cid:25)(cid:12)(cid:22)(cid:10)(cid:3)(cid:25)(cid:27)(cid:10)(cid:13))(cid:31)"(cid:15)(cid:10)(cid:12)(cid:20)4 (cid:25)(cid:10)(cid:2)(cid:3) (cid:24)(cid:2)(cid:6)(cid:13) (cid:3)(cid:2)(cid:25) (cid:10)(cid:7))(cid:15)(cid:9)B (cid:6)%(cid:6)(cid:3) (cid:10)(cid:3) (cid:25)(cid:27)(cid:6) (cid:20)"(cid:13)(cid:6)(cid:3)(cid:12)(cid:6) (cid:2)3 (cid:20) (cid:13))(cid:6)(cid:12)(cid:10)3(cid:10)(cid:12) (cid:13)(cid:25)(cid:20)(cid:25)(cid:6)(cid:7)(cid:6)(cid:3)(cid:25)B (cid:25)(cid:27)(cid:20)(cid:25) (cid:13)(cid:31)(cid:12)(cid:27) (cid:3)(cid:20)(cid:7)(cid:6)(cid:13) (cid:20)(cid:8)(cid:6) (cid:6)2(cid:6)(cid:7))(cid:25) 3(cid:8)(cid:2)(cid:7) (cid:25)(cid:27)(cid:6) (cid:8)(cid:6)(cid:15)(cid:6)%(cid:20)(cid:3)(cid:25) )(cid:8)(cid:2)(cid:25)(cid:6)(cid:12)(cid:25)(cid:10)%(cid:6) (cid:15)(cid:20)<(cid:13) (cid:20)(cid:3)(cid:24) (cid:8)(cid:6)(cid:4)(cid:31)(cid:15)(cid:20)(cid:25)(cid:10)(cid:2)(cid:3)(cid:13) (cid:20)(cid:3)(cid:24) (cid:25)(cid:27)(cid:6)(cid:8)(cid:6)3(cid:2)(cid:8)(cid:6) 3(cid:8)(cid:6)(cid:6) 3(cid:2)(cid:8) (cid:4)(cid:6)(cid:3)(cid:6)(cid:8)(cid:20)(cid:15) (cid:31)(cid:13)(cid:6)(cid:22) 7(cid:20)(cid:8)(cid:24)(cid:12)(cid:2)%(cid:6)(cid:8)4#(cid:6)(cid:13)(cid:10)(cid:4)(cid:3)@(cid:11)(cid:8)(cid:10)(cid:12)(cid:27)(cid:23)(cid:10)(cid:8)(cid:12)(cid:27)(cid:3)(cid:6)(cid:8)B7(cid:6)(cid:10)(cid:24)(cid:6)(cid:15)"(cid:6)(cid:8)(cid:4) ’(cid:21)5:(cid:28)(cid:28)0!?(cid:29)(cid:29). 10F0(cid:28)!!4 1 0 8 (cid:28) !G(cid:21)(cid:8)(cid:10)(cid:3)(cid:25)(cid:6)(cid:24)(cid:2)(cid:3)(cid:20)(cid:12)(cid:10)(cid:24)43(cid:8)(cid:6)(cid:6))(cid:20))(cid:6)(cid:8) Preface Long–rangedependent,orlong–memory,timeseriesarestationarytimeseries displaying a statistically significant dependence between very distant obser- vations. We formalize this dependence by assuming that the autocorrelation function of these stationary series decays very slowly, hyperbolically, as a function of the time lag. Many economic series display these empirical features: volatility of asset prices returns, future interest rates, etc. There is a huge statistical literature on long–memory processes, some of this research is highly technical, so that it is cited, but often misused in the applied econometrics and empirical eco- nomics literature.The first purposeof this book is to presentin a formaland pedagogicalway some statistical methods for studying long–rangedependent processes. Furthermore, the occurrence of long–memory in economic time series might be a statistical artefact as the hyperbolic decay of the sample autocor- relation function does not necessarily derive from long–rangedependent pro- cesses. Indeed, the realizations of non-homogeneousprocesses, e.g., switching regime and change–point processes, display the same empirical features. We thus also present in this book recent statistical methods able to discriminate between the long–memory and change–point alternatives. Going beyond the purely statistical analysis of economic series, it is of interest to determine which economic mechanisms are generating the strong dependence propertiesofeconomicseries,whether they aregenuine,orspuri- ous. The regularities of the long–memory and change–pointproperties across economic time series, e.g., common degree of long–range dependence and/or common change–points, suggest the existence of a common economic cause. A promising approach is the use of the class of micro–basedmodels in which the set of economic agents is represented as a (self)–organizing and interact- ing society whose composition evolves over time, i.e., something resembling the realizationofa non–homogeneousstochastic process.Some of these mod- els, inspired by the works of entomologists, are able to mimic some empirical propertiesoffinancialandnon–financialmarkets.Thisimplicitlysuggeststhat VI Preface whatis termedas“long–memory”ineconomicsis morecomplex thanastan- dard (nonlinear) long–range dependent process, and mastering a wide range of statistical tools is a great asset for studying economic time series. Thisvolume startswiththe chapter byLiudas Giraitis,Remis Leipus and Donatas Surgailis, who have been awardedthis year the Lithuanian National Prize for Science for their work on “Long–memory: models, limit distribu- tions, statistical inference”. Donatas Surgailis and his numerous former stu- dents have made, and are still making, essential contributions to this topic. Their (encyclopedic) survey chapter reviews some recent theoretical findings on ARCH type volatility models. They focus mainly on covariance station- ary models which display empirically observed properties which have come to be recognized as ”stylized facts”. One of the major issues to determine is whetherthecorrespondingmodelforsquaresr2 ofARCHsequenceshaslong– k memoryorshortmemory.ItispointedoutthatforseveralARCH-typemodels the(cid:1)behavior of Cov(rk2,r02) alone is sufficient to derive the limit distribution of (r2 −Er2) and statistical inferences, without imposing any additional k k k (e.g.mixing)assumptionsonthedependencestructure.Thisfirstchapteralso discusses ARCH(∞) processes and their modifications such as linear ARCH, bilinearmodelsandstochasticvolatility,regimeswitchingstochasticvolatility models, randomcoefficient ARCH and aggregation.They givean overviewof the theoretical results on the existence of a stationary solution, dependence structure, limit behavior of partial sums, leverage effect and long–memory property of these models. Statistical estimation of ARCH parameters and testing for change-points are also discussed. Bhansali, Holland and Kokoszka consider a new and an entirely different approachtomodelingphenomenaexhibitinglong–memory,intermittencyand heavy-tailed marginal distributions, namely through the use of chaotic inter- mittencymaps.Thisclassofmapshaswitnessedconsiderabledevelopmentin recent years and it represents an important emerging branch of the subject area of Dynamical Systems Theory. Three principal properties of these maps are relevant and these properties qualify them as a plausible class of models for financial returns. First, unlike some of the standard chaotic maps, the in- termittency maps display long–memory and have correlations decaying at a sub-exponential rate, meaning at a polynomial rate or even slower.Secondly, the invariant density of these maps can display ’Pareto’ tails and thus go to zero at a polynomial rate. Thirdly, as their name implies, these maps display intermittency and generate time series, called the orbit of the map, which display intermittent chaos, meaning the orbit of the map alternates between laminar and chaotic regions. Brousseauanalyzesthe time seriesofthe euro–dollarexchangerateasthe realization of a continuous–time physical process, which implies the use of different degrees of time resolution. The analysis takes into account various statistical indicators, but puts special emphasis on the spectrum of the pro- cess. Brousseaufinds that this spectrum has an identifiable pattern, which is a core characteristic of the process. Then he simulates a process having the Preface VII same spectrum, and the behavior of the actual process and of the simulated process are compared using various statistical indicators. It appears that the simulatedprocessprovidesagood,butnotperfect,replicationofthebehavior of the actual euro–dollar exchange rate. The next two chapters deal with the issue of change–point detection. Raˇckauskas and Suquet present the invariance principle by Donsker and Prokhorov,whichcanbeusedforanalyzingstructuralchanges.Theyfocuson invarianceprincipleswithrespecttoHo¨ldertopologies,asHo¨lderspacesbring out well variations properties of processes.They presentsome applications of the H¨olderian invariance principles to the problem of testing the stability of a sample against epidemic change–points alternatives. LavielleandTeyssi`ereconsiderthemultiplechange–pointproblemfortime series, including strongly dependent processes, with an unknown number of change–points. They propose an adaptive method for finding the sequence of change–points τ with the optimal level of resolution. This optimal seg- mentation is obtained by minimizing a standard penalized contrast function J(τ,y)+βpen(τ).Theadaptiveprocedureissuchthattheoptimalsegmenta- tiondoesnotstronglydependonthepenalizationparameterβ.Thisalgorithm is applied to the problem of detection of change–points in the volatility of fi- nancialtimeseries,andcomparedwiththebinarysegmentationprocedureby Vostrikova. Thechapterby Henryis onthe issue ofbandwidthselectionforsemipara- metric estimatorsof the long–memoryparameter.The spectralbasedestima- tors are derived from the shape of the spectral density at low frequencies, where all but the lowest harmonics of the periodogram are discarded. This allows one to ignore the specification of the short rangedynamic structure of the time series, and avoid the bias incurred when the latter is misspecified. Such a procedureentails anorder of magnitude loss of efficiency with respect to parametric estimation, but may be warranted when long series (earth sci- entificorfinancial)canbeobtained.Thischapterpresentsstrategiesproposed for the choice of bandwidth, i.e., the number of periodogramharmonics used in estimation, with the aim of minimizing this loss of efficiency. Teyssi`ere and Abry present and study the performance of the semipara- metric wavelet estimator for the long–memory parameter devised by Veitch and Abry, and compare this estimator with two semiparametric estimators in the spectral domain: the local Whittle and the “log–periodogram” esti- mators. The wavelet estimator performs well for a wide range of nonlinear long–memoryprocessesinthe conditionalmeanandthe conditionalvariance, and is reliable for discriminating between change–points and long–range de- pendence in volatility. The authors also address the issue of the selection of the range of octaves used as regressors by the weighted least squares esti- mator. It appears that using the feasible optimal bandwidths for either the spectral estimators, surveyed by Henry in the previous chapter, is a useful ruleofthumbforselectingthelowestoctave.Thewaveletestimatorisapplied to volatility and volume financial time series. VIII Preface Kateb,Seghier and Teyssi`erestudy a fast versionof the Levinson–Durbin algorithm, derived from the asymptotic behavior of the first column of the inverseof T (f), the (N+1)×(N+1) Toeplitz matrix with typical element N f,thespectraldensityofalong–memoryprocess.TheinversionofT (f)with N Yule–Walker type equations requires O(N3) operations, while the Levinson– Durbin algorithm requires O(N2) elementary operations. In this chapter, an asymptotic behavior of (T (f)), for large values of N is given so that the N computations of the inverseelements areperformed in O(N) operations.The numericalresultsarecomparedwiththosegivenbytheLevinson–Durbinalgo- rithm,withparticularemphasisonproblemsofpredictingstationarystochas- tic long–range dependent processes. Gaunersdorfer and Hommes study a simple nonlinear structural model of endogenousbelief heterogeneity.News about fundamentals is an independent andidenticallydistributedrandomprocess,butneverthelessvolatilitycluster- ing occurs as an endogenous phenomenon caused by the interaction between different types of traders, fundamentalists and technical analysts. The belief types are drivenby adaptive,evolutionarydynamics accordingto the success of the predictionstrategies as measuredby accumulatedrealizedprofits,con- ditioned upon price deviations from the rational expectations fundamental price. Asset prices switch irregularly between two different regimes – periods ofsmallpricefluctuationsandperiodsoflargepricechangestriggeredbyran- dom news and reinforced by technical trading – thus, creating time varying volatility similar to that observed in real financial data. Cont attempts to model the volatility clustering of asset prices: large changes in prices tend to cluster together, resulting in persistence of the amplitudes of their changes. After recalling various methods for quantify- ing and modeling this phenomenon, this chapter discusses several economic mechanisms which have been proposed to explain the origin of this volatility clustering in terms of behavior of market participants and the news arrival process. A common feature of these models seems to be a switching between lowandhighactivity regimeswith heavy-taileddurationsof regimes.Finally, a simple agent-based model is presented, which links such variations in mar- ket activity to threshold behavior of market participants and suggests a link between volatility clustering and investor inertia. Kirmans chapter is devoted to an account of the sort of micro-economic founded models that can give rise to long memory and other stylised facts about financial and economic series. The basic idea is that the market is populated by individuals who have different views about future prices. As time unfolds they may change their ways of forecasting the future. As they do so they change their demands and thus prices. In many of these models the typical rules are “chartist” or extrapolative rules and those based on the idea that prices will revert to some “fundamental” values. In fact, any finite number of rules can be considered. The switching between rules may result in “herding” on some particular rule for a period of time and give rise to longmemoryandvolatilityclustering.The firstmodelswereusedtogenerate Preface IX data which was then tested to see if the stylised facts were generated. More recently theoretical results have been obtained which characterise the long run distribution of the price process. Alfarano and Lux present a very simple model of a financial market with heterogeneous interacting agents capable of reproducing empirical statistical properties of returns. In this model, the traders are divided into two groups, fundamentalists and chartists, and their interactions are based on herding mechanism. The statistical analysis of the simulated data shows long-term dependence in the auto-correlations of squared and absolute returns and hy- perbolic decay in the tail of the distribution of the raw returns, both with estimateddecayparametersinthesamerangelikeempiricaldata.Theoretical analysis, however, excludes the possibility of “true” scaling behavior because oftheMarkoviannatureoftheunderlyingprocessandthefinitesetofpossible realized returns. ThepurposeofthechapterbydePerettiistodeterminewhetherhysteretic series can be confused with long–memory series. The hysteretic effect is a persistenceintheserieslikethelong–memoryeffect,althoughhystereticseries are not mean reverting whereas long–memory series are. Hysteresis models have in fact a short memory, since dominant shocks erase the memory of the series,andthepersistenceisduetopermanentandnon-revertingstatechanges atamicrostructurelevel.Inorderto checkwhetherhysteretic modelsdisplay spuriouslong–rangedependence,amodelpossessingthehysteresispropertyis usedforsimulatinghystereticdatatowhichstatisticaltestsforshort–memory against long–memory alternatives are applied. We wish to thank all contributors to this book, all the referees for their careful and fast reports which made the selection of the chapters easier, the Springer Verlag editor, Dr Martina Bihn, for efficient and patient manage- ment, and Mrs Ruth Milewski for correcting the first series of manuscripts and the final version. Teyssi`ere managed chapters 1 to 8 and 10, while Kir- man managed chapters 9, 11, 12 and 13. Gilles Teyssi`ere thanks Paul Doukhan for his help to return to the aca- demic system on serious grounds, and the SAMOS (Statistique Appliqu´ee et MOd´elisationStochastique)UniversityParis1.He wantsto expresshis grati- tude to Rosa Maria to whom he owes bunches of flowersas the completion of this volumespilt overinto their spare time. AlanKirmanwouldlike to thank the other people with whom he has investigated this sort of problem, and in particular,HansFoellmer,UlrichHorst,RichardTopolandRomainRicciotti. Paris, Gilles Teyssi`ere June 2006 Alan Kirman Contents Part I Statistical Methods Recent Advances in ARCH Modelling Liudas Giraitis, Remigijus Leipus, Donatas Surgailis ................. 3 Intermittency, Long–Memory and Financial Returns Raj Bhansali, Mark P. Holland, Piotr S. Kokoszka ................... 39 The Spectrum of Euro–Dollar Vincent Brousseau ............................................... 69 H¨olderian Invariance Principles and Some Applications for Testing Epidemic Changes Alfredas Raˇckauskas, Charles Suquet................................109 Adaptive Detection of Multiple Change–Points in Asset Price Volatility Marc Lavielle, Gilles Teyssi`ere.....................................129 Bandwidth Choice, Optimal Rates and Adaptivity in Semiparametric Estimation of Long Memory Marc Henry .....................................................157 Wavelet Analysis of Nonlinear Long–Range Dependent Processes. Applications to Financial Time Series Gilles Teyssi`ere, Patrice Abry .....................................173 Prediction, Orthogonal Polynomials and Toeplitz Matrices. A Fast and Reliable Approximation to the Durbin–Levinson Algorithm Djalil Kateb, Abdellatif Seghier, Gilles Teyssi`ere .....................239 XII Contents Part II Economic Models A Nonlinear Structural Model for Volatility Clustering Andrea Gaunersdorfer, Cars Hommes ..............................265 Volatility Clustering in Financial Markets: Empirical Facts and Agent–Based Models Rama Cont......................................................289 The Microeconomic Foundations of Instability in Financial Markets Alan Kirman ....................................................311 A Minimal Noise Trader Model with Realistic Time Series Properties Simone Alfarano, Thomas Lux.....................................345 Long Memory and Hysteresis Christian de Peretti ..............................................363

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.