ebook img

Long-Life Design and Test Technology of Typical Aircraft Structures PDF

160 Pages·2018·7.17 MB·English
by  Jun Liu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Long-Life Design and Test Technology of Typical Aircraft Structures

Jun Liu · Zhufeng Yue · Xiaoliang Geng Shifeng Wen · Wuzhu Yan Long-Life Design and Test Technology of Typical Aircraft Structures Long-Life Design and Test Technology of Typical Aircraft Structures Jun Liu Zhufeng Yue Xiaoliang Geng (cid:129) (cid:129) Shifeng Wen Wuzhu Yan (cid:129) Long-Life Design and Test Technology of Typical Aircraft Structures 123 Jun Liu ShifengWen Schoolof Mechanics, Civil Engineering Northwestern Polytechnical University andArchitecture Xi’an,Shaanxi Northwestern Polytechnical University China Xi’an,Shaanxi China WuzhuYan Northwestern Polytechnical University Zhufeng Yue Xi’an,Shaanxi Northwestern Polytechnical University China Xi’an,Shaanxi China XiaoliangGeng Northwestern Polytechnical University Xi’an,Shaanxi China ISBN978-981-10-8398-3 ISBN978-981-10-8399-0 (eBook) https://doi.org/10.1007/978-981-10-8399-0 JointlypublishedwithNationalDefenseIndustryPress,Beijing,China TheprinteditionisnotforsaleinChinaMainland.CustomersfromChinaMainlandpleaseorderthe printbookfrom:NationalDefenseIndustryPress. LibraryofCongressControlNumber:2018934954 ©NationalDefenseIndustryPressandSpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publishers remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. partofSpringerNature Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721,Singapore Preface Aviation technology is moving forward at an unprecedented speed. Aircraft structures tend to be large in scale, complex, lightweight, and sophisticated. However, the service environment of aircraft structures is getting worse. Its development increasingly focuses on improving reliability and reducing costs, that is, improving safety and extending material life under the premise of meeting structural strength requirements. Structural anti-fatigue design and manufacturing has become the key issue of aircraft reliability and economy. With the launch of large passenger aircraft projects and transport aircraft projects in China, typical structuraldesignsofaircraft,andtheirrelatedtests,haveencounterednewtechnical problems. Solutions to these key technological issues will be helpful to promote domestic aircraft design and testing technologies, as well as the comprehensive performance of aircraft, which has become particularly important. UnderthesupportofprojectsbytheNationalDefenseScienceandTechnology, the localization project of materials, the National Natural Science Foundation of China (50805118, 50375124, and 11102163), the Aviation Science Fund (2013ZA53010), and the basic research fund of the Northwestern Polytechnical University (JC20110260), our research group has achieved a lot in in terms of the exploration and the practice of anti-fatigue design, analysis, and related experi- mentalverificationoftypicalaircraftstructuresinrecentyears,whichrepresentsthe basis of this book. The book’s content considers practical engineering issues with highengineeringapplicationvalues.Partoftheresultsandtechnologieshavebeen successfully applied to different models of aircrafts in their structural design, analysis and test. The book is divided into six chapters. Chapter1introducetheaimandmaincontentofthebook.Chapter2providesan overviewofthebasicconceptsandknowledgeoftenusedinanti-fatiguedesignand analysisofaircraftstructures.Chapter3analyzestheeffectofthesurfacequalityof fastener holes, such as surface defects and processing quality, on fatigue life. Chapter 4 examines the effects of fatigue resistance techniques, such as cold expansion, impression, and strengthening by hammering, on the residual stress distribution and fatigue life of fastening holes. Chapter 5 discusses the effects of differentparametersofshotpeening,suchasshotmaterials,surfaceroughness,and v vi Preface target properties, on the residual stress field and lifespan of plates. Chapter 6 focuses on three types of typical connections for aircraft: single shear lap joints, double shear joint and reverse double dog bone joint in terms of nail load and lifespan assessment. Chapter 7 analyzes fatigue tests and lifespan assessments of typical wing box structures, and verifies the accuracy of anti-fatigue analysis technologies used on such structures to determine their anti-fatigue properties. In the relevant pre-research and project completion process, Dr. Shao Xiaojun, doctoral students Kang Jianxiong and Yuan Xin, master students Liu Yongjun, ZhangGang,XuHonglu,WangXiaosen,YangShichao,ZhangZhiguo,andWang Xing, along with Mr. Yao Shile, Mr. Wei Xiaoming, and Mr. Han Zhe, engineers from the advanced materials and structural testing center of Northwestern Polytechnic University, undertook certain tasks. Some parts of the book adopt or refer to their relevant papers or work reports, and we are exceedingly grateful for theirhelp.Thisbookhasalsocitedresearchresultsfrombothdomesticandforeign experts and scholars. However, we may not always indicate original sources and apologize to the reader when this is the case. The completion of this book has also been strongly supported by the National Defense Science and Industry Bureau, China Aviation Industry Corporation’s related plants and other units, as well as relevant leadership, engineering, and technical personnel. We would like to express our sincere appreciation to all of them. This book’s content is characterized by systematic, comprehensive, and high engineering practicality. At the same time, it reflects both domestic and foreign researchresultsinthisfieldinrecentyearsandassuchcouldbeusedasareference for relevant professional researchers and engineering and technical personnel. We warmly welcome your criticism and corrections. Xi’an, China Jun Liu Zhufeng Yue Xiaoliang Geng Shifeng Wen Wuzhu Yan Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Outline of Fatigue and Fracture Mechanics . . . . . . . . . . . . . . . . . . . 5 2.1 Basic Conception of Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Definition of Fatigue and Its Damage Property . . . . . . . . . 5 2.1.2 Alternating Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Curve S-N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 Equal-Life Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.5 Stress Fatigue and Strain Fatigue . . . . . . . . . . . . . . . . . . . 9 2.1.6 Linear Cumulative Damage Theory . . . . . . . . . . . . . . . . . 10 2.2 The Main Factors that Affect the Structural Fatigue Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Effects of Load Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Effects of Stress Concentration. . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Effects of Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Effects of Surface Roughness and Residual Stress . . . . . . . 12 2.3 Mechanism of Fatigue Failure, Crack Propagation, and Fracture Analysis of Metals . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Mechanism of Fatigue Failure . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Fatigue Crack Propagating Theory . . . . . . . . . . . . . . . . . . 14 2.3.3 Fractographic Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Estimate Methods of Fatigue Life . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 Nominal Stress Approach. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2 Local Stress–Strain Method . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Multiaxial Fatigue Theory . . . . . . . . . . . . . . . . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 vii viii Contents 3 Effect of Surface Quality of Open Holes on Fatigue Life . . . . . . . . . 23 3.1 Effect of the Surface Defects on Fatigue Life of Open Holes . . . . 23 3.1.1 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.2 Cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.3 Inclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Effect of Manufacturing Quality on Fatigue Performance of Open Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Surface Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 Verticality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.3 Cylindricity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.4 Roundness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.5 Manufacturing Quality of Fasten Holes and Empirical Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Effect of Drilling on Fatigue Performance of Open Holes . . . . . . . 50 3.3.1 Specimen Size and Loading . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.2 Fatigue Test Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Anti-fatigue Strengthening Technology of Holes. . . . . . . . . . . . . . . . 55 4.1 Effect of Cold Expansion on Fatigue Performance of Open Holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Direct Mandrel Expansion Process and Its Parameters . . . . 56 4.1.2 Residual Stress Measurements . . . . . . . . . . . . . . . . . . . . . 58 4.1.3 Fatigue Test Results and Fracture Analysis . . . . . . . . . . . . 62 4.1.4 FEM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Effect of Impression on Fatigue Performance of Open Holes. . . . . 66 4.2.1 Impression Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.2 Influence of Indenter Size on Residual Stress Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.3 Influence of Different Factors on Residual Stress of Impression-Reinforced Holes . . . . . . . . . . . . . . . . . . . . 70 4.2.4 Fatigue Test of Three-Hole Sample Impressed. . . . . . . . . . 74 4.3 Effect of Hammering on Fatigue Performance of Open Hole. . . . . 76 4.3.1 Hammering and Fatigue Testing. . . . . . . . . . . . . . . . . . . . 76 4.3.2 Finite Element Analysis of Hammering. . . . . . . . . . . . . . . 78 4.3.3 Fracture Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Shot Peening Strengthening Technology . . . . . . . . . . . . . . . . . . . . . . 85 5.1 Mechanism of Shot Peening and Status of Art . . . . . . . . . . . . . . . 85 5.2 Effect of Shot Materials on Fatigue Performance . . . . . . . . . . . . . 87 5.2.1 Fatigue Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.2 Comparative Analysis of Fatigue Test Data. . . . . . . . . . . . 87 Contents ix 5.2.3 Fatigue Fracture Analysis. . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.4 Numerical Simulation of Shot Peening with Different Shot Materials. . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3 Effect of Surface Roughness on Residual Stress Field of Shot Peening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.1 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.2 Residual Stress Distribution . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.3 Effect of Surface Roughness on Residual Stress of Shot Peening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.4 Influence of Shot Size on Residual Stress Considering Surface Roughness . . . . . . . . . . . . . . . . . . . . 99 5.3.5 The Effect of Shot Peening Velocity on Residual Stress Considering Surface Roughness . . . . . . . . . . . . . . . 101 5.4 Effect of Mechanical Properties of Target Materials on Shot Peening Energy Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.1 Conversion Between Kinetic Energy and Deformation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.2 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.4.3 Model Verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.4.4 Effect of Young’s Modulus of Target . . . . . . . . . . . . . . . . 106 5.4.5 Effect of Target Yield Strength. . . . . . . . . . . . . . . . . . . . . 108 5.4.6 Effect of Strain Hardening Rate . . . . . . . . . . . . . . . . . . . . 108 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 Anti-fatigue Design and Analysis of Joints . . . . . . . . . . . . . . . . . . . . 113 6.1 Single Shear Lap Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1.1 Fatigue Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1.2 Analysis of Hole Stress . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Double Shear and Interference Fit Joints . . . . . . . . . . . . . . . . . . . 123 6.2.1 Effect of Interference on Pin Load . . . . . . . . . . . . . . . . . . 123 6.2.2 Fatigue Test and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 127 6.3 Reverse Double Dogbone Joints . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.3.1 Nail Load Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.3.2 Fatigue Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.3.3 Maximum Principal Stress Analysis . . . . . . . . . . . . . . . . . 136 6.4 Application of Multi-axis Fatigue Theory on Fatigue Life Prediction of Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.4.1 Life Prediction of Aluminum Alloy Reverse Double Dogbone Joints Specimen . . . . . . . . . . . . . . . . . . . . . . . . 138 6.4.2 Estimation of Life of Single Shear Lap Joints . . . . . . . . . . 139 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 x Contents 7 Fatigue Test and Analysis of Box Section . . . . . . . . . . . . . . . . . . . . . 143 7.1 Box Section Fatigue Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.1.1 Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.1.2 Loading Method and Test Results. . . . . . . . . . . . . . . . . . . 145 7.2 Box Section Life Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.2.1 Box Section Model and Results . . . . . . . . . . . . . . . . . . . . 147 7.2.2 Shape and Size of Initial Defects . . . . . . . . . . . . . . . . . . . 148 7.2.3 Fatigue Crack Propagation Analysis Program . . . . . . . . . . 149 7.2.4 Evaluation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Description:
This book addresses anti-fatigue manufacturing, analysis and test verification technologies for typical aircraft structures, including fastening holes, shot peening plates, different types of joints and wing boxes. Offering concrete solutions to practical problems in aircraft engineering, it will be
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.