ebook img

LOGIC: Lecture Notes For Philosophy, Mathematics, And Computer Science PDF

228 Pages·2021·7.968 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LOGIC: Lecture Notes For Philosophy, Mathematics, And Computer Science

Springer Undergraduate Texts in Philosophy Andrea Iacona LOGIC: Lecture Notes for Philosophy, Mathematics, and Computer Science Springer Undergraduate Texts in Philosophy The Springer Undergraduate Texts in Philosophy offers a series of self-contained textbooksaimedtowardstheundergraduatelevelthatcoversallareasofphilosophy rangingfromclassicalphilosophytocontemporarytopicsinthefield.Thetextswill includeteachingaids(suchasexercisesandsummaries)andwillbeaimedmainly towardsmoreadvancedundergraduatestudentsofphilosophy. Theseriespublishes: • Allofthephilosophicaltraditions • Introduction books with a focus on including introduction books for specific topicssuchaslogic,epistemology,Germanphilosophyetc. • Interdisciplinaryintroductions–wherephilosophyoverlapswithotherscientific orpracticalareas This series covers textbooks for all undergraduate levels in philosophy particu- larlythoseinterestedinintroductionstospecificphilosophytopics. We aim to make a first decision within 1 month of submission. In case of a positive first decision the work will be provisionally contracted: the final decision aboutpublicationwilldependupontheresultoftheanonymouspeerreviewofthe complete manuscript. We aim to have the complete work peer-reviewed within 3 monthsofsubmission. Proposalsshouldinclude: • Ashortsynopsisoftheworkortheintroductionchapter • TheproposedTableofContents • CVoftheleadauthor(s) • Listofcoursesforpossiblecourseadoption The series discourages the submission of manuscripts that are below 65,000 wordsinlength. Moreinformationaboutthisseriesathttp://www.springer.com/series/13798 Andrea Iacona LOGIC: Lecture Notes for Philosophy, Mathematics, and Computer Science AndreaIacona CenterforLogic,LanguageandCognition UniversityofTurin,Departmentof PhilosophyandEducation Torino,Italy ISSN2569-8737 ISSN2569-8753 (electronic) SpringerUndergraduateTextsinPhilosophy ISBN978-3-030-64810-7 ISBN978-3-030-64811-4 (eBook) https://doi.org/10.1007/978-3-030-64811-4 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisbookisanintroductiontologic.Itstartsfromzeroandcoversthemaintopics that are usually taught in elementary and advanced logic courses. Its measured pace, its controlled level of technicality, and its constant search for clarity and precisionmakeitparticularlysuitedforphilosophystudents.Butalsomathematics or computer science students may appreciate its style of exposition, especially if theyhavesomeinclinationforpuretheoreticalissues. The book is structured as follows. Chapters 1–3 provide some preliminary clarifications and define the basic vocabulary of logic. Chapters 4–6 present a propositionallanguageandexplainitssemantics.Chapters7and8setoutanatural deductionsysteminthatlanguage.Chapters9and10outlineadeductivelyequiv- alent axiomatic system and prove its consistency, soundness, and completeness. Chapters 11–13 present a predicate language and explain its semantics. Chap- ters14–15outlineanaxiomaticsysteminthatlanguageandproveitsconsistency, soundness,andcompleteness.Chapters16–18dealwithsomegeneralresultsabout first-order theories. Chapter 19 is devoted to Gödel’s incompleteness theorems. Finally,Chapter20introducesthefundamentalsofmodallogic. Since it is practically impossible to study this entire material within a single course,someselectionofchaptersmustbemade,dependingonthekindofcourse andthetimeavailable.Onewaytodividethebook,perhapsthesimplestway,isto use Chapters 1–10 for an elementary course and Chapters 11–20 for an advanced course. If instead the time available is not enough to cover ten chapters, which is quite likely, one can use Chapters 1–8 for an elementary course and Chapters 9– 18 for an advanced course, leaving out Chapters 19 and 20. A third option, which might be considered if one has only one course instead of two, and one wants to includebothpropositionalandpredicatelogic,istouseChapters1–6and11–13.In thiscase,onewillfocusonthesemanticsofpropositionalandpredicatelanguages, leavingouttheprooftheoryandthemetatheory. Each chapter includes ten exercises. Some of them are relatively simple and mechanical,othersrequireafirmgraspofthecontentspresentedinthechapterand abitofcreativity.Thereaderisnotexpectedtosolvealltheexercisesatfirstglance. v vi Preface Butatleastitisworthtrying.Thesolutionsarelistedattheendofthebook,soone canrelyonthemtomeasureone’sunderstandingandlearnfromone’smistakes. I drew from the following sources, which would be good for supplemental reading and are listed in the final bibliography: G. S. Boolos, J. P. Burgess, and R. Jeffrey, Computability and Logic (2010); H. B. Enderton, A Mathematical IntroductiontoLogic(1972);G.E.HughesandM.J.Cresswell,ANewIntroduction to Modal Logic (1996); G. Hunter, Metalogic (1971); E. J. Lemmon, Beginning Logic (1993); M. Sainsbury, Logical Forms (2001); and P. Smith, Introduction to Gödel’s Theorems (2013). Further references on specific issues are mentioned in thefootnotes. ThisbookisbasedonasetoflecturenotesthatIhaveconsistentlyusedinmy logic courses at the University of Turin, and that I have revised year after year. Duetoinnumerablecorrections,adjustments,andmodifications,I’mnolongerina positiontotellhowmanyversionsofthetextcirculatedamongstudents,andIdon’t havealistofallthosewhofounderrorsorsuggestedimprovements.ButIknowfor surethatIreceivedagreatdealofhelpfulcommentsfromGabrieleAbate,Martina Calderisi, Daniel Crowley, Gabriele Chiriotti, Paolo Grugnetti, Martino Paschetto, StefanoRomeo,GiulianoRosella,CristinaSagafrena,FrancescoScarpiello,Davide Sutto,andMartinaZirattu. Among the many intellectual debts that I have acquired in the course of writing this book, some deserve special mention. Pasquale Frascolla has been an inspiring presence ever since we started discussing about the logic exams of our doctoralstudents.MatteoPlebaniandEricRaidlgavemeparticularlyextensiveand extremelyhelpfulcomments,whichpromptednumeroussubstantialimprovements. Finally,DiegoMarconirevisedthefinalversionofthemanuscriptandspottedsome still remaining historical inaccuracies. I am very grateful to them all for the time theyspentonmywork. Torino,Italy AndreaIacona Contents 1 BasicNotions................................................................ 1 1.1 WhatIsLogic? ....................................................... 1 1.2 ArgumentsandTheirFormulation .................................. 3 1.3 ComplexReasoning.................................................. 4 1.4 TruthandFalsity ..................................................... 6 1.5 Bivalence ............................................................. 8 2 Validity....................................................................... 11 2.1 SomeSet-TheoreticalNotions....................................... 11 2.2 TruePremises......................................................... 12 2.3 ValidityasNecessaryTruthPreservation ........................... 13 2.4 OtherLogicalPropertiesandRelations............................. 15 2.5 ImportantFactsAboutValidity...................................... 16 2.6 ValidityIsNotEverything........................................... 20 3 Formality .................................................................... 25 3.1 FormalValidity....................................................... 25 3.2 FormalInvalidity..................................................... 28 3.3 FormalLanguage..................................................... 29 3.4 FormalSystem........................................................ 30 3.5 ObjectLanguageandMetalanguage ................................ 31 3.6 FurtherSet-TheoreticalNotions..................................... 32 4 TheSymbolsofPropositionalLogic...................................... 35 4.1 SentenceLetters...................................................... 35 4.2 SententialConnectives............................................... 36 4.3 Brackets............................................................... 38 4.4 ExpressiveCompleteness............................................ 39 4.5 Truth-FunctionalityandSubstitutivity .............................. 41 4.6 FormalizationinaPropositionalLanguage......................... 41 5 TheLanguageL............................................................. 45 5.1 FormationRules...................................................... 45 vii viii Contents 5.2 SyntacticTrees ....................................................... 46 5.3 Scope.................................................................. 47 5.4 Interpretation ......................................................... 48 5.5 TruthTables .......................................................... 49 6 LogicalConsequenceinL.................................................. 53 6.1 DefinitionofLogicalConsequence.................................. 53 6.2 OtherLogicalPropertiesandRelations............................. 54 6.3 ImportantFactsAboutLogicalConsequence....................... 55 6.4 LogicalConsequenceasaTestforValidity......................... 56 6.5 EffectiveComputability.............................................. 57 7 TheSystemG ............................................................... 61 7.1 Derivation............................................................. 61 7.2 Rulesfor∼ ........................................................... 62 7.3 Rulesfor⊃ ........................................................... 64 7.4 Rulesfor∧ ........................................................... 65 7.5 Rulesfor∨ ........................................................... 68 8 DerivabilityinG............................................................ 71 8.1 DerivabilityandRelatedNotions.................................... 71 8.2 ImportantFactsAboutDerivability ................................. 72 8.3 SomeTips............................................................. 73 8.4 DerivedRules......................................................... 75 8.5 OtherNaturalDeductionSystems................................... 76 9 TheSystemL................................................................ 79 9.1 AxiomsandInferenceRule.......................................... 79 9.2 DeductionTheorem.................................................. 81 9.3 Explosion,DoubleNegation,Contraposition....................... 83 9.4 SubstitutionofEquivalents .......................................... 85 9.5 ReductioAdAbsurdum.............................................. 87 − 9.6 DeductiveEquivalenceBetweenG andL......................... 88 9.7 SystemsandTheories................................................ 89 10 Consistency,Soundness,Completeness .................................. 91 10.1 ConsistencyofL ..................................................... 91 10.2 DefinitionsofSoundnessandCompleteness........................ 92 10.3 SoundnessofL....................................................... 93 10.4 CompletenessofL ................................................... 93 − 10.5 ExtensiontoG ...................................................... 96 11 Quantification............................................................... 99 11.1 QuantifiedSentences................................................. 99 11.2 ABriefHistoricalSurvey............................................ 101 11.3 ExistentialImport .................................................... 103 11.4 MultipleGenerality .................................................. 104 11.5 DefiniteDescriptions................................................. 106 Contents ix 12 TheSymbolsofPredicateLogic .......................................... 109 12.1 Non-logicalExpressions............................................. 109 12.2 LogicalConstantsandAuxiliarySymbols.......................... 110 12.3 OtherSymbols........................................................ 111 12.4 NumericalExpressions............................................... 113 12.5 MultipleGeneralityandScopeAmbiguity.......................... 114 12.6 Existence.............................................................. 115 13 TheLanguageL ........................................................... 119 q 13.1 Syntax................................................................. 119 13.2 BasicSemanticNotions.............................................. 121 13.3 Satisfaction ........................................................... 122 13.4 Truth .................................................................. 123 13.5 LogicalConsequence ................................................ 126 13.6 Undecidability........................................................ 127 14 TheSystemQ ............................................................... 131 14.1 AxiomsandInferenceRule.......................................... 131 14.2 DerivabilityinQ ..................................................... 132 14.3 GeneralizationTheorem ............................................. 133 14.4 ValidityandDerivability............................................. 133 14.5 DeductionTheoremandOtherSyntacticResults................... 134 14.6 AlphabeticVariants .................................................. 135 15 Consistency,Soundness,Completeness .................................. 139 15.1 ConsistencyofQ..................................................... 139 15.2 SoundnessofQ....................................................... 140 15.3 CompletenessofQ................................................... 141 15.4 CompactnessTheorem............................................... 143 15.5 FinalRemarks........................................................ 144 16 UndecidabilityandRelatedResults ...................................... 147 16.1 UndecidabilityofQ ................................................. 147 16.2 GödelNumbering .................................................... 148 16.3 EffectiveEnumerabilityoftheTheoremsofQ..................... 149 16.4 AFurtherCorollary .................................................. 149 16.5 RecursiveAxiomatizationandDecidability ........................ 150 17 First-OrderLogic........................................................... 153 17.1 First-OrderLanguagesandSystems................................. 153 17.2 First-OrderLogicwithIdentity...................................... 154 17.3 First-OrderTheory ................................................... 155 17.4 TheLanguageofBasicArithmetic.................................. 156 17.5 PeanoArithmetic..................................................... 158 18 TheoriesandModels ....................................................... 161 18.1 Cardinality............................................................ 161 18.2 Löwenheim-SkolemTheorems...................................... 162

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.